code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : str = logging.get_logger(__name__) A : Optional[int] = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''table-transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Any ) -> int: return self.d_model class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : int ) -> int: return 12
305
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A : Any = logging.get_logger(__name__) def a__ ( __UpperCamelCase ): if isinstance(__UpperCamelCase , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE_ = tf.shape(__UpperCamelCase ) if tensor.shape == tf.TensorShape(__UpperCamelCase ): return dynamic SCREAMING_SNAKE_CASE_ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__UpperCamelCase )] def a__ ( __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=__UpperCamelCase , name=__UpperCamelCase ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1E-5 , __UpperCamelCase=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = tf.nn.moments(__UpperCamelCase , axes=[axis] , keepdims=__UpperCamelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE_ = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE_ = shape_list(__UpperCamelCase )[axis] SCREAMING_SNAKE_CASE_ = tf.reshape(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.reshape(__UpperCamelCase , __UpperCamelCase ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE_ = tf.nn.batch_normalization( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , offset=__UpperCamelCase , scale=__UpperCamelCase , variance_epsilon=__UpperCamelCase , ) return outputs def a__ ( __UpperCamelCase , __UpperCamelCase=0 , __UpperCamelCase=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE_ = tf.shape(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE_ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__UpperCamelCase , __UpperCamelCase ) def a__ ( __UpperCamelCase ): if not isinstance(__UpperCamelCase , tf.Tensor ): SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__UpperCamelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE_ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE_ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE_ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = "input_ids" ): tf.debugging.assert_less( __UpperCamelCase , tf.cast(__UpperCamelCase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(__UpperCamelCase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE_ = [x for x in data if len(__UpperCamelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) SCREAMING_SNAKE_CASE_ = np.asarray(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = np.array_split(__UpperCamelCase , __UpperCamelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE_ = np.array_split(__UpperCamelCase , __UpperCamelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = chunk_data else: SCREAMING_SNAKE_CASE_ = data def a__ ( __UpperCamelCase , __UpperCamelCase ): if name in group.attrs: SCREAMING_SNAKE_CASE_ = [n.decode("utf8" ) if hasattr(__UpperCamelCase , "decode" ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(__UpperCamelCase , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def a__ ( __UpperCamelCase ): def _expand_single_ad_tensor(__UpperCamelCase ): if isinstance(__UpperCamelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__UpperCamelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __UpperCamelCase )
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Union[str, Any] = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __init__( self : Dict , __magic_name__ : str , __magic_name__ : List[Any]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=99 , __magic_name__ : Optional[int]=32 , __magic_name__ : Dict=5 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : Dict="gelu" , __magic_name__ : str=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Any=512 , __magic_name__ : Tuple=16 , __magic_name__ : List[str]=2 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : int=4 , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def __A ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def __A ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaxBertModelTester(self ) @slow def __A ( self : List[Any] ) -> Union[str, Any]: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ )
305
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A : Optional[Any] = 10 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for i in range(__UpperCamelCase , __UpperCamelCase ): if array[i] == target: return i return -1 def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) while left <= right: if right - left < precision: return lin_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: SCREAMING_SNAKE_CASE_ = one_third - 1 elif array[two_third] < target: SCREAMING_SNAKE_CASE_ = two_third + 1 else: SCREAMING_SNAKE_CASE_ = one_third + 1 SCREAMING_SNAKE_CASE_ = two_third - 1 else: return -1 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if left < right: if right - left < precision: return lin_search(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = (left + right) // 3 + 1 SCREAMING_SNAKE_CASE_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__UpperCamelCase , one_third - 1 , __UpperCamelCase , __UpperCamelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __UpperCamelCase , __UpperCamelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A : Any = input("Enter numbers separated by comma:\n").strip() A : Dict = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." A : str = int(input("Enter the number to be found in the list:\n").strip()) A : Any = ite_ternary_search(collection, target) A : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"Iterative search: {target} found at positions: {resulta}") print(f"Recursive search: {target} found at positions: {resulta}") else: print("Not found")
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__magic_name__ , "num_attention_heads" ) ) class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : int , __magic_name__ : List[str]=13 , __magic_name__ : Dict=64 , __magic_name__ : int=3 , __magic_name__ : Any=3 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : int=1 , __magic_name__ : int=16 , __magic_name__ : str=[128, 256, 384] , __magic_name__ : int=[4, 6, 8] , __magic_name__ : Any=[2, 3, 4] , __magic_name__ : List[str]=[16, 16, 16] , __magic_name__ : str=0 , __magic_name__ : Optional[Any]=[2, 2, 2] , __magic_name__ : Any=[2, 2, 2] , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]=True , __magic_name__ : str=2 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = kernel_size SCREAMING_SNAKE_CASE_ = stride SCREAMING_SNAKE_CASE_ = padding SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = key_dim SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = attention_ratio SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = initializer_range def __A ( self : int ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : Optional[int] ) -> Union[str, Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __A ( self : str , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = LevitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) SCREAMING_SNAKE_CASE_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __A ( self : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = LevitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = LevitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : List[str] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : str ) -> Optional[int]: return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __A ( self : List[str] ) -> List[str]: pass @unittest.skip(reason="Levit does not output attentions" ) def __A ( self : str ) -> Union[str, Any]: pass def __A ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : List[str] ) -> str: def check_hidden_states_output(__magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = outputs.hidden_states SCREAMING_SNAKE_CASE_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image_size[0], image_size[1] for _ in range(4 ): SCREAMING_SNAKE_CASE_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) SCREAMING_SNAKE_CASE_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Any ) -> List[str]: pass def __A ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Any]=False ) -> List[str]: SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self : List[str] ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Dict ) -> List[str]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__magic_name__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: if model_class in get_values(__magic_name__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__magic_name__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): SCREAMING_SNAKE_CASE_ = problem_type["title"] SCREAMING_SNAKE_CASE_ = problem_type["num_labels"] SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) SCREAMING_SNAKE_CASE_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__magic_name__ ) as warning_list: SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __A ( self : List[Any] ) -> Optional[int]: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = LevitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Dict ) -> List[Any]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __A ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1e-4 ) )
305
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
1
from __future__ import annotations from random import random from typing import Generic, TypeVar A : Dict = TypeVar("KT") A : List[Any] = TypeVar("VT") class lowerCamelCase (Generic[KT, VT] ): """simple docstring""" def __init__( self : List[Any] , __magic_name__ : KT | str = "root" , __magic_name__ : VT | None = None ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = key SCREAMING_SNAKE_CASE_ = value SCREAMING_SNAKE_CASE_ = [] def __repr__( self : Any ) -> str: return F'''Node({self.key}: {self.value})''' @property def __A ( self : Any ) -> int: return len(self.forward ) class lowerCamelCase (Generic[KT, VT] ): """simple docstring""" def __init__( self : Union[str, Any] , __magic_name__ : float = 0.5 , __magic_name__ : int = 16 ) -> int: SCREAMING_SNAKE_CASE_ = Node[KT, VT]() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = p SCREAMING_SNAKE_CASE_ = max_level def __str__( self : Tuple ) -> str: SCREAMING_SNAKE_CASE_ = list(self ) if len(__magic_name__ ) == 0: return F'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE_ = max((len(str(__magic_name__ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , 4 ) + 4 SCREAMING_SNAKE_CASE_ = self.head SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = node.forward.copy() lines.append(F'''[{node.key}]'''.ljust(__magic_name__ , "-" ) + "* " * len(__magic_name__ ) ) lines.append(" " * label_size + "| " * len(__magic_name__ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] lines.append( F'''[{node.key}]'''.ljust(__magic_name__ , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = node.forward lines.append("None".ljust(__magic_name__ ) + "* " * len(__magic_name__ ) ) return F'''SkipList(level={self.level})\n''' + "\n".join(__magic_name__ ) def __iter__( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE_ = node.forward[0] def __A ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE_ = 1 while random() < self.p and level < self.max_level: level += 1 return level def __A ( self : int , __magic_name__ : Any ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE_ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__magic_name__ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def __A ( self : Tuple , __magic_name__ : KT ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(__magic_name__ ) if node is not None: for i, update_node in enumerate(__magic_name__ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE_ = node.forward[i] else: SCREAMING_SNAKE_CASE_ = update_node.forward[:i] def __A ( self : int , __magic_name__ : KT , __magic_name__ : VT ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(__magic_name__ ) if node is not None: SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __magic_name__ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE_ = level SCREAMING_SNAKE_CASE_ = Node(__magic_name__ , __magic_name__ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = new_node def __A ( self : int , __magic_name__ : VT ) -> VT | None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(__magic_name__ ) if node is not None: return node.value return None def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 1_2 ) skip_list.insert("Key3" , 4_1 ) skip_list.insert("Key4" , -1_9 ) SCREAMING_SNAKE_CASE_ = skip_list.head SCREAMING_SNAKE_CASE_ = {} while node.level != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] SCREAMING_SNAKE_CASE_ = node.value assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key1" , 1_0 ) skip_list.insert("Key1" , 1_2 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 1_0 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 1_0 ) SCREAMING_SNAKE_CASE_ = skip_list.head SCREAMING_SNAKE_CASE_ = {} while node.level != 0: SCREAMING_SNAKE_CASE_ = node.forward[0] SCREAMING_SNAKE_CASE_ = node.value if len(__UpperCamelCase ) != 4: print() assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() assert skip_list.find("Some key" ) is None def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key2" , 2_0 ) assert skip_list.find("Key2" ) == 2_0 skip_list.insert("Some Key" , 1_0 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 1_3 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 1_0 assert skip_list.find("V" ) == 1_3 def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 1_4 assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4_2 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("X" ) def traverse_keys(__UpperCamelCase ): yield node.key for forward_node in node.forward: yield from traverse_keys(__UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def a__ ( ): def is_sorted(__UpperCamelCase ): return all(next_item >= item for item, next_item in zip(__UpperCamelCase , lst[1:] ) ) SCREAMING_SNAKE_CASE_ = SkipList() for i in range(1_0 ): skip_list.insert(__UpperCamelCase , __UpperCamelCase ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(__UpperCamelCase ) ) def a__ ( ): for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def a__ ( ): SCREAMING_SNAKE_CASE_ = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path / "file.csv" SCREAMING_SNAKE_CASE_ = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(__UpperCamelCase , "w" ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase ) @pytest.fixture def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path / "malformed_file.csv" SCREAMING_SNAKE_CASE_ = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(__UpperCamelCase , "w" ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase ) @pytest.fixture def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path / "csv_with_image.csv" SCREAMING_SNAKE_CASE_ = textwrap.dedent( F'''\ image {image_file} ''' ) with open(__UpperCamelCase , "w" ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase ) @pytest.fixture def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path / "csv_with_label.csv" SCREAMING_SNAKE_CASE_ = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(__UpperCamelCase , "w" ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase ) @pytest.fixture def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path / "csv_with_int_list.csv" SCREAMING_SNAKE_CASE_ = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(__UpperCamelCase , "w" ) as f: f.write(__UpperCamelCase ) return str(__UpperCamelCase ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = Csv() SCREAMING_SNAKE_CASE_ = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__UpperCamelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(__UpperCamelCase ) in record.message for record in caplog.records ) @require_pil def a__ ( __UpperCamelCase ): with open(__UpperCamelCase , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ = f.read().splitlines()[1] SCREAMING_SNAKE_CASE_ = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) SCREAMING_SNAKE_CASE_ = csv._generate_tables([[csv_file_with_image]] ) SCREAMING_SNAKE_CASE_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() SCREAMING_SNAKE_CASE_ = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def a__ ( __UpperCamelCase ): with open(__UpperCamelCase , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ = f.read().splitlines()[1:] SCREAMING_SNAKE_CASE_ = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) SCREAMING_SNAKE_CASE_ = csv._generate_tables([[csv_file_with_label]] ) SCREAMING_SNAKE_CASE_ = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() SCREAMING_SNAKE_CASE_ = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(__UpperCamelCase ) for label in labels] def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda __UpperCamelCase : [int(__UpperCamelCase ) for i in x.split()]} ) SCREAMING_SNAKE_CASE_ = csv._generate_tables([[csv_file_with_int_list]] ) SCREAMING_SNAKE_CASE_ = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) SCREAMING_SNAKE_CASE_ = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
A : List[str] = "Alexander Joslin" import operator as op from .stack import Stack def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} SCREAMING_SNAKE_CASE_ = Stack() SCREAMING_SNAKE_CASE_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCamelCase ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE_ = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE_ = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ = operators[opr](__UpperCamelCase , __UpperCamelCase ) operand_stack.push(__UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": A : List[str] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1_0_2_4 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], [] SCREAMING_SNAKE_CASE_ = list(zip(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = sorted_examples[0] def is_too_big(__UpperCamelCase ): return tok(__UpperCamelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE_ = new_src + " " + src SCREAMING_SNAKE_CASE_ = new_tgt + " " + tgt if is_too_big(__UpperCamelCase ) or is_too_big(__UpperCamelCase ): # cant fit, finalize example finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__UpperCamelCase ) finished_tgt.append(__UpperCamelCase ) return finished_src, finished_tgt def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ) save_path.mkdir(exist_ok=__UpperCamelCase ) for split in ["train"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE_ = [x.rstrip() for x in Path(__UpperCamelCase ).open().readlines()] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pack_examples(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) print(F'''packed {split} split from {len(__UpperCamelCase )} examples -> {len(__UpperCamelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("w" ).write("\n".join(__UpperCamelCase ) ) Path(save_path / F'''{split}.target''' ).open("w" ).write("\n".join(__UpperCamelCase ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(__UpperCamelCase , save_path / F'''{split}.source''' ) shutil.copyfile(__UpperCamelCase , save_path / F'''{split}.target''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=__UpperCamelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=__UpperCamelCase , default=1_2_8 ) parser.add_argument("--data_dir" , type=__UpperCamelCase ) parser.add_argument("--save_path" , type=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__UpperCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
305
from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( __UpperCamelCase ): return "".join(sorted(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): return word_by_signature[signature(__UpperCamelCase )] A : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") A : int = sorted({word.strip().lower() for word in data.splitlines()}) A : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
305
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") A : List[str] = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCamelCase__ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCamelCase__ = field(default=3_2 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCamelCase__ = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE_ = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE_ = self.validation_dir SCREAMING_SNAKE_CASE_ = data_files if data_files else None @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCamelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : Union[str, Any]=192 , __magic_name__ : Optional[int]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Optional[int]=0.6 ) -> Dict: SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = mask_patch_size SCREAMING_SNAKE_CASE_ = model_patch_size SCREAMING_SNAKE_CASE_ = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("Input size must be divisible by mask patch size" ) if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("Mask patch size must be divisible by model patch size" ) SCREAMING_SNAKE_CASE_ = self.input_size // self.mask_patch_size SCREAMING_SNAKE_CASE_ = self.mask_patch_size // self.model_patch_size SCREAMING_SNAKE_CASE_ = self.rand_size**2 SCREAMING_SNAKE_CASE_ = int(np.ceil(self.token_count * self.mask_ratio ) ) def __call__( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = np.random.permutation(self.token_count )[: self.mask_count] SCREAMING_SNAKE_CASE_ = np.zeros(self.token_count , dtype=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = mask.reshape((self.rand_size, self.rand_size) ) SCREAMING_SNAKE_CASE_ = mask.repeat(self.scale , axis=0 ).repeat(self.scale , axis=1 ) return torch.tensor(mask.flatten() ) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = torch.stack([example["pixel_values"] for example in examples] ) SCREAMING_SNAKE_CASE_ = torch.stack([example["mask"] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mim" , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. SCREAMING_SNAKE_CASE_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE_ = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __UpperCamelCase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE_ = ds["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE_ = split["train"] SCREAMING_SNAKE_CASE_ = split["test"] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.config_name_or_path , **__UpperCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(__UpperCamelCase , "decoder_type" ): SCREAMING_SNAKE_CASE_ = "simmim" # adapt config SCREAMING_SNAKE_CASE_ = model_args.image_size if model_args.image_size is not None else config.image_size SCREAMING_SNAKE_CASE_ = model_args.patch_size if model_args.patch_size is not None else config.patch_size SCREAMING_SNAKE_CASE_ = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { "image_size": model_args.image_size, "patch_size": model_args.patch_size, "encoder_stride": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **__UpperCamelCase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } SCREAMING_SNAKE_CASE_ = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) SCREAMING_SNAKE_CASE_ = AutoModelForMaskedImageModeling.from_config(__UpperCamelCase ) if training_args.do_train: SCREAMING_SNAKE_CASE_ = ds["train"].column_names else: SCREAMING_SNAKE_CASE_ = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE_ = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE_ = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE_ = "img" else: SCREAMING_SNAKE_CASE_ = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py SCREAMING_SNAKE_CASE_ = Compose( [ Lambda(lambda __UpperCamelCase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator SCREAMING_SNAKE_CASE_ = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [transforms(__UpperCamelCase ) for image in examples[image_column_name]] SCREAMING_SNAKE_CASE_ = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(__UpperCamelCase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(__UpperCamelCase ) # Initialize our trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ = last_checkpoint SCREAMING_SNAKE_CASE_ = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE_ = trainer.evaluate() trainer.log_metrics("eval" , __UpperCamelCase ) trainer.save_metrics("eval" , __UpperCamelCase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE_ = { "finetuned_from": model_args.model_name_or_path, "tasks": "masked-image-modeling", "dataset": data_args.dataset_name, "tags": ["masked-image-modeling"], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = OmegaConf.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location="cpu" )["model"] SCREAMING_SNAKE_CASE_ = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = "first_stage_model." for key in keys: if key.startswith(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = "model.diffusion_model." for key in keys: if key.startswith(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = state_dict[key] SCREAMING_SNAKE_CASE_ = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE_ = config.model.params.unet_config.params SCREAMING_SNAKE_CASE_ = VQModel(**__UpperCamelCase ).eval() vqvae.load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = UNetLDMModel(**__UpperCamelCase ).eval() unet.load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = LDMPipeline(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) pipeline.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) A : int = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A : List[Any] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def a__ ( __UpperCamelCase=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE__ ) ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = None def __A ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> Optional[Any]: with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = dataset_module_factory(__magic_name__ , cache_dir=__magic_name__ ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=__magic_name__ ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=__magic_name__ , config_name=__magic_name__ , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = "/".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__magic_name__ ).replace(os.sep , "/" ), config.DATASET_INFO_FILENAME, ] ) SCREAMING_SNAKE_CASE_ = cached_path(__magic_name__ , cache_dir=__magic_name__ ) self.assertTrue(os.path.exists(__magic_name__ ) ) @pytest.mark.integration def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = tmp_path_factory.mktemp("test_hf_gcp" ) / "test_wikipedia_simple" SCREAMING_SNAKE_CASE_ = dataset_module_factory("wikipedia" , cache_dir=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=__UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam SCREAMING_SNAKE_CASE_ = None builder_instance.download_and_prepare() SCREAMING_SNAKE_CASE_ = builder_instance.as_dataset() assert ds @pytest.mark.integration def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dataset_module_factory("wikipedia" , cache_dir=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = import_main_class(dataset_module.module_path , dataset=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = builder_cls( cache_dir=__UpperCamelCase , config_name="20220301.frr" , hash=dataset_module.hash , ) SCREAMING_SNAKE_CASE_ = builder_instance.as_streaming_dataset() assert ds assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert "train" in ds assert isinstance(ds["train"] , __UpperCamelCase ) assert next(iter(ds["train"] ) )
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 1_0, "max_num_jobs": 1}, [range(1_0 )]), ({"num_shards": 1_0, "max_num_jobs": 1_0}, [range(__UpperCamelCase , i + 1 ) for i in range(1_0 )]), ({"num_shards": 1, "max_num_jobs": 1_0}, [range(1 )]), ({"num_shards": 1_0, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 1_0 )]), ({"num_shards": 3, "max_num_jobs": 1_0}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = _distribute_shards(**__UpperCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 1_0, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = _split_gen_kwargs(__UpperCamelCase , __UpperCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase ): if expected is RuntimeError: with pytest.raises(__UpperCamelCase ): _number_of_shards_in_gen_kwargs(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = _number_of_shards_in_gen_kwargs(__UpperCamelCase ) assert out == expected
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
class lowerCamelCase : """simple docstring""" def __init__( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = {} def __A ( self : Tuple ) -> None: print(self.vertex ) for i in self.vertex: print(__magic_name__ , " -> " , " -> ".join([str(__magic_name__ ) for j in self.vertex[i]] ) ) def __A ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__magic_name__ ) else: # else make a new vertex SCREAMING_SNAKE_CASE_ = [to_vertex] def __A ( self : List[Any] ) -> None: # visited array for storing already visited nodes SCREAMING_SNAKE_CASE_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) def __A ( self : Tuple , __magic_name__ : int , __magic_name__ : list ) -> None: # mark start vertex as visited SCREAMING_SNAKE_CASE_ = True print(__magic_name__ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__magic_name__ , __magic_name__ ) if __name__ == "__main__": A : Tuple = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
305
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A : List[Any] = TypeVar("T") def a__ ( __UpperCamelCase ): return (position - 1) // 2 def a__ ( __UpperCamelCase ): return (2 * position) + 1 def a__ ( __UpperCamelCase ): return (2 * position) + 2 class lowerCamelCase (Generic[T] ): """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __len__( self : Dict ) -> int: return self.elements def __repr__( self : Union[str, Any] ) -> str: return str(self.heap ) def __A ( self : List[Any] ) -> bool: # Check if the priority queue is empty return self.elements == 0 def __A ( self : Optional[Any] , __magic_name__ : T , __magic_name__ : int ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE_ = self.elements self.elements += 1 self._bubble_up(__magic_name__ ) def __A ( self : Tuple ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[0] self._bubble_down(__magic_name__ ) return elem def __A ( self : Any , __magic_name__ : T , __magic_name__ : int ) -> None: # Update the weight of the given key SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE_ = get_parent_position(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__magic_name__ ) else: self._bubble_down(__magic_name__ ) else: self._bubble_down(__magic_name__ ) def __A ( self : Tuple , __magic_name__ : T ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE_ = get_parent_position(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_up(__magic_name__ ) return None def __A ( self : int , __magic_name__ : T ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE_ = self.position_map[elem] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[curr_pos] SCREAMING_SNAKE_CASE_ = get_child_left_position(__magic_name__ ) SCREAMING_SNAKE_CASE_ = get_child_right_position(__magic_name__ ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__magic_name__ , __magic_name__ ) return self._bubble_down(__magic_name__ ) return None def __A ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE_ = nodea_pos SCREAMING_SNAKE_CASE_ = nodea_pos class lowerCamelCase (Generic[T] ): """simple docstring""" def __init__( self : Tuple ) -> None: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 0 def __repr__( self : List[Any] ) -> str: return str(self.connections ) def __len__( self : List[Any] ) -> int: return self.nodes def __A ( self : List[Any] , __magic_name__ : T ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE_ = {} self.nodes += 1 def __A ( self : Any , __magic_name__ : T , __magic_name__ : T , __magic_name__ : int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(__magic_name__ ) self.add_node(__magic_name__ ) SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def a__ ( __UpperCamelCase , ): SCREAMING_SNAKE_CASE_ = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE_ = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCamelCase , __UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() SCREAMING_SNAKE_CASE_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase , dist[neighbour] ) SCREAMING_SNAKE_CASE_ = node return dist, parent
305
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) A : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn.grep_linear": "encoder.layers.*.attention.gru_rel_pos_linear", "self_attn.relative_attention_bias": "encoder.layers.*.attention.rel_attn_embed", "self_attn.grep_a": "encoder.layers.*.attention.gru_rel_pos_const", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } A : str = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: SCREAMING_SNAKE_CASE_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ = value else: SCREAMING_SNAKE_CASE_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ = hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE_ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ = name.split(__UpperCamelCase )[0].split("." )[-2] SCREAMING_SNAKE_CASE_ = mapped_key.replace("*" , __UpperCamelCase ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_ = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: SCREAMING_SNAKE_CASE_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_ = "weight" else: SCREAMING_SNAKE_CASE_ = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_ = name.split("." ) SCREAMING_SNAKE_CASE_ = int(items[0] ) SCREAMING_SNAKE_CASE_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): # load the pre-trained checkpoints SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = WavLMConfigOrig(checkpoint["cfg"] ) SCREAMING_SNAKE_CASE_ = WavLMOrig(__UpperCamelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: SCREAMING_SNAKE_CASE_ = WavLMConfig.from_pretrained(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = WavLMConfig() SCREAMING_SNAKE_CASE_ = WavLMModel(__UpperCamelCase ) recursively_load_weights(__UpperCamelCase , __UpperCamelCase ) hf_wavlm.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") A : Optional[int] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
305
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): if attention_mask is None: SCREAMING_SNAKE_CASE_ = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase : """simple docstring""" lowerCamelCase__ = OPTConfig lowerCamelCase__ = {} lowerCamelCase__ = '''gelu''' def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : int=13 , __magic_name__ : Any=7 , __magic_name__ : int=True , __magic_name__ : Tuple=False , __magic_name__ : str=99 , __magic_name__ : str=16 , __magic_name__ : int=2 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=4 , __magic_name__ : str="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Any=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=0 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : List[Any]=16 , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = word_embed_proj_dim SCREAMING_SNAKE_CASE_ = False def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__magic_name__ , **self.config_updates , ) SCREAMING_SNAKE_CASE_ = prepare_opt_inputs_dict(__magic_name__ , __magic_name__ ) return config, inputs_dict def __A ( self : Dict , __magic_name__ : Any , __magic_name__ : str ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE_ = input_ids[:1, :] SCREAMING_SNAKE_CASE_ = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE_ = 1 # first forward pass SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE_ = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE_ = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__magic_name__ , __magic_name__ , rtol=1e-3 ) @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () lowerCamelCase__ = (TFOPTForCausalLM,) if is_tf_available() else () lowerCamelCase__ = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = 1_0 def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ ) def __A ( self : Union[str, Any] ) -> Tuple: self.config_tester.run_common_tests() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__magic_name__ ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__magic_name__ : int , __magic_name__ : List[str] ): if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__magic_name__ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__magic_name__ ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE_ = _get_word_embedding_weight(__magic_name__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __magic_name__ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __magic_name__ ) SCREAMING_SNAKE_CASE_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE_ = False self.assertTrue(__magic_name__ ) def a__ ( __UpperCamelCase ): return tf.constant(__UpperCamelCase , dtype=tf.intaa ) @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = 9_9 def __A ( self : List[str] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) SCREAMING_SNAKE_CASE_ = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE_ = tf.not_equal(__magic_name__ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE_ = model(input_ids=__magic_name__ , attention_mask=__magic_name__ ).last_hidden_state SCREAMING_SNAKE_CASE_ = (1, 11, 512) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-3 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = xla_generate(__magic_name__ , __magic_name__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __magic_name__ , atol=4e-2 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = tf.function(__magic_name__ , jit_compile=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-4 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @property def __A ( self : Dict ) -> int: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __A ( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = "facebook/opt-125m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "left" # use different length sentences to test batching SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little", "Today, I", ] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs["input_ids"] SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , attention_mask=inputs["attention_mask"] ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ ) SCREAMING_SNAKE_CASE_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] ) def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "facebook/opt-350m" SCREAMING_SNAKE_CASE_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = TFOPTForCausalLM.from_pretrained(__magic_name__ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE_ = model.generate(__magic_name__ , max_length=10 ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ ) predicted_outputs += generated_string self.assertListEqual(__magic_name__ , __magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str , __magic_name__ : int , __magic_name__ : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = jnp.ones((batch_size, length) ) / length return scores def __A ( self : Any ) -> List[Any]: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(batch_size=2 , length=__magic_name__ ) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch SCREAMING_SNAKE_CASE_ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ = jax.nn.softmax(__magic_name__ , axis=-1 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_sharper(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) SCREAMING_SNAKE_CASE_ = jax.nn.softmax(temp_dist_warper_smoother(__magic_name__ , scores.copy() , cur_len=__magic_name__ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def __A ( self : int ) -> int: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() SCREAMING_SNAKE_CASE_ = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, length) ).copy() SCREAMING_SNAKE_CASE_ = top_k_warp_safety_check(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def __A ( self : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) SCREAMING_SNAKE_CASE_ = np.exp(top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ = np.broadcast_to(np.arange(__magic_name__ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) SCREAMING_SNAKE_CASE_ = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def __A ( self : Any ) -> str: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 20) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = min_dist_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def __A ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 1) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 5 SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, 4) , vocab_size=20 ) SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = logits_processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) self.assertFalse(jnp.isinf(__magic_name__ ).any() ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 10 # no processor list SCREAMING_SNAKE_CASE_ = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # with processor list SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 15 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ = ids_tensor((batch_size, sequence_length) , __magic_name__ ) SCREAMING_SNAKE_CASE_ = input_ids.copy() SCREAMING_SNAKE_CASE_ = self._get_uniform_logits(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) SCREAMING_SNAKE_CASE_ = FlaxTopKLogitsWarper(3 ) SCREAMING_SNAKE_CASE_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors SCREAMING_SNAKE_CASE_ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxForcedEOSTokenLogitsProcessor(max_length=__magic_name__ , eos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 10 # no processor list def run_no_processor_list(__magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple ): SCREAMING_SNAKE_CASE_ = temp_dist_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = top_k_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = top_p_warp(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = min_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = bos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) SCREAMING_SNAKE_CASE_ = eos_dist_proc(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores # with processor list def run_processor_list(__magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : str ): SCREAMING_SNAKE_CASE_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) SCREAMING_SNAKE_CASE_ = processor(__magic_name__ , __magic_name__ , cur_len=__magic_name__ ) return scores SCREAMING_SNAKE_CASE_ = jax.jit(__magic_name__ ) SCREAMING_SNAKE_CASE_ = jax.jit(__magic_name__ ) SCREAMING_SNAKE_CASE_ = jitted_run_no_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = jitted_run_processor_list(__magic_name__ , __magic_name__ , __magic_name__ ) # scores should be equal self.assertTrue(jnp.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
305
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViltImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : List[str]=None , **__magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def __A ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : Dict ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : int ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
305
1
def a__ ( __UpperCamelCase , __UpperCamelCase ): if b == 0: return 1 if (b % 2) == 0: return actual_power(__UpperCamelCase , int(b / 2 ) ) * actual_power(__UpperCamelCase , int(b / 2 ) ) else: return a * actual_power(__UpperCamelCase , int(b / 2 ) ) * actual_power(__UpperCamelCase , int(b / 2 ) ) def a__ ( __UpperCamelCase , __UpperCamelCase ): if b < 0: return 1 / actual_power(__UpperCamelCase , __UpperCamelCase ) return actual_power(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": print(power(-2, -3))
305
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : str = logging.get_logger(__name__) A : Optional[int] = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''table-transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Any ) -> int: return self.d_model class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : int ) -> int: return 12
305
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE_ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __magic_name__ ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "feat_extract.json" ) feat_extract_first.to_json_file(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_json_file(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = feat_extract_first.save_pretrained(__magic_name__ )[0] check_json_file_has_correct_format(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.feature_extraction_class.from_pretrained(__magic_name__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __A ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.feature_extraction_class() self.assertIsNotNone(__magic_name__ )
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
import cmath import math def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = math.radians(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = math.radians(__UpperCamelCase ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE_ = cmath.rect(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = cmath.rect(__UpperCamelCase , __UpperCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL A : Optional[Any] = logging.get_logger(__name__) def a__ ( __UpperCamelCase ): if isinstance(__UpperCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCamelCase ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''pixel_values'''] def __init__( self : Dict , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 255 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : List[Any] , ) -> None: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = size if size is not None else {"shortest_edge": 256} SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = offset SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : List[str] , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(__magic_name__ , size["shortest_edge"] , default_to_square=__magic_name__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE_ = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : Tuple , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__magic_name__ , size=(size["height"], size["width"]) , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ) -> str: SCREAMING_SNAKE_CASE_ = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE_ = image - (scale / 2) return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray: return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __A ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) if offset and not do_rescale: raise ValueError("For offset, do_rescale must also be set to True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = to_numpy_array(__magic_name__ ) if do_resize: SCREAMING_SNAKE_CASE_ = self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) if do_center_crop: SCREAMING_SNAKE_CASE_ = self.center_crop(__magic_name__ , size=__magic_name__ ) if do_rescale: SCREAMING_SNAKE_CASE_ = self.rescale(image=__magic_name__ , scale=__magic_name__ , offset=__magic_name__ ) if do_normalize: SCREAMING_SNAKE_CASE_ = self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) SCREAMING_SNAKE_CASE_ = to_channel_dimension_format(__magic_name__ , __magic_name__ ) return image def __A ( self : Dict , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> PIL.Image.Image: SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , default_to_square=__magic_name__ ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(__magic_name__ , param_name="crop_size" ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) SCREAMING_SNAKE_CASE_ = make_batched(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [ [ self._preprocess_image( image=__magic_name__ , do_resize=__magic_name__ , size=__magic_name__ , resample=__magic_name__ , do_center_crop=__magic_name__ , crop_size=__magic_name__ , do_rescale=__magic_name__ , rescale_factor=__magic_name__ , offset=__magic_name__ , do_normalize=__magic_name__ , image_mean=__magic_name__ , image_std=__magic_name__ , data_format=__magic_name__ , ) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE_ = {"pixel_values": videos} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''flax''', '''transformers'''] def __init__( self : Optional[int] , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ) -> Dict: requires_backends(self , ["flax", "transformers"] ) @classmethod def __A ( cls : Tuple , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ) -> List[Any]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def __A ( cls : Tuple , *__magic_name__ : Tuple , **__magic_name__ : Tuple ) -> int: requires_backends(cls , ["flax", "transformers"] ) class lowerCamelCase (metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''flax''', '''transformers'''] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Optional[int] ) -> str: requires_backends(self , ["flax", "transformers"] ) @classmethod def __A ( cls : Dict , *__magic_name__ : Any , **__magic_name__ : int ) -> str: requires_backends(cls , ["flax", "transformers"] ) @classmethod def __A ( cls : Optional[int] , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[Any] ) -> Optional[Any]: requires_backends(cls , ["flax", "transformers"] ) class lowerCamelCase (metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''flax''', '''transformers'''] def __init__( self : Dict , *__magic_name__ : Optional[Any] , **__magic_name__ : Optional[int] ) -> Optional[Any]: requires_backends(self , ["flax", "transformers"] ) @classmethod def __A ( cls : Optional[int] , *__magic_name__ : Optional[int] , **__magic_name__ : Tuple ) -> int: requires_backends(cls , ["flax", "transformers"] ) @classmethod def __A ( cls : Union[str, Any] , *__magic_name__ : Optional[Any] , **__magic_name__ : Dict ) -> List[str]: requires_backends(cls , ["flax", "transformers"] ) class lowerCamelCase (metaclass=SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''flax''', '''transformers'''] def __init__( self : Union[str, Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Tuple: requires_backends(self , ["flax", "transformers"] ) @classmethod def __A ( cls : Dict , *__magic_name__ : int , **__magic_name__ : Optional[int] ) -> Optional[int]: requires_backends(cls , ["flax", "transformers"] ) @classmethod def __A ( cls : Optional[int] , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> List[str]: requires_backends(cls , ["flax", "transformers"] )
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = LxmertConfig.from_json_file(__UpperCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE_ = LxmertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : int = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
305
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 3_8_4 if "tiny" in model_name: SCREAMING_SNAKE_CASE_ = [3, 3, 9, 3] SCREAMING_SNAKE_CASE_ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: SCREAMING_SNAKE_CASE_ = [3, 3, 2_7, 3] SCREAMING_SNAKE_CASE_ = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: SCREAMING_SNAKE_CASE_ = [3, 3, 2_7, 3] SCREAMING_SNAKE_CASE_ = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] SCREAMING_SNAKE_CASE_ = 5_1_2 if "large" in model_name: SCREAMING_SNAKE_CASE_ = [3, 3, 2_7, 3] SCREAMING_SNAKE_CASE_ = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] SCREAMING_SNAKE_CASE_ = 7_6_8 if "xlarge" in model_name: SCREAMING_SNAKE_CASE_ = [3, 3, 2_7, 3] SCREAMING_SNAKE_CASE_ = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] SCREAMING_SNAKE_CASE_ = 1_0_2_4 # set label information SCREAMING_SNAKE_CASE_ = 1_5_0 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "ade20k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = ConvNextConfig( depths=__UpperCamelCase , hidden_sizes=__UpperCamelCase , out_features=["stage1", "stage2", "stage3", "stage4"] ) SCREAMING_SNAKE_CASE_ = UperNetConfig( backbone_config=__UpperCamelCase , auxiliary_in_channels=__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase , ) return config def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } SCREAMING_SNAKE_CASE_ = model_name_to_url[model_name] SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" )["state_dict"] SCREAMING_SNAKE_CASE_ = get_upernet_config(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = UperNetForSemanticSegmentation(__UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ = state_dict.pop(__UpperCamelCase ) if "bn" in key: SCREAMING_SNAKE_CASE_ = key.replace("bn" , "batch_norm" ) SCREAMING_SNAKE_CASE_ = val # rename keys SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify on image SCREAMING_SNAKE_CASE_ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert("RGB" ) SCREAMING_SNAKE_CASE_ = SegformerImageProcessor() SCREAMING_SNAKE_CASE_ = processor(__UpperCamelCase , return_tensors="pt" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__UpperCamelCase ) if model_name == "upernet-convnext-tiny": SCREAMING_SNAKE_CASE_ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": SCREAMING_SNAKE_CASE_ = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": SCREAMING_SNAKE_CASE_ = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": SCREAMING_SNAKE_CASE_ = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": SCREAMING_SNAKE_CASE_ = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __UpperCamelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f"upernet-convnext-{size}" for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) A : Dict = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) SCREAMING_SNAKE_CASE_ = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(__magic_name__ ) from datasets import load_dataset SCREAMING_SNAKE_CASE_ = load_dataset("nielsr/rvlcdip-demo" ) SCREAMING_SNAKE_CASE_ = dataset["train"][0]["image"].convert("RGB" ) SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 16) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=__magic_name__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) )
305
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
1
import re from filelock import FileLock try: import nltk A : List[str] = True except (ImportError, ModuleNotFoundError): A : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def a__ ( __UpperCamelCase ): re.sub("<n>" , "" , __UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCamelCase ) )
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
def a__ ( __UpperCamelCase ): if any(not isinstance(__UpperCamelCase , __UpperCamelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__UpperCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__UpperCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
305
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
1
import random class lowerCamelCase : """simple docstring""" @staticmethod def __A ( __magic_name__ : str ) -> tuple[list[int], list[int]]: SCREAMING_SNAKE_CASE_ = [ord(__magic_name__ ) for i in text] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for i in plain: SCREAMING_SNAKE_CASE_ = random.randint(1 , 300 ) SCREAMING_SNAKE_CASE_ = (i + k) * k cipher.append(__magic_name__ ) key.append(__magic_name__ ) return cipher, key @staticmethod def __A ( __magic_name__ : list[int] , __magic_name__ : list[int] ) -> str: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(__magic_name__ ) ) return "".join(__magic_name__ ) if __name__ == "__main__": A , A : Any = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''upernet''' def __init__( self : List[Any] , __magic_name__ : Optional[int]=None , __magic_name__ : Any=512 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=[1, 2, 3, 6] , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[int]=0.4 , __magic_name__ : Dict=384 , __magic_name__ : List[Any]=256 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Any=False , __magic_name__ : int=255 , **__magic_name__ : Union[str, Any] , ) -> Optional[int]: super().__init__(**__magic_name__ ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = pool_scales SCREAMING_SNAKE_CASE_ = use_auxiliary_head SCREAMING_SNAKE_CASE_ = auxiliary_loss_weight SCREAMING_SNAKE_CASE_ = auxiliary_in_channels SCREAMING_SNAKE_CASE_ = auxiliary_channels SCREAMING_SNAKE_CASE_ = auxiliary_num_convs SCREAMING_SNAKE_CASE_ = auxiliary_concat_input SCREAMING_SNAKE_CASE_ = loss_ignore_index def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) A : Dict = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def a__ ( __UpperCamelCase , __UpperCamelCase ): inspect_dataset(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def a__ ( __UpperCamelCase , __UpperCamelCase ): inspect_metric(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = path + ".py" assert script_name in os.listdir(__UpperCamelCase ) assert "__pycache__" not in os.listdir(__UpperCamelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__UpperCamelCase ): get_dataset_config_info(__UpperCamelCase , config_name=__UpperCamelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_dataset_config_names(__UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_dataset_infos(__UpperCamelCase ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE_ = expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_dataset_infos(__UpperCamelCase ) assert expected_config in infos SCREAMING_SNAKE_CASE_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): with pytest.raises(__UpperCamelCase ): get_dataset_split_names(__UpperCamelCase , config_name=__UpperCamelCase )
305
from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( __UpperCamelCase ): return "".join(sorted(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): return word_by_signature[signature(__UpperCamelCase )] A : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") A : int = sorted({word.strip().lower() for word in data.splitlines()}) A : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
305
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = KandinskyVaaControlnetPipeline lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] lowerCamelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] lowerCamelCase__ = False @property def __A ( self : int ) -> str: return 32 @property def __A ( self : List[Any] ) -> Optional[int]: return 32 @property def __A ( self : Dict ) -> str: return self.time_input_dim @property def __A ( self : Any ) -> List[str]: return self.time_input_dim * 4 @property def __A ( self : List[Any] ) -> List[str]: return 100 @property def __A ( self : Optional[Any] ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**__magic_name__ ) return model @property def __A ( self : List[str] ) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __A ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , steps_offset=1 , prediction_type="epsilon" , thresholding=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __A ( self : Dict , __magic_name__ : Tuple , __magic_name__ : Optional[int]=0 ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __magic_name__ ) # create hint SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __A ( self : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = "cpu" SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(__magic_name__ ) , return_dict=__magic_name__ , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" ) SCREAMING_SNAKE_CASE_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(np.array(__magic_name__ ) ).float() / 255.0 SCREAMING_SNAKE_CASE_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(__magic_name__ ) pipeline.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A robot, 4k photo" SCREAMING_SNAKE_CASE_ = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior( __magic_name__ , generator=__magic_name__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE_ = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipeline( image_embeds=__magic_name__ , negative_image_embeds=__magic_name__ , hint=__magic_name__ , generator=__magic_name__ , num_inference_steps=100 , output_type="np" , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __A ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) SCREAMING_SNAKE_CASE_ = VideoClassificationPipeline(model=__magic_name__ , image_processor=__magic_name__ , top_k=2 ) SCREAMING_SNAKE_CASE_ = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def __A ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : Dict ) -> Tuple: for example in examples: SCREAMING_SNAKE_CASE_ = video_classifier(__magic_name__ ) self.assertEqual( __magic_name__ , [ {"score": ANY(__magic_name__ ), "label": ANY(__magic_name__ )}, {"score": ANY(__magic_name__ ), "label": ANY(__magic_name__ )}, ] , ) @require_torch def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" SCREAMING_SNAKE_CASE_ = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) SCREAMING_SNAKE_CASE_ = pipeline( "video-classification" , model=__magic_name__ , feature_extractor=__magic_name__ , frame_sampling_rate=4 ) SCREAMING_SNAKE_CASE_ = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) SCREAMING_SNAKE_CASE_ = video_classifier(__magic_name__ , top_k=2 ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}] , ) SCREAMING_SNAKE_CASE_ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__magic_name__ , decimals=4 ) , [ [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], [{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}], ] , ) @require_tf def __A ( self : Optional[int] ) -> Tuple: pass
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : Optional[int] = None , __magic_name__ : int = 50_257 , __magic_name__ : int = 1_024 , __magic_name__ : int = 768 , __magic_name__ : int = 12 , __magic_name__ : int = 12 , __magic_name__ : Optional[int] = None , __magic_name__ : str = "gelu_new" , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , __magic_name__ : float = 1e-5 , __magic_name__ : float = 0.02 , __magic_name__ : bool = True , __magic_name__ : bool = True , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE_ = prefix_inner_dim SCREAMING_SNAKE_CASE_ = prefix_hidden_dim SCREAMING_SNAKE_CASE_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE_ = ( nn.Linear(self.prefix_hidden_dim , __magic_name__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE_ = GPTaConfig( vocab_size=__magic_name__ , n_positions=__magic_name__ , n_embd=__magic_name__ , n_layer=__magic_name__ , n_head=__magic_name__ , n_inner=__magic_name__ , activation_function=__magic_name__ , resid_pdrop=__magic_name__ , embd_pdrop=__magic_name__ , attn_pdrop=__magic_name__ , layer_norm_epsilon=__magic_name__ , initializer_range=__magic_name__ , scale_attn_weights=__magic_name__ , use_cache=__magic_name__ , scale_attn_by_inverse_layer_idx=__magic_name__ , reorder_and_upcast_attn=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = GPTaLMHeadModel(__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : torch.Tensor , __magic_name__ : torch.Tensor , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.transformer.transformer.wte(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.encode_prefix(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.decode_prefix(__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE_ = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE_ = self.transformer(inputs_embeds=__magic_name__ , labels=__magic_name__ , attention_mask=__magic_name__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __A ( self : str , __magic_name__ : int , __magic_name__ : torch.device ) -> torch.Tensor: return torch.zeros(__magic_name__ , self.prefix_length , dtype=torch.intaa , device=__magic_name__ ) def __A ( self : str , __magic_name__ : List[str] ) -> List[Any]: return self.encode_prefix(__magic_name__ ) @torch.no_grad() def __A ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = torch.split(__magic_name__ , 1 , dim=0 ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for feature in features: SCREAMING_SNAKE_CASE_ = self.decode_prefix(feature.to(__magic_name__ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.generate_beam( input_embeds=__magic_name__ , device=__magic_name__ , eos_token_id=__magic_name__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE_ = torch.stack(__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.stack(__magic_name__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __A ( self : str , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : int = 5 , __magic_name__ : int = 67 , __magic_name__ : float = 1.0 , __magic_name__ : Optional[int] = None , ) -> int: SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = torch.ones(__magic_name__ , device=__magic_name__ , dtype=torch.int ) SCREAMING_SNAKE_CASE_ = torch.zeros(__magic_name__ , device=__magic_name__ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE_ = input_embeds else: SCREAMING_SNAKE_CASE_ = self.transformer.transformer.wte(__magic_name__ ) for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = self.transformer(inputs_embeds=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits SCREAMING_SNAKE_CASE_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE_ = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = logits.topk(__magic_name__ , -1 ) SCREAMING_SNAKE_CASE_ = generated.expand(__magic_name__ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE_ = next_tokens else: SCREAMING_SNAKE_CASE_ = tokens.expand(__magic_name__ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE_ = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE_ = -float(np.inf ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE_ = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = scores_sum_average.view(-1 ).topk(__magic_name__ , -1 ) SCREAMING_SNAKE_CASE_ = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE_ = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE_ = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE_ = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE_ = tokens[next_tokens_source] SCREAMING_SNAKE_CASE_ = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE_ = generated[next_tokens_source] SCREAMING_SNAKE_CASE_ = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE_ = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE_ = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE_ = is_stopped + next_tokens.eq(__magic_name__ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE_ = scores / seq_lengths SCREAMING_SNAKE_CASE_ = scores.argsort(descending=__magic_name__ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE_ = [tokens[i] for i in order] SCREAMING_SNAKE_CASE_ = torch.stack(__magic_name__ , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Dict = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''wav2vec2''' def __init__( self : Any , __magic_name__ : List[Any]=32 , __magic_name__ : Dict=768 , __magic_name__ : str=12 , __magic_name__ : List[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Any="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Tuple=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=0.02 , __magic_name__ : str=1e-5 , __magic_name__ : Dict="group" , __magic_name__ : List[Any]="gelu" , __magic_name__ : Dict=(512, 512, 512, 512, 512, 512, 512) , __magic_name__ : str=(5, 2, 2, 2, 2, 2, 2) , __magic_name__ : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , __magic_name__ : List[str]=False , __magic_name__ : int=128 , __magic_name__ : Optional[int]=16 , __magic_name__ : str=False , __magic_name__ : str=True , __magic_name__ : Dict=0.05 , __magic_name__ : List[str]=10 , __magic_name__ : Optional[Any]=2 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Union[str, Any]=10 , __magic_name__ : List[str]=0 , __magic_name__ : str=320 , __magic_name__ : Tuple=2 , __magic_name__ : Any=0.1 , __magic_name__ : int=100 , __magic_name__ : Union[str, Any]=256 , __magic_name__ : Any=256 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]="sum" , __magic_name__ : Any=False , __magic_name__ : Dict=False , __magic_name__ : Optional[int]=256 , __magic_name__ : Optional[Any]=(512, 512, 512, 512, 1_500) , __magic_name__ : Dict=(5, 3, 3, 1, 1) , __magic_name__ : List[Any]=(1, 2, 3, 1, 1) , __magic_name__ : str=512 , __magic_name__ : int=0 , __magic_name__ : Tuple=1 , __magic_name__ : Dict=2 , __magic_name__ : Optional[Any]=False , __magic_name__ : Dict=3 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=3 , __magic_name__ : Any=None , __magic_name__ : List[Any]=None , **__magic_name__ : int , ) -> Any: super().__init__(**__magic_name__ , pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = feat_extract_norm SCREAMING_SNAKE_CASE_ = feat_extract_activation SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = conv_bias SCREAMING_SNAKE_CASE_ = num_conv_pos_embeddings SCREAMING_SNAKE_CASE_ = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_ = len(self.conv_dim ) SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = feat_proj_dropout SCREAMING_SNAKE_CASE_ = final_dropout SCREAMING_SNAKE_CASE_ = layerdrop SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = do_stable_layer_norm SCREAMING_SNAKE_CASE_ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ = apply_spec_augment SCREAMING_SNAKE_CASE_ = mask_time_prob SCREAMING_SNAKE_CASE_ = mask_time_length SCREAMING_SNAKE_CASE_ = mask_time_min_masks SCREAMING_SNAKE_CASE_ = mask_feature_prob SCREAMING_SNAKE_CASE_ = mask_feature_length SCREAMING_SNAKE_CASE_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE_ = num_codevectors_per_group SCREAMING_SNAKE_CASE_ = num_codevector_groups SCREAMING_SNAKE_CASE_ = contrastive_logits_temperature SCREAMING_SNAKE_CASE_ = feat_quantizer_dropout SCREAMING_SNAKE_CASE_ = num_negatives SCREAMING_SNAKE_CASE_ = codevector_dim SCREAMING_SNAKE_CASE_ = proj_codevector_dim SCREAMING_SNAKE_CASE_ = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE_ = ctc_loss_reduction SCREAMING_SNAKE_CASE_ = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE_ = add_adapter SCREAMING_SNAKE_CASE_ = adapter_kernel_size SCREAMING_SNAKE_CASE_ = adapter_stride SCREAMING_SNAKE_CASE_ = num_adapter_layers SCREAMING_SNAKE_CASE_ = output_hidden_size or hidden_size SCREAMING_SNAKE_CASE_ = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) SCREAMING_SNAKE_CASE_ = xvector_output_dim @property def __A ( self : List[Any] ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import qiskit def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = qiskit.Aer.get_backend("aer_simulator" ) SCREAMING_SNAKE_CASE_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE_ = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": A : List[str] = half_adder(1, 1) print(f"Half Adder Output Qubit Counts: {counts}")
305
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
1
from __future__ import annotations def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__UpperCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __UpperCamelCase , __UpperCamelCase , ) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] depth_first_search([] , [] , [] , __UpperCamelCase , __UpperCamelCase ) # Print all the boards for board in boards: for column in board: print(__UpperCamelCase ) print("" ) print(len(__UpperCamelCase ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
305
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home A : Union[str, Any] = HUGGINGFACE_HUB_CACHE A : Any = "config.json" A : List[Any] = "diffusion_pytorch_model.bin" A : Dict = "diffusion_flax_model.msgpack" A : Any = "model.onnx" A : List[Any] = "diffusion_pytorch_model.safetensors" A : List[Any] = "weights.pb" A : Union[str, Any] = "https://huggingface.co" A : Optional[Any] = default_cache_path A : Optional[int] = "diffusers_modules" A : Tuple = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) A : List[str] = ["fp16", "non-ema"] A : str = ".self_attn"
305
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Any = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''decision_transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Tuple=17 , __magic_name__ : Optional[Any]=4 , __magic_name__ : int=128 , __magic_name__ : int=4_096 , __magic_name__ : Any=True , __magic_name__ : str=1 , __magic_name__ : Dict=1_024 , __magic_name__ : Optional[int]=3 , __magic_name__ : Dict=1 , __magic_name__ : List[Any]=None , __magic_name__ : List[Any]="relu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=1e-5 , __magic_name__ : List[str]=0.02 , __magic_name__ : Optional[int]=True , __magic_name__ : List[str]=True , __magic_name__ : Any=50_256 , __magic_name__ : Any=50_256 , __magic_name__ : List[str]=False , __magic_name__ : str=False , **__magic_name__ : str , ) -> List[str]: SCREAMING_SNAKE_CASE_ = state_dim SCREAMING_SNAKE_CASE_ = act_dim SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = max_ep_len SCREAMING_SNAKE_CASE_ = action_tanh SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_positions SCREAMING_SNAKE_CASE_ = n_layer SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = n_inner SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = resid_pdrop SCREAMING_SNAKE_CASE_ = embd_pdrop SCREAMING_SNAKE_CASE_ = attn_pdrop SCREAMING_SNAKE_CASE_ = layer_norm_epsilon SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scale_attn_weights SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE_ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : str=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : Optional[int]=True , __magic_name__ : str=99 , __magic_name__ : Optional[int]=32 , __magic_name__ : str=5 , __magic_name__ : str=4 , __magic_name__ : Dict=37 , __magic_name__ : List[str]="gelu" , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Tuple=16 , __magic_name__ : int=2 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Tuple=4 , ) -> Tuple: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_attention_mask SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_choices def __A ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaxRoFormerModelTester(self ) @slow def __A ( self : Dict ) -> str: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__magic_name__ ) @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) SCREAMING_SNAKE_CASE_ = jnp.array([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = 50_000 SCREAMING_SNAKE_CASE_ = (1, 6, vocab_size) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) )
305
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViltImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : List[str]=None , **__magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def __A ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : Dict ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : int ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
305
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures A : Dict = logging.get_logger(__name__) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) lowerCamelCase__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) lowerCamelCase__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.task_name.lower() class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''train''' lowerCamelCase__ = '''dev''' lowerCamelCase__ = '''test''' class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : int , __magic_name__ : GlueDataTrainingArguments , __magic_name__ : PreTrainedTokenizerBase , __magic_name__ : Optional[int] = None , __magic_name__ : Union[str, Split] = Split.train , __magic_name__ : Optional[str] = None , ) -> str: warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = args SCREAMING_SNAKE_CASE_ = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE_ = glue_output_modes[args.task_name] if isinstance(__magic_name__ , __magic_name__ ): try: SCREAMING_SNAKE_CASE_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) SCREAMING_SNAKE_CASE_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ = cached_features_file + ".lock" with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE_ = time.time() SCREAMING_SNAKE_CASE_ = torch.load(__magic_name__ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: SCREAMING_SNAKE_CASE_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE_ = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE_ = examples[:limit_length] SCREAMING_SNAKE_CASE_ = glue_convert_examples_to_features( __magic_name__ , __magic_name__ , max_length=args.max_seq_length , label_list=__magic_name__ , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE_ = time.time() torch.save(self.features , __magic_name__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Dict ) -> List[Any]: return len(self.features ) def __getitem__( self : Union[str, Any] , __magic_name__ : Optional[int] ) -> InputFeatures: return self.features[i] def __A ( self : str ) -> Optional[Any]: return self.label_list
305
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : str = logging.get_logger(__name__) A : Optional[int] = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''table-transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Any ) -> int: return self.d_model class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : int ) -> int: return 12
305
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar A : List[Any] = TypeVar("T") class lowerCamelCase (Generic[T] ): """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : list[T] , __magic_name__ : Callable[[T, T], T] ) -> None: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [any_type for _ in range(self.N )] + arr SCREAMING_SNAKE_CASE_ = fnc self.build() def __A ( self : Tuple ) -> None: for p in range(self.N - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : T ) -> None: p += self.N SCREAMING_SNAKE_CASE_ = v while p > 1: SCREAMING_SNAKE_CASE_ = p // 2 SCREAMING_SNAKE_CASE_ = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __A ( self : int , __magic_name__ : int , __magic_name__ : int ) -> T | None: # noqa: E741 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = l + self.N, r + self.N SCREAMING_SNAKE_CASE_ = None while l <= r: if l % 2 == 1: SCREAMING_SNAKE_CASE_ = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: SCREAMING_SNAKE_CASE_ = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce A : Tuple = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] A : Optional[int] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } A : Dict = SegmentTree(test_array, min) A : Optional[int] = SegmentTree(test_array, max) A : Any = SegmentTree(test_array, lambda a, b: a + b) def a__ ( ): for i in range(len(__UpperCamelCase ) ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = reduce(__UpperCamelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ = reduce(__UpperCamelCase , test_array[i : j + 1] ) SCREAMING_SNAKE_CASE_ = reduce(lambda __UpperCamelCase , __UpperCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert max_range == max_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) assert sum_range == sum_segment_tree.query(__UpperCamelCase , __UpperCamelCase ) test_all_segments() for index, value in test_updates.items(): A : List[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
from __future__ import annotations from typing import Any class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] , __magic_name__ : int = 6 ) -> None: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None self.create_linked_list(__magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = Node() SCREAMING_SNAKE_CASE_ = current_node SCREAMING_SNAKE_CASE_ = current_node SCREAMING_SNAKE_CASE_ = current_node for _ in range(1 , __magic_name__ ): SCREAMING_SNAKE_CASE_ = Node() SCREAMING_SNAKE_CASE_ = current_node SCREAMING_SNAKE_CASE_ = previous_node SCREAMING_SNAKE_CASE_ = current_node SCREAMING_SNAKE_CASE_ = self.front SCREAMING_SNAKE_CASE_ = previous_node def __A ( self : List[str] ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __A ( self : Dict ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __A ( self : Dict , __magic_name__ : Any ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE_ = self.rear.next if self.rear: SCREAMING_SNAKE_CASE_ = data def __A ( self : int ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE_ = self.front.data SCREAMING_SNAKE_CASE_ = None return data SCREAMING_SNAKE_CASE_ = self.front SCREAMING_SNAKE_CASE_ = old_front.next SCREAMING_SNAKE_CASE_ = old_front.data SCREAMING_SNAKE_CASE_ = None return data def __A ( self : Tuple ) -> None: if self.is_empty(): raise Exception("Empty Queue" ) def __A ( self : int ) -> None: if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if __name__ == "__main__": import doctest doctest.testmod()
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
import math def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = int(math.sqrt(__UpperCamelCase ) ) # Size of every segment SCREAMING_SNAKE_CASE_ = [True] * (end + 1) SCREAMING_SNAKE_CASE_ = [] while start <= end: if temp[start] is True: in_prime.append(__UpperCamelCase ) for i in range(start * start , end + 1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = False start += 1 prime += in_prime SCREAMING_SNAKE_CASE_ = end + 1 SCREAMING_SNAKE_CASE_ = min(2 * end , __UpperCamelCase ) while low <= n: SCREAMING_SNAKE_CASE_ = [True] * (high - low + 1) for each in in_prime: SCREAMING_SNAKE_CASE_ = math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCamelCase , high + 1 , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = False for j in range(len(__UpperCamelCase ) ): if temp[j] is True: prime.append(j + low ) SCREAMING_SNAKE_CASE_ = high + 1 SCREAMING_SNAKE_CASE_ = min(high + end , __UpperCamelCase ) return prime print(sieve(10**6))
305
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging A : Optional[int] = logging.get_logger(__name__) logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase ): if "xprophetnet" in prophetnet_checkpoint_path: SCREAMING_SNAKE_CASE_ = XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = ["key_proj", "value_proj", "query_proj"] SCREAMING_SNAKE_CASE_ = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: SCREAMING_SNAKE_CASE_ = key.split("." ) if attributes[0] == "lm_head": SCREAMING_SNAKE_CASE_ = prophet SCREAMING_SNAKE_CASE_ = prophet_old else: SCREAMING_SNAKE_CASE_ = prophet.prophetnet SCREAMING_SNAKE_CASE_ = prophet_old.model SCREAMING_SNAKE_CASE_ = False for attribute in attributes: if attribute in mapping: SCREAMING_SNAKE_CASE_ = mapping[attribute] if not hasattr(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) > 0: SCREAMING_SNAKE_CASE_ = attribute elif hasattr(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE_ = old_model.weight logger.info(F'''{attribute} is initialized.''' ) SCREAMING_SNAKE_CASE_ = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" SCREAMING_SNAKE_CASE_ = old_model.bias logger.info(F'''{attribute} is initialized''' ) SCREAMING_SNAKE_CASE_ = True break elif attribute in special_keys and hasattr(__UpperCamelCase , "in_proj_weight" ): SCREAMING_SNAKE_CASE_ = old_model.in_proj_weight.shape[0] // 3 SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) SCREAMING_SNAKE_CASE_ = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." SCREAMING_SNAKE_CASE_ = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) SCREAMING_SNAKE_CASE_ = True break if attribute.isdigit(): SCREAMING_SNAKE_CASE_ = model[int(__UpperCamelCase )] SCREAMING_SNAKE_CASE_ = old_model[int(__UpperCamelCase )] else: SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) if old_attribute == "": SCREAMING_SNAKE_CASE_ = old_model else: if not hasattr(__UpperCamelCase , __UpperCamelCase ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) SCREAMING_SNAKE_CASE_ = getattr(__UpperCamelCase , __UpperCamelCase ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : Union[str, Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
import math def a__ ( __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: SCREAMING_SNAKE_CASE_ = F'''Input value of [number={number}] must be > 0''' raise ValueError(__UpperCamelCase ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_ = int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE_ = [3, 5] SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 for block in range(1 , __UpperCamelCase ): for _ in range(__UpperCamelCase ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): A : Dict = 0 try: A : Optional[Any] = proth(number) except ValueError: print(f"ValueError: there is no {number}th Proth number") continue print(f"The {number}th Proth number: {value}")
305
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A : Any = 16 A : Union[str, Any] = 32 def a__ ( __UpperCamelCase , __UpperCamelCase = 1_6 , __UpperCamelCase = "bert-base-cased" ): SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = load_dataset("glue" , "mrpc" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_ = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(__UpperCamelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def a__ ( __UpperCamelCase , __UpperCamelCase ): # Initialize accelerator SCREAMING_SNAKE_CASE_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ = config["lr"] SCREAMING_SNAKE_CASE_ = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_ = int(config["seed"] ) SCREAMING_SNAKE_CASE_ = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_ = args.model_name_or_path set_seed(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE_ = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE_ = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: SCREAMING_SNAKE_CASE_ = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE_ = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE_ = 0 # Now we train the model SCREAMING_SNAKE_CASE_ = evaluate.load("glue" , "mrpc" ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.loss SCREAMING_SNAKE_CASE_ = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() SCREAMING_SNAKE_CASE_ = 0 for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: SCREAMING_SNAKE_CASE_ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__UpperCamelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__UpperCamelCase , ) parser.add_argument( "--output_dir" , type=__UpperCamelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=__UpperCamelCase , default=__UpperCamelCase , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=__UpperCamelCase , default=3 , help="Number of train epochs." , ) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A : Dict = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) A : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def a__ ( ): SCREAMING_SNAKE_CASE_ = "https://pypi.org/pypi/diffusers/json" SCREAMING_SNAKE_CASE_ = json.loads(request.urlopen(__UpperCamelCase ).read() )["releases"].keys() return sorted(__UpperCamelCase , key=lambda __UpperCamelCase : version.Version(__UpperCamelCase ) ) def a__ ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ) / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( __UpperCamelCase ): init_hf_modules() SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def a__ ( __UpperCamelCase ): with open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE_ = re.findall("^\s*import\s+\.(\S+)\s*$" , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , __UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = [module_file] SCREAMING_SNAKE_CASE_ = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE_ = [] for f in files_to_check: new_imports.extend(get_relative_imports(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ).parent SCREAMING_SNAKE_CASE_ = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE_ = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE_ = [F'''{f}.py''' for f in new_import_files] SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) == 0 all_relative_imports.extend(__UpperCamelCase ) return all_relative_imports def a__ ( __UpperCamelCase ): with open(__UpperCamelCase , "r" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE_ = re.findall("^\s*import\s+(\S+)\s*$" , __UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , __UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE_ = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE_ = list(set(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = [] for imp in imports: try: importlib.import_module(__UpperCamelCase ) except ImportError: missing_packages.append(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'''{", ".join(__UpperCamelCase )}. Run `pip install {" ".join(__UpperCamelCase )}`''' ) return get_relative_imports(__UpperCamelCase ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = module_path.replace(os.path.sep , "." ) SCREAMING_SNAKE_CASE_ = importlib.import_module(__UpperCamelCase ) if class_name is None: return find_pipeline_class(__UpperCamelCase ) return getattr(__UpperCamelCase , __UpperCamelCase ) def a__ ( __UpperCamelCase ): from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE_ = dict(inspect.getmembers(__UpperCamelCase , inspect.isclass ) ) SCREAMING_SNAKE_CASE_ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __UpperCamelCase ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' F''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' F''' {loaded_module}.''' ) SCREAMING_SNAKE_CASE_ = cls return pipeline_class def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ): SCREAMING_SNAKE_CASE_ = str(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , __UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = module_file_or_url SCREAMING_SNAKE_CASE_ = "local" elif pretrained_model_name_or_path.count("/" ) == 0: SCREAMING_SNAKE_CASE_ = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE_ = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE_ = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: SCREAMING_SNAKE_CASE_ = F'''v{revision}''' elif revision == "main": SCREAMING_SNAKE_CASE_ = revision else: raise ValueError( F'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' F''' {", ".join(available_versions + ["main"] )}.''' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE_ = COMMUNITY_PIPELINES_URL.format(revision=__UpperCamelCase , pipeline=__UpperCamelCase ) try: SCREAMING_SNAKE_CASE_ = cached_download( __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = "git" SCREAMING_SNAKE_CASE_ = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_ = hf_hub_download( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , proxies=__UpperCamelCase , resume_download=__UpperCamelCase , local_files_only=__UpperCamelCase , use_auth_token=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE_ = check_imports(__UpperCamelCase ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE_ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = Path(__UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE_ = F'''{module_needed}.py''' shutil.copy(os.path.join(__UpperCamelCase , __UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE_ = HfFolder.get_token() else: SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = model_info(__UpperCamelCase , revision=__UpperCamelCase , token=__UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE_ = submodule_path / commit_hash SCREAMING_SNAKE_CASE_ = full_submodule + os.path.sep + commit_hash create_dynamic_module(__UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __UpperCamelCase , F'''{module_needed}.py''' , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return os.path.join(__UpperCamelCase , __UpperCamelCase ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , **__UpperCamelCase , ): SCREAMING_SNAKE_CASE_ = get_cached_module_file( __UpperCamelCase , __UpperCamelCase , cache_dir=__UpperCamelCase , force_download=__UpperCamelCase , resume_download=__UpperCamelCase , proxies=__UpperCamelCase , use_auth_token=__UpperCamelCase , revision=__UpperCamelCase , local_files_only=__UpperCamelCase , ) return get_class_in_module(__UpperCamelCase , final_module.replace(".py" , "" ) )
305
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
1
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : int , __magic_name__ : Dict , __magic_name__ : Any=13 , __magic_name__ : Any=30 , __magic_name__ : List[str]=2 , __magic_name__ : Tuple=3 , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : Dict=4 , __magic_name__ : str=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : Any=10 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : Dict=3 , __magic_name__ : Union[str, Any]=0.6 , __magic_name__ : Optional[Any]=None , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = mask_ratio SCREAMING_SNAKE_CASE_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __A ( self : List[Any] ) -> int: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __A ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEModel(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE_ = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining(__magic_name__ ) SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , training=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __A ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)) = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () lowerCamelCase__ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : str ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __A ( self : List[Any] ) -> Dict: pass def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , tf.keras.layers.Layer ) ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def __A ( self : List[Any] ) -> List[str]: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(self._prepare_for_class(__magic_name__ , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __A ( self : Tuple ) -> Union[str, Any]: # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__magic_name__ : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = v.numpy() else: SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = prepare_numpy_arrays(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) def __A ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Optional[int]: # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.constant(__magic_name__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE_ = tf_noise super().check_pt_tf_models(__magic_name__ , __magic_name__ , __magic_name__ ) def __A ( self : int ) -> List[str]: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__magic_name__ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__magic_name__ , __magic_name__ ),) if isinstance(__magic_name__ , __magic_name__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__magic_name__ , "_keras_serializable" , __magic_name__ ) } SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor(__magic_name__ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE_ = main_layer_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE_ = tf.keras.Model(__magic_name__ , outputs=main_layer(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "keras_model.h5" ) model.save(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.keras.models.load_model( __magic_name__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__magic_name__ , tf.keras.Model ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) @slow def __A ( self : Any ) -> str: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = outputs.logits.numpy() SCREAMING_SNAKE_CASE_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__magic_name__ , saved_model=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_class.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE_ = after_outputs["last_hidden_state"].numpy() SCREAMING_SNAKE_CASE_ = 0 else: SCREAMING_SNAKE_CASE_ = after_outputs["logits"].numpy() SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__magic_name__ , 1e-5 ) def __A ( self : Optional[int] ) -> Dict: # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , noise=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE_ = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE_ = new_model(__magic_name__ ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE_ = new_model(__magic_name__ , noise=__magic_name__ ) self.assert_outputs_same(__magic_name__ , __magic_name__ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __A ( self : str ) -> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __A ( self : List[str] ) -> Tuple: pass @slow def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> int: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __A ( self : str ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE_ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE_ = ViTMAEConfig() SCREAMING_SNAKE_CASE_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE_ = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE_ = model(**__magic_name__ , noise=__magic_name__ ) # verify the logits SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __magic_name__ , atol=1e-4 )
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 A : Union[str, Any] = sys.version_info >= (3, 10) def a__ ( __UpperCamelCase=None , __UpperCamelCase=None ): return field(default_factory=lambda: default , metadata=__UpperCamelCase ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 4_2 lowerCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''titi''' lowerCamelCase__ = '''toto''' class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''titi''' lowerCamelCase__ = '''toto''' lowerCamelCase__ = 4_2 @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = BasicEnum(self.foo ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[] ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[1, 2, 3] ) lowerCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) lowerCamelCase__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field() lowerCamelCase__ = field() lowerCamelCase__ = field() def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = field() lowerCamelCase__ = None lowerCamelCase__ = field(default='''toto''' , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = False lowerCamelCase__ = True lowerCamelCase__ = None @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''help message'''} ) lowerCamelCase__ = None lowerCamelCase__ = list_field(default=[] ) lowerCamelCase__ = list_field(default=[] ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] , __magic_name__ : argparse.ArgumentParser , __magic_name__ : argparse.ArgumentParser ) -> int: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE_ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} SCREAMING_SNAKE_CASE_ = {k: v for k, v in vars(__magic_name__ ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __magic_name__ ) and yy.get("choices" , __magic_name__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__magic_name__ ) , yy["type"](__magic_name__ ) ) del xx["type"], yy["type"] self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--bar" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--baz" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--flag" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((SCREAMING_SNAKE_CASE_) , ) = parser.parse_args_into_dataclasses(__magic_name__ , look_for_args_file=__magic_name__ ) self.assertFalse(example.flag ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) expected.add_argument("--baz" , type=__magic_name__ , default=__magic_name__ , const=__magic_name__ , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__magic_name__ , dest="baz" ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , baz=__magic_name__ , opt=__magic_name__ ) ) def __A ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __A ( self : Optional[Any] ) -> List[Any]: @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "toto" SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) SCREAMING_SNAKE_CASE_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__magic_name__ ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual( __magic_name__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE_ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__magic_name__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--bar" , default=__magic_name__ , type=__magic_name__ , help="help message" ) expected.add_argument("--baz" , default=__magic_name__ , type=__magic_name__ ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__magic_name__ ) expected.add_argument("--des" , nargs="+" , default=[] , type=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__magic_name__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_args([] ) self.assertEqual(__magic_name__ , Namespace(foo=__magic_name__ , bar=__magic_name__ , baz=__magic_name__ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE_ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__magic_name__ , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def __A ( self : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument("--required_str" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__magic_name__ , required=__magic_name__ ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__magic_name__ , ) expected.add_argument("--opt" , type=__magic_name__ , default=__magic_name__ ) expected.add_argument("--baz" , default="toto" , type=__magic_name__ , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__magic_name__ ) self.argparsersEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } SCREAMING_SNAKE_CASE_ = parser.parse_dict(__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__magic_name__ , parser.parse_dict , __magic_name__ , allow_extra_keys=__magic_name__ ) def __A ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "temp_json" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , "temp_yaml" ) os.mkdir(__magic_name__ ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] SCREAMING_SNAKE_CASE_ = BasicExample(**__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) def __A ( self : Any ) -> Any: SCREAMING_SNAKE_CASE_ = HfArgumentParser(__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A : int = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") A : Union[str, Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A : Tuple = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A : Optional[int] = sorted(arg_to_scheduler.keys()) A : str = "{" + ", ".join(arg_to_scheduler_choices) + "}" class lowerCamelCase (pl.LightningModule ): """simple docstring""" def __init__( self : int , __magic_name__ : argparse.Namespace , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]="base" , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , __magic_name__ : str=None , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = Path(self.hparams.output_dir ) SCREAMING_SNAKE_CASE_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = MODEL_MODES[mode] if model is None: SCREAMING_SNAKE_CASE_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = model def __A ( self : int , *__magic_name__ : List[Any] , **__magic_name__ : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __A ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = arg_to_scheduler[self.hparams.lr_scheduler] SCREAMING_SNAKE_CASE_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) SCREAMING_SNAKE_CASE_ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def __A ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model SCREAMING_SNAKE_CASE_ = ["bias", "LayerNorm.weight"] SCREAMING_SNAKE_CASE_ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: SCREAMING_SNAKE_CASE_ = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) SCREAMING_SNAKE_CASE_ = optimizer SCREAMING_SNAKE_CASE_ = self.get_lr_scheduler() return [optimizer], [scheduler] def __A ( self : int , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[int]: return self.validation_step(__magic_name__ , __magic_name__ ) def __A ( self : Dict , __magic_name__ : Any ) -> List[Any]: return self.validation_end(__magic_name__ ) def __A ( self : Dict ) -> int: SCREAMING_SNAKE_CASE_ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores SCREAMING_SNAKE_CASE_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __A ( self : Dict , __magic_name__ : str ) -> Union[str, Any]: if stage == "test": SCREAMING_SNAKE_CASE_ = len(self.test_dataloader().dataset ) else: SCREAMING_SNAKE_CASE_ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=__magic_name__ ) SCREAMING_SNAKE_CASE_ = len(self.train_dataloader().dataset ) def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : bool = False ) -> Dict: raise NotImplementedError("You must implement this for your task" ) def __A ( self : Tuple ) -> List[str]: return self.train_loader def __A ( self : Optional[int] ) -> Optional[int]: return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __A ( self : str ) -> Union[str, Any]: return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : Tuple ) -> Tuple: return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __A ( self : Optional[Any] , __magic_name__ : Dict[str, Any] ) -> None: SCREAMING_SNAKE_CASE_ = self.output_dir.joinpath("best_tfmr" ) SCREAMING_SNAKE_CASE_ = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __A ( __magic_name__ : Optional[int] , __magic_name__ : Tuple ) -> Union[str, Any]: parser.add_argument( "--model_name_or_path" , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=__magic_name__ , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=__magic_name__ , type=__magic_name__ , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(__magic_name__ ).parent / "test_run" / "cache" ) , type=__magic_name__ , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=__magic_name__ , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=__magic_name__ , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=__magic_name__ , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=__magic_name__ , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=__magic_name__ , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=__magic_name__ , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=__magic_name__ , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=__magic_name__ , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=__magic_name__ , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=__magic_name__ ) parser.add_argument("--train_batch_size" , default=32 , type=__magic_name__ ) parser.add_argument("--eval_batch_size" , default=32 , type=__magic_name__ ) parser.add_argument("--adafactor" , action="store_true" ) class lowerCamelCase (pl.Callback ): """simple docstring""" def __A ( self : str , __magic_name__ : Dict , __magic_name__ : Optional[int] ) -> Dict: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): """simple docstring""" def __A ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] ) -> int: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class lowerCamelCase (pl.Callback ): """simple docstring""" def __A ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = trainer.lr_schedulers[0]["scheduler"] SCREAMING_SNAKE_CASE_ = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __A ( self : Tuple , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> Union[str, Any]: rank_zero_info("***** Validation results *****" ) SCREAMING_SNAKE_CASE_ = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__magic_name__ , str(metrics[key] ) ) ) def __A ( self : Optional[Any] , __magic_name__ : pl.Trainer , __magic_name__ : pl.LightningModule ) -> str: rank_zero_info("***** Test results *****" ) SCREAMING_SNAKE_CASE_ = trainer.callback_metrics # Log and save results to file SCREAMING_SNAKE_CASE_ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(__magic_name__ , "w" ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(__magic_name__ , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(__magic_name__ , str(metrics[key] ) ) ) def a__ ( __UpperCamelCase , __UpperCamelCase ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(__UpperCamelCase ).parent / "test_run" / "model_checkpoints" ) , type=__UpperCamelCase , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=__UpperCamelCase , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=__UpperCamelCase ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=__UpperCamelCase , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=__UpperCamelCase , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=__UpperCamelCase , default=4_2 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(__UpperCamelCase ).parent / "test_run" / "dummy-train-data" ) , type=__UpperCamelCase , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[] , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): pl.seed_everything(args.seed ) # init model SCREAMING_SNAKE_CASE_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__UpperCamelCase ) # add custom checkpoints if checkpoint_callback is None: SCREAMING_SNAKE_CASE_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__UpperCamelCase ) if logging_callback is None: SCREAMING_SNAKE_CASE_ = LoggingCallback() SCREAMING_SNAKE_CASE_ = {} if args.fpaa: SCREAMING_SNAKE_CASE_ = 1_6 if args.gpus > 1: SCREAMING_SNAKE_CASE_ = "auto" SCREAMING_SNAKE_CASE_ = "ddp" SCREAMING_SNAKE_CASE_ = args.accumulate_grad_batches SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = "auto" SCREAMING_SNAKE_CASE_ = pl.Trainer.from_argparse_args( __UpperCamelCase , weights_summary=__UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **__UpperCamelCase , ) if args.do_train: trainer.fit(__UpperCamelCase ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
305
from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( __UpperCamelCase ): return "".join(sorted(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): return word_by_signature[signature(__UpperCamelCase )] A : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") A : int = sorted({word.strip().lower() for word in data.splitlines()}) A : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Dict = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''realm''' def __init__( self : Dict , __magic_name__ : str=30_522 , __magic_name__ : List[str]=768 , __magic_name__ : str=128 , __magic_name__ : List[Any]=12 , __magic_name__ : List[str]=12 , __magic_name__ : List[str]=8 , __magic_name__ : Any=3_072 , __magic_name__ : str="gelu_new" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Optional[int]=512 , __magic_name__ : Tuple=2 , __magic_name__ : int=0.02 , __magic_name__ : Union[str, Any]=1e-12 , __magic_name__ : Union[str, Any]=256 , __magic_name__ : Optional[Any]=10 , __magic_name__ : Optional[int]=1e-3 , __magic_name__ : Dict=5 , __magic_name__ : Dict=320 , __magic_name__ : List[Any]=13_353_718 , __magic_name__ : Optional[Any]=5_000 , __magic_name__ : List[Any]=1 , __magic_name__ : Optional[int]=0 , __magic_name__ : Optional[Any]=2 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A : Dict = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Union[str, Any] , *__magic_name__ : List[Any] , **__magic_name__ : Any ) -> Optional[int]: super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type(__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=None , **__magic_name__ : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = {}, {} if padding is not None: SCREAMING_SNAKE_CASE_ = padding if truncation is not None: SCREAMING_SNAKE_CASE_ = truncation if top_k is not None: SCREAMING_SNAKE_CASE_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : int , __magic_name__ : Union["Image.Image", str] , __magic_name__ : str = None , **__magic_name__ : List[Any] ) -> List[str]: if isinstance(__magic_name__ , (Image.Image, str) ) and isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = {"image": image, "question": question} else: SCREAMING_SNAKE_CASE_ = image SCREAMING_SNAKE_CASE_ = super().__call__(__magic_name__ , **__magic_name__ ) return results def __A ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Any=False , __magic_name__ : Union[str, Any]=False ) -> Any: SCREAMING_SNAKE_CASE_ = load_image(inputs["image"] ) SCREAMING_SNAKE_CASE_ = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=__magic_name__ , truncation=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor(images=__magic_name__ , return_tensors=self.framework ) model_inputs.update(__magic_name__ ) return model_inputs def __A ( self : Optional[int] , __magic_name__ : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.model(**__magic_name__ ) return model_outputs def __A ( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple=5 ) -> List[str]: if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE_ = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE_ = model_outputs.logits.sigmoid()[0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = probs.topk(__magic_name__ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) SCREAMING_SNAKE_CASE_ = scores.tolist() SCREAMING_SNAKE_CASE_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__magic_name__ , __magic_name__ )]
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
1
from ... import PretrainedConfig A : Optional[int] = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCamelCase__ = '''nezha''' def __init__( self : List[Any] , __magic_name__ : Tuple=21_128 , __magic_name__ : Optional[Any]=768 , __magic_name__ : Any=12 , __magic_name__ : int=12 , __magic_name__ : Tuple=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=512 , __magic_name__ : Optional[int]=64 , __magic_name__ : Any=2 , __magic_name__ : str=0.02 , __magic_name__ : Dict=1e-12 , __magic_name__ : int=0.1 , __magic_name__ : List[Any]=0 , __magic_name__ : Dict=2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[Any]=True , **__magic_name__ : List[str] , ) -> List[Any]: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = max_relative_position SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = classifier_dropout SCREAMING_SNAKE_CASE_ = use_cache
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy A : List[str] = logging.getLogger(__name__) A : Dict = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) lowerCamelCase__ = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The name of the task to train on.'''} , ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) lowerCamelCase__ = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) lowerCamelCase__ = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]''' } , ) lowerCamelCase__ = dataclasses.field( default=1_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) lowerCamelCase__ = dataclasses.field( default=1_0_0 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) lowerCamelCase__ = dataclasses.field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Random seed for initialization.'''} , ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: SCREAMING_SNAKE_CASE_ = dataset.filter(lambda __UpperCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 SCREAMING_SNAKE_CASE_ = int(eval_result * len(__UpperCamelCase ) ) print(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.sort("probability" , reverse=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = dataset.select(range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = dataset.remove_columns(["label", "probability"] ) SCREAMING_SNAKE_CASE_ = dataset.rename_column("prediction" , "label" ) SCREAMING_SNAKE_CASE_ = dataset.map(lambda __UpperCamelCase : {"label": idalabel[example["label"]]} ) SCREAMING_SNAKE_CASE_ = dataset.shuffle(seed=args.seed ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__UpperCamelCase , index=__UpperCamelCase ) else: dataset.to_json(__UpperCamelCase ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE_ = STModelArguments(model_name_or_path=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = STDataArguments(train_file=__UpperCamelCase , infer_file=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = STTrainingArguments(output_dir=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__UpperCamelCase ).items(): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) for key, value in kwargs.items(): if hasattr(__UpperCamelCase , __UpperCamelCase ): setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Sanity checks SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None SCREAMING_SNAKE_CASE_ = args.train_file SCREAMING_SNAKE_CASE_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None SCREAMING_SNAKE_CASE_ = args.eval_file for key in data_files: SCREAMING_SNAKE_CASE_ = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: SCREAMING_SNAKE_CASE_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) SCREAMING_SNAKE_CASE_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format SCREAMING_SNAKE_CASE_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__UpperCamelCase ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Show the progress bar SCREAMING_SNAKE_CASE_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): SCREAMING_SNAKE_CASE_ = data_dir_format(__UpperCamelCase ) assert os.path.exists(__UpperCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "stage-1" ) SCREAMING_SNAKE_CASE_ = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__UpperCamelCase , __UpperCamelCase ): arguments_dict.update({key: value} ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "best-checkpoint" , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __UpperCamelCase , __UpperCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __UpperCamelCase ) finetune(**__UpperCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __UpperCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "best-checkpoint" ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "stage-2" ) # Update arguments_dict SCREAMING_SNAKE_CASE_ = model_path SCREAMING_SNAKE_CASE_ = data_files["train"] SCREAMING_SNAKE_CASE_ = current_output_dir SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "best-checkpoint" , __UpperCamelCase ) if os.path.exists(__UpperCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __UpperCamelCase , __UpperCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __UpperCamelCase ) finetune(**__UpperCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = iteration SCREAMING_SNAKE_CASE_ = data_dir_format(iteration + 1 ) SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(os.path.join(__UpperCamelCase , "best-checkpoint" ) ) SCREAMING_SNAKE_CASE_ = config.idalabel SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "eval_results_best-checkpoint.json" ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__UpperCamelCase ) with open(__UpperCamelCase , "r" ) as f: SCREAMING_SNAKE_CASE_ = float(json.load(__UpperCamelCase )[args.eval_metric] ) SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__UpperCamelCase ) # Loading the dataset from local csv or json files. SCREAMING_SNAKE_CASE_ = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] SCREAMING_SNAKE_CASE_ = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) shutil.copy(__UpperCamelCase , os.path.join(__UpperCamelCase , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__UpperCamelCase ): shutil.copy(__UpperCamelCase , os.path.join(__UpperCamelCase , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) accelerator.wait_for_everyone() SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCamelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: SCREAMING_SNAKE_CASE_ = eval_result if best_iteration is None: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result SCREAMING_SNAKE_CASE_ = 0 else: if new_eval_result == best_eval_result: SCREAMING_SNAKE_CASE_ = new_iteration SCREAMING_SNAKE_CASE_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: SCREAMING_SNAKE_CASE_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __UpperCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCamelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(__UpperCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __UpperCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCamelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__UpperCamelCase , "eval_results_best-iteration.json" ) , )
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp A : Any = 5 A : Any = 10 @require_sentencepiece @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechaTextTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __A ( self : Any ) -> Dict: super().setUp() SCREAMING_SNAKE_CASE_ = sp.SentencePieceProcessor() spm_model.Load(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(__magic_name__ ) )] SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = Path(self.tmpdirname ) save_json(__magic_name__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__magic_name__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "<pad>" SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__magic_name__ ) , 1_001 ) def __A ( self : Any ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def __A ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__magic_name__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [289, 50, 14, 174, 386] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __A ( self : Tuple ) -> str: # fmt: off SCREAMING_SNAKE_CASE_ = {"input_ids": [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase__ = '''C\'est trop cool''' lowerCamelCase__ = '''Esto es genial''' @classmethod def __A ( cls : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def __A ( self : Union[str, Any] ) -> Optional[Any]: self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def __A ( self : List[str] ) -> List[str]: self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def __A ( self : Any ) -> List[Any]: self.assertIn(__magic_name__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [ES_CODE, 4, 1_601, 47, 7_647, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertNotIn(self.tokenizer.eos_token , __magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "fr" SCREAMING_SNAKE_CASE_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , __magic_name__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def __A ( self : Any ) -> str: SCREAMING_SNAKE_CASE_ = "fr" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE_ = "es" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
305
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
1
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Dict = logging.get_logger(__name__) A : Optional[Any] = "▁" A : str = {"vocab_file": "sentencepiece.bpe.model"} A : str = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A : Optional[Any] = { "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off A : Any = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self : List[str] , __magic_name__ : Any , __magic_name__ : int="<s>" , __magic_name__ : Optional[int]="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : Dict="<s>" , __magic_name__ : Dict="<unk>" , __magic_name__ : Dict="<pad>" , __magic_name__ : Optional[Any]="<mask>" , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Any]=None , __magic_name__ : Optional[Dict[str, Any]] = None , __magic_name__ : List[Any]=None , __magic_name__ : Union[str, Any]=False , **__magic_name__ : int , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ = legacy_behaviour super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , tokenizer_file=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__magic_name__ , **__magic_name__ , ) SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = len(self.sp_model ) SCREAMING_SNAKE_CASE_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE_ = src_lang if src_lang is not None else "eng_Latn" SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , __magic_name__ : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __A ( self : Any ) -> List[Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self : List[str] ) -> str: return self._src_lang @src_lang.setter def __A ( self : Dict , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def __A ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self : Tuple , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Optional[int] ) -> Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.convert_tokens_to_ids(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tgt_lang_id return inputs def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self : Dict , __magic_name__ : str ) -> List[str]: return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def __A ( self : Any , __magic_name__ : Dict ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self : Optional[Any] , __magic_name__ : Tuple ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "".join(__magic_name__ ).replace(__magic_name__ , " " ).strip() return out_string def __A ( self : Any , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__magic_name__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , "wb" ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def __A ( self : Tuple , __magic_name__ : List[str] , __magic_name__ : str = "eng_Latn" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "fra_Latn" , **__magic_name__ : Union[str, Any] , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __A ( self : Optional[Any] ) -> Optional[Any]: return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self : Union[str, Any] ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self : List[str] , __magic_name__ : List[Any] ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE_ = [self.cur_lang_code] SCREAMING_SNAKE_CASE_ = [self.eos_token_id] def __A ( self : List[str] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[lang] if self.legacy_behaviour: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code] else: SCREAMING_SNAKE_CASE_ = [self.cur_lang_code] SCREAMING_SNAKE_CASE_ = [self.eos_token_id]
305
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
1
class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = {} def __A ( self : Tuple , __magic_name__ : int ) -> str: if vertex not in self.adjacency: SCREAMING_SNAKE_CASE_ = {} self.num_vertices += 1 def __A ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: self.add_vertex(__magic_name__ ) self.add_vertex(__magic_name__ ) if head == tail: return SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def __A ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for i in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = list(edges[i] ) edges.sort(key=lambda __magic_name__ : e[2] ) for i in range(len(__magic_name__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE_ = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = weight SCREAMING_SNAKE_CASE_ = weight def __str__( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE_ = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def __A ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __A ( self : Union[str, Any] ) -> Optional[int]: return self.adjacency.keys() @staticmethod def __A ( __magic_name__ : List[Any]=None , __magic_name__ : Tuple=None ) -> Any: SCREAMING_SNAKE_CASE_ = Graph() if vertices is None: SCREAMING_SNAKE_CASE_ = [] if edges is None: SCREAMING_SNAKE_CASE_ = [] for vertex in vertices: g.add_vertex(__magic_name__ ) for edge in edges: g.add_edge(*__magic_name__ ) return g class lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = {} def __len__( self : Optional[int] ) -> Optional[int]: return len(self.parent ) def __A ( self : str , __magic_name__ : int ) -> Optional[int]: if item in self.parent: return self.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = item SCREAMING_SNAKE_CASE_ = 0 return item def __A ( self : Any , __magic_name__ : List[str] ) -> Any: if item not in self.parent: return self.make_set(__magic_name__ ) if item != self.parent[item]: SCREAMING_SNAKE_CASE_ = self.find(self.parent[item] ) return self.parent[item] def __A ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.find(__magic_name__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE_ = roota return roota return None @staticmethod def __A ( __magic_name__ : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = graph.num_vertices SCREAMING_SNAKE_CASE_ = Graph.UnionFind() SCREAMING_SNAKE_CASE_ = [] while num_components > 1: SCREAMING_SNAKE_CASE_ = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = edge SCREAMING_SNAKE_CASE_ = union_find.find(__magic_name__ ) SCREAMING_SNAKE_CASE_ = union_find.find(__magic_name__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cheap_edge[vertex] if union_find.find(__magic_name__ ) != union_find.find(__magic_name__ ): union_find.union(__magic_name__ , __magic_name__ ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE_ = num_components - 1 SCREAMING_SNAKE_CASE_ = Graph.build(edges=__magic_name__ ) return mst
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) A : str = logging.getLogger(__name__) @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 def __init__( self : Dict , __magic_name__ : str , __magic_name__ : PreTrainedTokenizer , __magic_name__ : str , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int]=False , __magic_name__ : bool = False , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = hans_processors[task]() SCREAMING_SNAKE_CASE_ = os.path.join( __magic_name__ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(__magic_name__ ) , __magic_name__ , ) , ) SCREAMING_SNAKE_CASE_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ = cached_features_file + ".lock" with FileLock(__magic_name__ ): if os.path.exists(__magic_name__ ) and not overwrite_cache: logger.info(F'''Loading features from cached file {cached_features_file}''' ) SCREAMING_SNAKE_CASE_ = torch.load(__magic_name__ ) else: logger.info(F'''Creating features from dataset file at {data_dir}''' ) SCREAMING_SNAKE_CASE_ = ( processor.get_dev_examples(__magic_name__ ) if evaluate else processor.get_train_examples(__magic_name__ ) ) logger.info("Training examples: %s" , len(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = hans_convert_examples_to_features(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) logger.info("Saving features into cached file %s" , __magic_name__ ) torch.save(self.features , __magic_name__ ) def __len__( self : List[Any] ) -> Dict: return len(self.features ) def __getitem__( self : str , __magic_name__ : Any ) -> InputFeatures: return self.features[i] def __A ( self : Optional[Any] ) -> Optional[int]: return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 def __init__( self : List[str] , __magic_name__ : str , __magic_name__ : PreTrainedTokenizer , __magic_name__ : str , __magic_name__ : Optional[int] = 128 , __magic_name__ : Union[str, Any]=False , __magic_name__ : bool = False , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = hans_processors[task]() SCREAMING_SNAKE_CASE_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ = label_list SCREAMING_SNAKE_CASE_ = processor.get_dev_examples(__magic_name__ ) if evaluate else processor.get_train_examples(__magic_name__ ) SCREAMING_SNAKE_CASE_ = hans_convert_examples_to_features(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(__magic_name__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ = tf.data.Dataset.from_generator( __magic_name__ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __A ( self : Union[str, Any] ) -> Tuple: return self.dataset def __len__( self : List[Any] ) -> Union[str, Any]: return len(self.features ) def __getitem__( self : int , __magic_name__ : List[str] ) -> InputFeatures: return self.features[i] def __A ( self : Tuple ) -> Union[str, Any]: return self.label_list class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self : int , __magic_name__ : str ) -> Union[str, Any]: return self._create_examples(self._read_tsv(os.path.join(__magic_name__ , "heuristics_train_set.txt" ) ) , "train" ) def __A ( self : Optional[int] , __magic_name__ : int ) -> List[Any]: return self._create_examples(self._read_tsv(os.path.join(__magic_name__ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def __A ( self : Optional[int] ) -> Optional[int]: return ["contradiction", "entailment", "neutral"] def __A ( self : List[str] , __magic_name__ : str , __magic_name__ : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = [] for i, line in enumerate(__magic_name__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ = "%s-%s" % (set_type, line[0]) SCREAMING_SNAKE_CASE_ = line[5] SCREAMING_SNAKE_CASE_ = line[6] SCREAMING_SNAKE_CASE_ = line[7][2:] if line[7].startswith("ex" ) else line[7] SCREAMING_SNAKE_CASE_ = line[0] examples.append(InputExample(guid=__magic_name__ , text_a=__magic_name__ , text_b=__magic_name__ , label=__magic_name__ , pairID=__magic_name__ ) ) return examples def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): SCREAMING_SNAKE_CASE_ = {label: i for i, label in enumerate(__UpperCamelCase )} SCREAMING_SNAKE_CASE_ = [] for ex_index, example in tqdm.tqdm(enumerate(__UpperCamelCase ) , desc="convert examples to features" ): if ex_index % 1_0_0_0_0 == 0: logger.info("Writing example %d" % (ex_index) ) SCREAMING_SNAKE_CASE_ = tokenizer( example.text_a , example.text_b , add_special_tokens=__UpperCamelCase , max_length=__UpperCamelCase , padding="max_length" , truncation=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , ) SCREAMING_SNAKE_CASE_ = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ = int(example.pairID ) features.append(InputFeatures(**__UpperCamelCase , label=__UpperCamelCase , pairID=__UpperCamelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features A : Union[str, Any] = { "hans": 3, } A : Dict = { "hans": HansProcessor, }
305
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViltImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : List[str]=None , **__magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def __A ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : Dict ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : int ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
305
1
class lowerCamelCase : """simple docstring""" def __init__( self : Dict , __magic_name__ : str = "" , __magic_name__ : bool = False ) -> None: # Mapping from the first character of the prefix of the node SCREAMING_SNAKE_CASE_ = {} # A node will be a leaf if the tree contains its word SCREAMING_SNAKE_CASE_ = is_leaf SCREAMING_SNAKE_CASE_ = prefix def __A ( self : Any , __magic_name__ : str ) -> tuple[str, str, str]: SCREAMING_SNAKE_CASE_ = 0 for q, w in zip(self.prefix , __magic_name__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __A ( self : Optional[Any] , __magic_name__ : list[str] ) -> None: for word in words: self.insert(__magic_name__ ) def __A ( self : Tuple , __magic_name__ : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: SCREAMING_SNAKE_CASE_ = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: SCREAMING_SNAKE_CASE_ = RadixNode(prefix=__magic_name__ , is_leaf=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self.nodes[word[0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( __magic_name__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__magic_name__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: SCREAMING_SNAKE_CASE_ = remaining_prefix SCREAMING_SNAKE_CASE_ = self.nodes[matching_string[0]] SCREAMING_SNAKE_CASE_ = RadixNode(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = aux_node if remaining_word == "": SCREAMING_SNAKE_CASE_ = True else: self.nodes[matching_string[0]].insert(__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : str ) -> bool: SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , __magic_name__ ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__magic_name__ ) def __A ( self : Any , __magic_name__ : str ) -> bool: SCREAMING_SNAKE_CASE_ = self.nodes.get(word[0] , __magic_name__ ) if not incoming_node: return False else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = incoming_node.match( __magic_name__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__magic_name__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: SCREAMING_SNAKE_CASE_ = list(self.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf self.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: SCREAMING_SNAKE_CASE_ = False # If there is 1 edge, we merge it with its child else: SCREAMING_SNAKE_CASE_ = list(incoming_node.nodes.values() )[0] SCREAMING_SNAKE_CASE_ = merging_node.is_leaf incoming_node.prefix += merging_node.prefix SCREAMING_SNAKE_CASE_ = merging_node.nodes return True def __A ( self : List[str] , __magic_name__ : int = 0 ) -> None: if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a__ ( ): SCREAMING_SNAKE_CASE_ = "banana bananas bandana band apple all beast".split() SCREAMING_SNAKE_CASE_ = RadixNode() root.insert_many(__UpperCamelCase ) assert all(root.find(__UpperCamelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ): assert test_trie() def a__ ( ): SCREAMING_SNAKE_CASE_ = RadixNode() SCREAMING_SNAKE_CASE_ = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__UpperCamelCase ) print("Words:" , __UpperCamelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
305
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : str = logging.get_logger(__name__) A : Optional[int] = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''table-transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Any ) -> int: return self.d_model class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : int ) -> int: return 12
305
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = AltDiffusionPipeline lowerCamelCase__ = TEXT_TO_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def __A ( self : int ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) SCREAMING_SNAKE_CASE_ = CLIPTextModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) SCREAMING_SNAKE_CASE_ = 77 SCREAMING_SNAKE_CASE_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __A ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any]=0 ) -> Dict: if str(__magic_name__ ).startswith("mps" ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) SCREAMING_SNAKE_CASE_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __A ( self : str ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __A ( self : Optional[Any] ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE_ = RobertaSeriesModelWithTransformation(__magic_name__ ) SCREAMING_SNAKE_CASE_ = text_encoder SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A photo of an astronaut" SCREAMING_SNAKE_CASE_ = alt_pipe(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = PNDMScheduler(skip_prk_steps=__magic_name__ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE_ = RobertaSeriesModelWithTransformation(__magic_name__ ) SCREAMING_SNAKE_CASE_ = text_encoder SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.get_dummy_inputs(__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : Union[str, Any] ) -> List[Any]: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe([prompt] , generator=__magic_name__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) SCREAMING_SNAKE_CASE_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=__magic_name__ , safety_checker=__magic_name__ ) SCREAMING_SNAKE_CASE_ = alt_pipe.to(__magic_name__ ) alt_pipe.set_progress_bar_config(disable=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "A painting of a squirrel eating a burger" SCREAMING_SNAKE_CASE_ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = alt_pipe([prompt] , generator=__magic_name__ , num_inference_steps=2 , output_type="numpy" ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin A : int = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = SpeechTaTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def __A ( self : Dict ) -> int: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ = SpeechTaTokenizer(__magic_name__ ) SCREAMING_SNAKE_CASE_ = AddedToken("<mask>" , lstrip=__magic_name__ , rstrip=__magic_name__ ) SCREAMING_SNAKE_CASE_ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : str , __magic_name__ : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = "this is a test" SCREAMING_SNAKE_CASE_ = "this is a test" return input_text, output_text def __A ( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=False , __magic_name__ : Union[str, Any]=20 , __magic_name__ : Optional[int]=5 ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_input_output_texts(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) return text, ids def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "<pad>" SCREAMING_SNAKE_CASE_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ ) def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(__magic_name__ ) , 81 ) def __A ( self : List[Any] ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_tokenizers(do_lower_case=__magic_name__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE_ = ["aaaaa bbbbbb", "cccccccccdddddddd"] SCREAMING_SNAKE_CASE_ = tokenizer.add_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size + len(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE_ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} SCREAMING_SNAKE_CASE_ = tokenizer.add_special_tokens(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) self.assertNotEqual(__magic_name__ , 0 ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , len(__magic_name__ ) ) self.assertEqual(__magic_name__ , all_size_a + len(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__magic_name__ ) self.assertGreaterEqual(len(__magic_name__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __A ( self : Optional[Any] ) -> Optional[Any]: pass def __A ( self : Any ) -> List[str]: pass def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__magic_name__ , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__magic_name__ ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) # fmt: off self.assertListEqual(__magic_name__ , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(__magic_name__ ) self.assertListEqual( __magic_name__ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def __A ( self : int ) -> str: # Use custom sequence because this tokenizer does not handle numbers. SCREAMING_SNAKE_CASE_ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off SCREAMING_SNAKE_CASE_ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__magic_name__ , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=__magic_name__ , )
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = GPTSanJapaneseTokenizer lowerCamelCase__ = False lowerCamelCase__ = {'''do_clean_text''': False, '''add_prefix_space''': False} def __A ( self : Any ) -> Optional[Any]: super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on SCREAMING_SNAKE_CASE_ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 SCREAMING_SNAKE_CASE_ = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(__magic_name__ ) ) def __A ( self : List[str] , **__magic_name__ : Union[str, Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : Dict , __magic_name__ : int ) -> List[str]: SCREAMING_SNAKE_CASE_ = "こんにちは、世界。 \nこんばんは、㔺界。😀" SCREAMING_SNAKE_CASE_ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def __A ( self : Optional[Any] , __magic_name__ : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_input_output_texts(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) return text, ids def __A ( self : Union[str, Any] ) -> int: pass # TODO add if relevant def __A ( self : str ) -> List[Any]: pass # TODO add if relevant def __A ( self : Optional[int] ) -> int: pass # TODO add if relevant def __A ( self : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ = "こんにちは、世界。 こんばんは、㔺界。" SCREAMING_SNAKE_CASE_ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] SCREAMING_SNAKE_CASE_ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" SCREAMING_SNAKE_CASE_ = "こんにちは、、、、世界。こんばんは、、、、世界。" SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization SCREAMING_SNAKE_CASE_ = "こんにちは、世界。" SCREAMING_SNAKE_CASE_ = "こんばんは、㔺界。😀" SCREAMING_SNAKE_CASE_ = "こんにちは、世界。こんばんは、世界。😀" SCREAMING_SNAKE_CASE_ = tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE_ = tokenizer.encode(__magic_name__ , prefix_text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ ) @slow def __A ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization SCREAMING_SNAKE_CASE_ = "こんにちは、世界。" SCREAMING_SNAKE_CASE_ = "こんばんは、㔺界。😀" SCREAMING_SNAKE_CASE_ = len(tokenizer.encode(__magic_name__ ) ) - 2 SCREAMING_SNAKE_CASE_ = len(tokenizer.encode(__magic_name__ ) ) - 2 SCREAMING_SNAKE_CASE_ = [1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE_ = [1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE_ = tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , prefix_text=__magic_name__ ).token_type_ids self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) @slow def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("あンいワ" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("" , prefix_text="あンいワ" ) SCREAMING_SNAKE_CASE_ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(__magic_name__ ) , tokenizer.decode(__magic_name__ ) ) self.assertEqual(tokenizer.decode(__magic_name__ ) , tokenizer.decode(__magic_name__ ) ) self.assertNotEqual(__magic_name__ , __magic_name__ ) self.assertNotEqual(__magic_name__ , __magic_name__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) SCREAMING_SNAKE_CASE_ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , padding=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(__magic_name__ , padding=__magic_name__ ) # fmt: off SCREAMING_SNAKE_CASE_ = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] SCREAMING_SNAKE_CASE_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __magic_name__ ) self.assertListEqual(x_token.token_type_ids , __magic_name__ ) self.assertListEqual(x_token.attention_mask , __magic_name__ ) self.assertListEqual(x_token_a.input_ids , __magic_name__ ) self.assertListEqual(x_token_a.token_type_ids , __magic_name__ ) self.assertListEqual(x_token_a.attention_mask , __magic_name__ ) def __A ( self : Any ) -> Dict: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __A ( self : str ) -> Dict: # tokenizer has no padding token pass
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
from PIL import Image def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(__UpperCamelCase ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 A : int = change_contrast(img, 1_70) cont_img.save("image_data/lena_high_contrast.png", format="png")
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''audio''': Audio()} ) lowerCamelCase__ = Features({'''transcription''': Value('''string''' )} ) lowerCamelCase__ = "audio" lowerCamelCase__ = "transcription" def __A ( self : Optional[Any] , __magic_name__ : int ) -> Dict: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , __magic_name__ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) SCREAMING_SNAKE_CASE_ = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ = self.input_schema.copy() SCREAMING_SNAKE_CASE_ = features[self.audio_column] SCREAMING_SNAKE_CASE_ = input_schema return task_template @property def __A ( self : Any ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
305
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
1
def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) ) binary_number += "0" * shift_amount return binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) SCREAMING_SNAKE_CASE_ = str(bin(__UpperCamelCase ) )[2:] if shift_amount >= len(__UpperCamelCase ): return "0b0" SCREAMING_SNAKE_CASE_ = binary_number[: len(__UpperCamelCase ) - shift_amount] return "0b" + shifted_binary_number def a__ ( __UpperCamelCase , __UpperCamelCase ): if number >= 0: # Get binary representation of positive number SCREAMING_SNAKE_CASE_ = "0" + str(bin(__UpperCamelCase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number SCREAMING_SNAKE_CASE_ = len(bin(__UpperCamelCase )[3:] ) # Find 2's complement of number SCREAMING_SNAKE_CASE_ = bin(abs(__UpperCamelCase ) - (1 << binary_number_length) )[3:] SCREAMING_SNAKE_CASE_ = ( "1" + "0" * (binary_number_length - len(__UpperCamelCase )) + binary_number ) if shift_amount >= len(__UpperCamelCase ): return "0b" + binary_number[0] * len(__UpperCamelCase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__UpperCamelCase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = (IPNDMScheduler,) lowerCamelCase__ = (('''num_inference_steps''', 5_0),) def __A ( self : List[str] , **__magic_name__ : str ) -> Any: SCREAMING_SNAKE_CASE_ = {"num_train_timesteps": 1_000} config.update(**__magic_name__ ) return config def __A ( self : Optional[Any] , __magic_name__ : List[str]=0 , **__magic_name__ : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ = kwargs.pop("num_inference_steps" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.dummy_sample SCREAMING_SNAKE_CASE_ = 0.1 * sample SCREAMING_SNAKE_CASE_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler_class.from_pretrained(__magic_name__ ) new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self : List[str] ) -> str: pass def __A ( self : Union[str, Any] , __magic_name__ : Union[str, Any]=0 , **__magic_name__ : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ = kwargs.pop("num_inference_steps" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.dummy_sample SCREAMING_SNAKE_CASE_ = 0.1 * sample SCREAMING_SNAKE_CASE_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**__magic_name__ ) scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ = dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler_class.from_pretrained(__magic_name__ ) # copy over dummy past residuals new_scheduler.set_timesteps(__magic_name__ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = new_scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __A ( self : Dict , **__magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ = self.get_scheduler_config(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = self.dummy_model() SCREAMING_SNAKE_CASE_ = self.dummy_sample_deter scheduler.set_timesteps(__magic_name__ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = model(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ = model(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample return sample def __A ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ = kwargs.pop("num_inference_steps" , __magic_name__ ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ = scheduler_class(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.dummy_sample SCREAMING_SNAKE_CASE_ = 0.1 * sample if num_inference_steps is not None and hasattr(__magic_name__ , "set_timesteps" ): scheduler.set_timesteps(__magic_name__ ) elif num_inference_steps is not None and not hasattr(__magic_name__ , "set_timesteps" ): SCREAMING_SNAKE_CASE_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ = scheduler.timesteps[5] SCREAMING_SNAKE_CASE_ = scheduler.timesteps[6] SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self : List[Any] ) -> Optional[int]: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__magic_name__ , time_step=__magic_name__ ) def __A ( self : Optional[int] ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__magic_name__ , time_step=__magic_name__ ) def __A ( self : Dict ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.full_loop() SCREAMING_SNAKE_CASE_ = torch.mean(torch.abs(__magic_name__ ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
305
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
1
A : Dict = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = set() # keep track of all the paths to be checked SCREAMING_SNAKE_CASE_ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue SCREAMING_SNAKE_CASE_ = queue.pop(0 ) # get the last node from the path SCREAMING_SNAKE_CASE_ = path[-1] if node not in explored: SCREAMING_SNAKE_CASE_ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: SCREAMING_SNAKE_CASE_ = list(__UpperCamelCase ) new_path.append(__UpperCamelCase ) queue.append(__UpperCamelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__UpperCamelCase ) # in case there's no path between the 2 nodes return [] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 SCREAMING_SNAKE_CASE_ = [start] SCREAMING_SNAKE_CASE_ = set(__UpperCamelCase ) # Keep tab on distances from `start` node. SCREAMING_SNAKE_CASE_ = {start: 0, target: -1} while queue: SCREAMING_SNAKE_CASE_ = queue.pop(0 ) if node == target: SCREAMING_SNAKE_CASE_ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__UpperCamelCase ) queue.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent A : Any = {"UserAgent": UserAgent().random} def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = script.contents[0] SCREAMING_SNAKE_CASE_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCamelCase : """simple docstring""" def __init__( self : Dict , __magic_name__ : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = F'''https://www.instagram.com/{username}/''' SCREAMING_SNAKE_CASE_ = self.get_json() def __A ( self : int ) -> dict: SCREAMING_SNAKE_CASE_ = requests.get(self.url , headers=__magic_name__ ).text SCREAMING_SNAKE_CASE_ = BeautifulSoup(__magic_name__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : int ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __A ( self : Optional[Any] ) -> str: return self.user_data["username"] @property def __A ( self : Any ) -> str: return self.user_data["full_name"] @property def __A ( self : int ) -> str: return self.user_data["biography"] @property def __A ( self : List[str] ) -> str: return self.user_data["business_email"] @property def __A ( self : Tuple ) -> str: return self.user_data["external_url"] @property def __A ( self : Dict ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __A ( self : Any ) -> int: return self.user_data["edge_follow"]["count"] @property def __A ( self : Optional[int] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __A ( self : int ) -> str: return self.user_data["profile_pic_url_hd"] @property def __A ( self : Tuple ) -> bool: return self.user_data["is_verified"] @property def __A ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def a__ ( __UpperCamelCase = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE_ = InstagramUser(__UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() A : List[Any] = InstagramUser("github") print(instagram_user) print(f"{instagram_user.number_of_posts = }") print(f"{instagram_user.number_of_followers = }") print(f"{instagram_user.number_of_followings = }") print(f"{instagram_user.email = }") print(f"{instagram_user.website = }") print(f"{instagram_user.profile_picture_url = }") print(f"{instagram_user.is_verified = }") print(f"{instagram_user.is_private = }")
305
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
A : int = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : int = [{"type": "code", "content": INSTALL_CONTENT}] A : List[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE_ = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] SCREAMING_SNAKE_CASE_ = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], } SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def __A ( self : int , **__magic_name__ : Union[str, Any] ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__magic_name__ ) def __A ( self : str , **__magic_name__ : Optional[int] ) -> List[Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__magic_name__ ) def __A ( self : Optional[Any] , **__magic_name__ : str ) -> int: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __magic_name__ ) self.assertIsInstance(processor_fast.tokenizer , __magic_name__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __magic_name__ ) self.assertIsInstance(processor_fast.image_processor , __magic_name__ ) def __A ( self : int ) -> str: SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ ) SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __A ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "google/owlvit-base-patch32" SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["cat", "nasa badge"] SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = "google/owlvit-base-patch32" SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [["cat", "nasa badge"], ["person"]] SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = max([len(__magic_name__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = "google/owlvit-base-patch32" SCREAMING_SNAKE_CASE_ = OwlViTProcessor.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = ["cat", "nasa badge"] SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = inputs["input_ids"] SCREAMING_SNAKE_CASE_ = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , query_images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = OwlViTProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ )
305
from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( __UpperCamelCase ): return "".join(sorted(__UpperCamelCase ) ) def a__ ( __UpperCamelCase ): return word_by_signature[signature(__UpperCamelCase )] A : str = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") A : int = sorted({word.strip().lower() for word in data.splitlines()}) A : Tuple = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": A : Union[str, Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : str = { "configuration_xlm_roberta_xl": [ "XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaXLConfig", "XLMRobertaXLOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
305
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
1
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A : int = logging.get_logger(__name__) @add_end_docstrings( SCREAMING_SNAKE_CASE__ , r''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self : List[Any] , __magic_name__ : GenericTensor ) -> np.ndarray: if self.framework == "tf": SCREAMING_SNAKE_CASE_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": SCREAMING_SNAKE_CASE_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__magic_name__ ) else: raise ValueError("Unsupported framework" ) return masked_index def __A ( self : Union[str, Any] , __magic_name__ : GenericTensor ) -> np.ndarray: SCREAMING_SNAKE_CASE_ = self.get_masked_index(__magic_name__ ) SCREAMING_SNAKE_CASE_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __A ( self : List[str] , __magic_name__ : GenericTensor ) -> Dict: if isinstance(__magic_name__ , __magic_name__ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__magic_name__ ) def __A ( self : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] ) -> Dict[str, GenericTensor]: if return_tensors is None: SCREAMING_SNAKE_CASE_ = self.framework SCREAMING_SNAKE_CASE_ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ ) self.ensure_exactly_one_mask_token(__magic_name__ ) return model_inputs def __A ( self : Tuple , __magic_name__ : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = model_inputs["input_ids"] return model_outputs def __A ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str=5 , __magic_name__ : Dict=None ) -> List[str]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: SCREAMING_SNAKE_CASE_ = target_ids.shape[0] SCREAMING_SNAKE_CASE_ = model_outputs["input_ids"][0] SCREAMING_SNAKE_CASE_ = model_outputs["logits"] if self.framework == "tf": SCREAMING_SNAKE_CASE_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] SCREAMING_SNAKE_CASE_ = outputs.numpy() SCREAMING_SNAKE_CASE_ = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ = stable_softmax(__magic_name__ , axis=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ = tf.gather_nd(tf.squeeze(__magic_name__ , 0 ) , target_ids.reshape(-1 , 1 ) ) SCREAMING_SNAKE_CASE_ = tf.expand_dims(__magic_name__ , 0 ) SCREAMING_SNAKE_CASE_ = tf.math.top_k(__magic_name__ , k=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = topk.values.numpy(), topk.indices.numpy() else: SCREAMING_SNAKE_CASE_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=__magic_name__ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample SCREAMING_SNAKE_CASE_ = outputs[0, masked_index, :] SCREAMING_SNAKE_CASE_ = logits.softmax(dim=-1 ) if target_ids is not None: SCREAMING_SNAKE_CASE_ = probs[..., target_ids] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = probs.topk(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): SCREAMING_SNAKE_CASE_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place SCREAMING_SNAKE_CASE_ = input_ids.numpy().copy() if target_ids is not None: SCREAMING_SNAKE_CASE_ = target_ids[p].tolist() SCREAMING_SNAKE_CASE_ = p # Filter padding out: SCREAMING_SNAKE_CASE_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) SCREAMING_SNAKE_CASE_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(__magic_name__ ) result.append(__magic_name__ ) if single_mask: return result[0] return result def __A ( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> Dict: if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = [targets] try: SCREAMING_SNAKE_CASE_ = self.tokenizer.get_vocab() except Exception: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = [] for target in targets: SCREAMING_SNAKE_CASE_ = vocab.get(__magic_name__ , __magic_name__ ) if id_ is None: SCREAMING_SNAKE_CASE_ = self.tokenizer( __magic_name__ , add_special_tokens=__magic_name__ , return_attention_mask=__magic_name__ , return_token_type_ids=__magic_name__ , max_length=1 , truncation=__magic_name__ , )["input_ids"] if len(__magic_name__ ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' "We cannot replace it with anything meaningful, ignoring it" ) continue SCREAMING_SNAKE_CASE_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) SCREAMING_SNAKE_CASE_ = list(set(__magic_name__ ) ) if len(__magic_name__ ) == 0: raise ValueError("At least one target must be provided when passed." ) SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) return target_ids def __A ( self : List[Any] , __magic_name__ : Optional[Any]=None , __magic_name__ : Tuple=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = {} if targets is not None: SCREAMING_SNAKE_CASE_ = self.get_target_ids(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = target_ids if top_k is not None: SCREAMING_SNAKE_CASE_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self : Optional[int] , __magic_name__ : List[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ) -> str: SCREAMING_SNAKE_CASE_ = super().__call__(__magic_name__ , **__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) == 1: return outputs[0] return outputs
305
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( __UpperCamelCase ): return x + 2 class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) SCREAMING_SNAKE_CASE_ = "x = y" SCREAMING_SNAKE_CASE_ = {"y": 5} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 5, "y": 5} ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = "y = add_two(x)" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result is None assert "tried to execute add_two" in out.out def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = "x = 3" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3} ) def __A ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE_ = "x = 3\ny = 5" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 5} ) def __A ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = "text = f'This is x: {x}.'" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__magic_name__ , {"x": 3, "text": "This is x: 3."} ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = "if x <= 3:\n y = 2\nelse:\n y = 5" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 2} ) SCREAMING_SNAKE_CASE_ = {"x": 8} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 8, "y": 5} ) def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) self.assertListEqual(__magic_name__ , [3, 5] ) self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) def __A ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "y = x" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {} , state=__magic_name__ ) assert result == 3 self.assertDictEqual(__magic_name__ , {"x": 3, "y": 3} ) def __A ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "test_list = [x, add_two(x)]\ntest_list[1]" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_list": [3, 5]} ) SCREAMING_SNAKE_CASE_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" SCREAMING_SNAKE_CASE_ = {"x": 3} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"add_two": add_two} , state=__magic_name__ ) assert result == 5 self.assertDictEqual(__magic_name__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = "x = 0\nfor i in range(3):\n x = i" SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = evaluate(__magic_name__ , {"range": range} , state=__magic_name__ ) assert result == 2 self.assertDictEqual(__magic_name__ , {"x": 2, "i": 2} )
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Union[str, Any] = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''cvt''' def __init__( self : Union[str, Any] , __magic_name__ : Union[str, Any]=3 , __magic_name__ : int=[7, 3, 3] , __magic_name__ : List[Any]=[4, 2, 2] , __magic_name__ : str=[2, 1, 1] , __magic_name__ : Optional[int]=[64, 192, 384] , __magic_name__ : List[str]=[1, 3, 6] , __magic_name__ : Optional[Any]=[1, 2, 10] , __magic_name__ : Optional[int]=[4.0, 4.0, 4.0] , __magic_name__ : Union[str, Any]=[0.0, 0.0, 0.0] , __magic_name__ : List[str]=[0.0, 0.0, 0.0] , __magic_name__ : Union[str, Any]=[0.0, 0.0, 0.1] , __magic_name__ : Tuple=[True, True, True] , __magic_name__ : Tuple=[False, False, True] , __magic_name__ : int=["dw_bn", "dw_bn", "dw_bn"] , __magic_name__ : Tuple=[3, 3, 3] , __magic_name__ : Dict=[1, 1, 1] , __magic_name__ : str=[2, 2, 2] , __magic_name__ : str=[1, 1, 1] , __magic_name__ : Union[str, Any]=[1, 1, 1] , __magic_name__ : int=0.02 , __magic_name__ : Tuple=1e-12 , **__magic_name__ : Optional[int] , ) -> List[str]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_sizes SCREAMING_SNAKE_CASE_ = patch_stride SCREAMING_SNAKE_CASE_ = patch_padding SCREAMING_SNAKE_CASE_ = embed_dim SCREAMING_SNAKE_CASE_ = num_heads SCREAMING_SNAKE_CASE_ = depth SCREAMING_SNAKE_CASE_ = mlp_ratio SCREAMING_SNAKE_CASE_ = attention_drop_rate SCREAMING_SNAKE_CASE_ = drop_rate SCREAMING_SNAKE_CASE_ = drop_path_rate SCREAMING_SNAKE_CASE_ = qkv_bias SCREAMING_SNAKE_CASE_ = cls_token SCREAMING_SNAKE_CASE_ = qkv_projection_method SCREAMING_SNAKE_CASE_ = kernel_qkv SCREAMING_SNAKE_CASE_ = padding_kv SCREAMING_SNAKE_CASE_ = stride_kv SCREAMING_SNAKE_CASE_ = padding_q SCREAMING_SNAKE_CASE_ = stride_q SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps
305
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : str = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_text_model''' def __init__( self : Optional[Any] , __magic_name__ : Union[str, Any]=30_522 , __magic_name__ : Tuple=768 , __magic_name__ : List[str]=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : str=3_072 , __magic_name__ : Dict="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Any=2 , __magic_name__ : Optional[Any]=0.02 , __magic_name__ : int=1e-12 , __magic_name__ : str=0 , __magic_name__ : Optional[Any]="absolute" , __magic_name__ : Optional[Any]=True , **__magic_name__ : Tuple , ) -> Union[str, Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id @classmethod def __A ( cls : Any , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align_vision_model''' def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 600 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [32, 16, 24, 40, 80, 112, 192] , __magic_name__ : List[int] = [16, 24, 40, 80, 112, 192, 320] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_560 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.2 , **__magic_name__ : List[Any] , ) -> Tuple: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = width_coefficient SCREAMING_SNAKE_CASE_ = depth_coefficient SCREAMING_SNAKE_CASE_ = depth_divisor SCREAMING_SNAKE_CASE_ = kernel_sizes SCREAMING_SNAKE_CASE_ = in_channels SCREAMING_SNAKE_CASE_ = out_channels SCREAMING_SNAKE_CASE_ = depthwise_padding SCREAMING_SNAKE_CASE_ = strides SCREAMING_SNAKE_CASE_ = num_block_repeats SCREAMING_SNAKE_CASE_ = expand_ratios SCREAMING_SNAKE_CASE_ = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = pooling_type SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = batch_norm_eps SCREAMING_SNAKE_CASE_ = batch_norm_momentum SCREAMING_SNAKE_CASE_ = drop_connect_rate SCREAMING_SNAKE_CASE_ = sum(__magic_name__ ) * 4 @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Dict ) -> "PretrainedConfig": cls._set_token_in_kwargs(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": SCREAMING_SNAKE_CASE_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''align''' lowerCamelCase__ = True def __init__( self : Optional[Any] , __magic_name__ : Dict=None , __magic_name__ : List[Any]=None , __magic_name__ : str=640 , __magic_name__ : Any=1.0 , __magic_name__ : Dict=0.02 , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(**__magic_name__ ) if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) SCREAMING_SNAKE_CASE_ = AlignTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = AlignVisionConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = projection_dim SCREAMING_SNAKE_CASE_ = temperature_init_value SCREAMING_SNAKE_CASE_ = initializer_range @classmethod def __A ( cls : List[str] , __magic_name__ : AlignTextConfig , __magic_name__ : AlignVisionConfig , **__magic_name__ : Tuple ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : int ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
305
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A : List[str] = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Dict , __magic_name__ : Any , __magic_name__ : Tuple=13 , __magic_name__ : str=7 , __magic_name__ : Dict=True , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : Dict=True , __magic_name__ : Any=False , __magic_name__ : Tuple=False , __magic_name__ : str=False , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=99 , __magic_name__ : Union[str, Any]=0 , __magic_name__ : str=32 , __magic_name__ : Optional[int]=5 , __magic_name__ : Optional[Any]=4 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : List[Any]=12 , __magic_name__ : Tuple=2 , __magic_name__ : Dict=0.02 , __magic_name__ : Union[str, Any]=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : int="last" , __magic_name__ : str=None , __magic_name__ : Dict=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_input_lengths SCREAMING_SNAKE_CASE_ = use_token_type_ids SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = gelu_activation SCREAMING_SNAKE_CASE_ = sinusoidal_embeddings SCREAMING_SNAKE_CASE_ = causal SCREAMING_SNAKE_CASE_ = asm SCREAMING_SNAKE_CASE_ = n_langs SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = n_special SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = num_choices SCREAMING_SNAKE_CASE_ = summary_type SCREAMING_SNAKE_CASE_ = use_proj SCREAMING_SNAKE_CASE_ = scope def __A ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_input_lengths: SCREAMING_SNAKE_CASE_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __A ( self : List[str] ) -> int: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __A ( self : Dict , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : Tuple , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaubertModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , lengths=__magic_name__ , langs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , langs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = FlaubertWithLMHeadModel(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : List[Any] , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Any , ) -> Any: SCREAMING_SNAKE_CASE_ = FlaubertForQuestionAnsweringSimple(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , ) -> Tuple: SCREAMING_SNAKE_CASE_ = FlaubertForQuestionAnswering(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , p_mask=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = model( __magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , cls_index=__magic_name__ , is_impossible=__magic_name__ , ) ((SCREAMING_SNAKE_CASE_) , ) = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ ) ((SCREAMING_SNAKE_CASE_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __A ( self : int , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Any , ) -> Any: SCREAMING_SNAKE_CASE_ = FlaubertForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any] , ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = FlaubertForTokenClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , ) -> Any: SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = FlaubertForMultipleChoice(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE_ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __A ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __A ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[int]=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = super()._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__magic_name__ ) return inputs_dict def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , emb_dim=37 ) def __A ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__magic_name__ ) def __A ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__magic_name__ ) def __A ( self : int ) -> Dict: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__magic_name__ ) def __A ( self : Union[str, Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__magic_name__ ) def __A ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__magic_name__ ) def __A ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__magic_name__ ) @slow def __A ( self : List[str] ) -> Any: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = FlaubertModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @slow @require_torch_gpu def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.jit.trace( __magic_name__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__magic_name__ , os.path.join(__magic_name__ , "traced_model.pt" ) ) SCREAMING_SNAKE_CASE_ = torch.jit.load(os.path.join(__magic_name__ , "traced_model.pt" ) , map_location=__magic_name__ ) loaded(inputs_dict["input_ids"].to(__magic_name__ ) , inputs_dict["attention_mask"].to(__magic_name__ ) ) @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )[0] SCREAMING_SNAKE_CASE_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1e-4 ) )
305
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Dict: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : Optional[int] ) -> Tuple: try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : str ) -> str: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__magic_name__ , repo_id="test-model-flax" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(F'''{USER}/test-model-flax''' ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def __A ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __magic_name__ , repo_id="valid_org/test-model-flax-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__magic_name__ , 1e-3 , msg=F'''{key} not identical''' ) def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: SCREAMING_SNAKE_CASE_ = False return models_are_equal @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : str ) -> Dict: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE_ = FlaxBertModel(__magic_name__ ) SCREAMING_SNAKE_CASE_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__magic_name__ , __magic_name__ ) , max_shard_size="10KB" ) with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertTrue(check_models_equal(__magic_name__ , __magic_name__ ) ) def __A ( self : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def __A ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE_ = "bert" SCREAMING_SNAKE_CASE_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ ) SCREAMING_SNAKE_CASE_ = FlaxBertModel.from_pretrained(__magic_name__ , subfolder=__magic_name__ ) self.assertIsNotNone(__magic_name__ )
305
1
import numpy as np A : Optional[Any] = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class lowerCamelCase : """simple docstring""" def __init__( self : List[str] ) -> None: SCREAMING_SNAKE_CASE_ = np.array(__magic_name__ ) def __A ( self : Optional[int] , __magic_name__ : str ) -> np.ndarray: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.where(letter == self.SQUARE ) SCREAMING_SNAKE_CASE_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __A ( self : int , __magic_name__ : int , __magic_name__ : int ) -> str: SCREAMING_SNAKE_CASE_ = self.SQUARE[indexa - 1, indexa - 1] return letter def __A ( self : Dict , __magic_name__ : str ) -> str: SCREAMING_SNAKE_CASE_ = message.lower() SCREAMING_SNAKE_CASE_ = message.replace(" " , "" ) SCREAMING_SNAKE_CASE_ = message.replace("j" , "i" ) SCREAMING_SNAKE_CASE_ = np.empty((2, len(__magic_name__ )) ) for letter_index in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ = numbers[0] SCREAMING_SNAKE_CASE_ = numbers[1] SCREAMING_SNAKE_CASE_ = first_step.reshape(2 * len(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = "" for numbers_index in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = int(second_step[numbers_index * 2] ) SCREAMING_SNAKE_CASE_ = int(second_step[(numbers_index * 2) + 1] ) SCREAMING_SNAKE_CASE_ = self.numbers_to_letter(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = encoded_message + letter return encoded_message def __A ( self : Optional[Any] , __magic_name__ : str ) -> str: SCREAMING_SNAKE_CASE_ = message.lower() message.replace(" " , "" ) SCREAMING_SNAKE_CASE_ = np.empty(2 * len(__magic_name__ ) ) for letter_index in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = self.letter_to_numbers(message[letter_index] ) SCREAMING_SNAKE_CASE_ = numbers[0] SCREAMING_SNAKE_CASE_ = numbers[1] SCREAMING_SNAKE_CASE_ = first_step.reshape((2, len(__magic_name__ )) ) SCREAMING_SNAKE_CASE_ = "" for numbers_index in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = int(second_step[0, numbers_index] ) SCREAMING_SNAKE_CASE_ = int(second_step[1, numbers_index] ) SCREAMING_SNAKE_CASE_ = self.numbers_to_letter(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = decoded_message + letter return decoded_message
305
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A : Union[str, Any] = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def a__ ( ): SCREAMING_SNAKE_CASE_ = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ = get_cluster_input() return config def a__ ( __UpperCamelCase=None ): if subparsers is not None: SCREAMING_SNAKE_CASE_ = subparsers.add_parser("config" , description=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser("Accelerate config command" , description=__UpperCamelCase ) parser.add_argument( "--config_file" , default=__UpperCamelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(F'''accelerate configuration saved at {config_file}''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ = config_command_parser() SCREAMING_SNAKE_CASE_ = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
305
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = None lowerCamelCase__ = BloomTokenizerFast lowerCamelCase__ = BloomTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = '''tokenizer_file''' lowerCamelCase__ = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def __A ( self : str ) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE_ = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[str] , **__magic_name__ : int ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] SCREAMING_SNAKE_CASE_ = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] SCREAMING_SNAKE_CASE_ = tokenizer.batch_encode_plus(__magic_name__ )["input_ids"] self.assertListEqual(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : Tuple=6 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(__magic_name__ , **__magic_name__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ = "This is a simple input" SCREAMING_SNAKE_CASE_ = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE_ = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.encode_plus(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.batch_encode_plus(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.encode(__magic_name__ , max_length=__magic_name__ ) tokenizer_r.batch_encode_plus(__magic_name__ , max_length=__magic_name__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) SCREAMING_SNAKE_CASE_ = None # Hotfixing padding = None self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="max_length" ) # Simple input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="max_length" ) # Simple input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="max_length" , ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode , __magic_name__ , max_length=__magic_name__ , padding="max_length" ) # Pair input self.assertRaises(__magic_name__ , tokenizer_r.encode_plus , __magic_name__ , max_length=__magic_name__ , padding="max_length" ) # Pair input self.assertRaises( __magic_name__ , tokenizer_r.batch_encode_plus , __magic_name__ , max_length=__magic_name__ , padding="max_length" , ) def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ = load_dataset("xnli" , "all_languages" , split="test" , streaming=__magic_name__ ) SCREAMING_SNAKE_CASE_ = next(iter(__magic_name__ ) )["premise"] # pick up one data SCREAMING_SNAKE_CASE_ = list(sample_data.values() ) SCREAMING_SNAKE_CASE_ = list(map(tokenizer.encode , __magic_name__ ) ) SCREAMING_SNAKE_CASE_ = [tokenizer.decode(__magic_name__ , clean_up_tokenization_spaces=__magic_name__ ) for x in output_tokens] self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> Tuple: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
305
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCamelCase__ = Features({'''text''': Value('''string''' )} ) lowerCamelCase__ = Features({'''summary''': Value('''string''' )} ) lowerCamelCase__ = "text" lowerCamelCase__ = "summary" @property def __A ( self : Dict ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
305
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''vision-encoder-decoder''' lowerCamelCase__ = True def __init__( self : int , **__magic_name__ : List[str] ) -> List[str]: super().__init__(**__magic_name__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'''A configuraton of type {self.model_type} cannot be instantiated because ''' F'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) SCREAMING_SNAKE_CASE_ = kwargs.pop("encoder" ) SCREAMING_SNAKE_CASE_ = encoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ = kwargs.pop("decoder" ) SCREAMING_SNAKE_CASE_ = decoder_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = True @classmethod def __A ( cls : List[Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , **__magic_name__ : Optional[Any] ) -> PretrainedConfig: logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.encoder.to_dict() SCREAMING_SNAKE_CASE_ = self.decoder.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Union[str, Any] ) -> float: return 1e-4 @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Dict ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "encoder_sequence"} return common_inputs def __A ( self : Dict , __magic_name__ : "PreTrainedTokenizerBase" , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = super().generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = dummy_input["input_ids"].shape SCREAMING_SNAKE_CASE_ = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE_ = dummy_input.pop("input_ids" ) SCREAMING_SNAKE_CASE_ = dummy_input.pop("attention_mask" ) SCREAMING_SNAKE_CASE_ = torch.zeros(__magic_name__ ) return common_inputs class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : Union[str, Any] ) -> None: pass def __A ( self : Optional[int] , __magic_name__ : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__magic_name__ ) def __A ( self : Union[str, Any] , __magic_name__ : PretrainedConfig , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" ) -> OnnxConfig: SCREAMING_SNAKE_CASE_ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__magic_name__ , __magic_name__ )
305
from ....utils import logging A : List[str] = logging.get_logger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=None , __magic_name__ : List[str]=2_048 ) -> List[Any]: SCREAMING_SNAKE_CASE_ = config.__dict__ SCREAMING_SNAKE_CASE_ = modal_hidden_size if num_labels: SCREAMING_SNAKE_CASE_ = num_labels
305
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Any = logging.get_logger(__name__) A : List[Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''roberta''' def __init__( self : int , __magic_name__ : Optional[int]=50_265 , __magic_name__ : List[str]=768 , __magic_name__ : Any=12 , __magic_name__ : List[str]=12 , __magic_name__ : Union[str, Any]=3_072 , __magic_name__ : List[str]="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=2 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : List[str]=1e-12 , __magic_name__ : int=1 , __magic_name__ : Tuple=0 , __magic_name__ : Tuple=2 , __magic_name__ : str="absolute" , __magic_name__ : Optional[Any]=True , __magic_name__ : Any=None , **__magic_name__ : Union[str, Any] , ) -> int: super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = classifier_dropout class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
305
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViltImageProcessor''' lowerCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , __magic_name__ : str=None , __magic_name__ : List[str]=None , **__magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) SCREAMING_SNAKE_CASE_ = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.image_processor def __call__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __magic_name__ : bool = True , __magic_name__ : Union[bool, str, PaddingStrategy] = False , __magic_name__ : Union[bool, str, TruncationStrategy] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int = 0 , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[Union[str, TensorType]] = None , **__magic_name__ : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE_ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def __A ( self : Optional[int] , *__magic_name__ : List[Any] , **__magic_name__ : Optional[Any] ) -> Any: return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __A ( self : Dict , *__magic_name__ : List[Any] , **__magic_name__ : Union[str, Any] ) -> str: return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __A ( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : Dict ) -> List[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class @property def __A ( self : int ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __magic_name__ , ) return self.image_processor
305
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A : str = logging.get_logger(__name__) A : Optional[int] = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''table-transformer''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ ) # set timm attributes to None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None SCREAMING_SNAKE_CASE_ = use_timm_backbone SCREAMING_SNAKE_CASE_ = backbone_config SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = init_xavier_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = auxiliary_loss SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = backbone SCREAMING_SNAKE_CASE_ = use_pretrained_backbone SCREAMING_SNAKE_CASE_ = dilation # Hungarian matcher SCREAMING_SNAKE_CASE_ = class_cost SCREAMING_SNAKE_CASE_ = bbox_cost SCREAMING_SNAKE_CASE_ = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE_ = mask_loss_coefficient SCREAMING_SNAKE_CASE_ = dice_loss_coefficient SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient SCREAMING_SNAKE_CASE_ = giou_loss_coefficient SCREAMING_SNAKE_CASE_ = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def __A ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def __A ( self : Any ) -> int: return self.d_model class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = version.parse('''1.11''' ) @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __A ( self : Any ) -> float: return 1e-5 @property def __A ( self : int ) -> int: return 12
305
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : int = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''funnel''' lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : List[Any] , __magic_name__ : int=30_522 , __magic_name__ : Any=[4, 4, 4] , __magic_name__ : Union[str, Any]=None , __magic_name__ : str=2 , __magic_name__ : Optional[Any]=768 , __magic_name__ : Union[str, Any]=12 , __magic_name__ : Union[str, Any]=64 , __magic_name__ : Dict=3_072 , __magic_name__ : Union[str, Any]="gelu_new" , __magic_name__ : str=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Tuple=None , __magic_name__ : Optional[int]=1e-9 , __magic_name__ : Any="mean" , __magic_name__ : Optional[int]="relative_shift" , __magic_name__ : Any=True , __magic_name__ : str=True , __magic_name__ : Optional[Any]=True , **__magic_name__ : Optional[int] , ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = block_sizes SCREAMING_SNAKE_CASE_ = [1] * len(__magic_name__ ) if block_repeats is None else block_repeats assert len(__magic_name__ ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." SCREAMING_SNAKE_CASE_ = num_decoder_layers SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = n_head SCREAMING_SNAKE_CASE_ = d_head SCREAMING_SNAKE_CASE_ = d_inner SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = initializer_std SCREAMING_SNAKE_CASE_ = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' SCREAMING_SNAKE_CASE_ = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = separate_cls SCREAMING_SNAKE_CASE_ = truncate_seq SCREAMING_SNAKE_CASE_ = pool_q_only super().__init__(**__magic_name__ ) @property def __A ( self : Optional[Any] ) -> int: return sum(self.block_sizes ) @num_hidden_layers.setter def __A ( self : Any , __magic_name__ : Union[str, Any] ) -> List[Any]: raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def __A ( self : Optional[Any] ) -> Dict: return len(self.block_sizes ) @num_blocks.setter def __A ( self : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]: raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`." )
305
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
305
1
from __future__ import annotations from functools import lru_cache from math import ceil A : Union[str, Any] = 1_00 A : List[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def a__ ( __UpperCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def a__ ( __UpperCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __UpperCamelCase ): if len(partition(__UpperCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
305
from __future__ import annotations import numpy as np def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.shape(__UpperCamelCase ) if rows != columns: SCREAMING_SNAKE_CASE_ = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) SCREAMING_SNAKE_CASE_ = np.zeros((rows, columns) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) SCREAMING_SNAKE_CASE_ = (table[i][j] - total) / upper[j][j] SCREAMING_SNAKE_CASE_ = 1 for j in range(__UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sum(lower[i][k] * upper[k][j] for k in range(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
305
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder A : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name A : int = 2_56 class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = ['''melgan'''] def __init__( self : Any , __magic_name__ : SpectrogramNotesEncoder , __magic_name__ : SpectrogramContEncoder , __magic_name__ : TaFilmDecoder , __magic_name__ : DDPMScheduler , __magic_name__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN SCREAMING_SNAKE_CASE_ = math.log(1e-5 ) # Matches MelGAN training. SCREAMING_SNAKE_CASE_ = 4.0 # Largest value for most examples SCREAMING_SNAKE_CASE_ = 128 self.register_modules( notes_encoder=__magic_name__ , continuous_encoder=__magic_name__ , decoder=__magic_name__ , scheduler=__magic_name__ , melgan=__magic_name__ , ) def __A ( self : List[Any] , __magic_name__ : str , __magic_name__ : List[Any]=(-1.0, 1.0) , __magic_name__ : Dict=False ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = output_range if clip: SCREAMING_SNAKE_CASE_ = torch.clip(__magic_name__ , self.min_value , self.max_value ) # Scale to [0, 1]. SCREAMING_SNAKE_CASE_ = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __A ( self : Tuple , __magic_name__ : List[Any] , __magic_name__ : Dict=(-1.0, 1.0) , __magic_name__ : int=False ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = input_range SCREAMING_SNAKE_CASE_ = torch.clip(__magic_name__ , __magic_name__ , __magic_name__ ) if clip else outputs # Scale to [0, 1]. SCREAMING_SNAKE_CASE_ = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __A ( self : Any , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = input_tokens > 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.notes_encoder( encoder_input_tokens=__magic_name__ , encoder_inputs_mask=__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.continuous_encoder( encoder_inputs=__magic_name__ , encoder_inputs_mask=__magic_name__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __A ( self : Any , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Any ) -> str: SCREAMING_SNAKE_CASE_ = noise_time if not torch.is_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE_ = self.decoder( encodings_and_masks=__magic_name__ , decoder_input_tokens=__magic_name__ , decoder_noise_time=__magic_name__ ) return logits @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : List[List[int]] , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : int = 100 , __magic_name__ : bool = True , __magic_name__ : str = "numpy" , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__magic_name__ , __magic_name__ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__magic_name__ )}.''' ) SCREAMING_SNAKE_CASE_ = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = np.zeros([1, 0, self.n_dims] , np.floataa ) SCREAMING_SNAKE_CASE_ = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__magic_name__ , device=self.device ) for i, encoder_input_tokens in enumerate(__magic_name__ ): if i == 0: SCREAMING_SNAKE_CASE_ = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. SCREAMING_SNAKE_CASE_ = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__magic_name__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. SCREAMING_SNAKE_CASE_ = ones SCREAMING_SNAKE_CASE_ = self.scale_features( __magic_name__ , output_range=[-1.0, 1.0] , clip=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__magic_name__ , continuous_mask=__magic_name__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop SCREAMING_SNAKE_CASE_ = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__magic_name__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__magic_name__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): SCREAMING_SNAKE_CASE_ = self.decode( encodings_and_masks=__magic_name__ , input_tokens=__magic_name__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , generator=__magic_name__ ).prev_sample SCREAMING_SNAKE_CASE_ = self.scale_to_features(__magic_name__ , input_range=[-1.0, 1.0] ) SCREAMING_SNAKE_CASE_ = mel[:1] SCREAMING_SNAKE_CASE_ = mel.cpu().float().numpy() SCREAMING_SNAKE_CASE_ = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__magic_name__ , __magic_name__ ) logger.info("Generated segment" , __magic_name__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": SCREAMING_SNAKE_CASE_ = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: SCREAMING_SNAKE_CASE_ = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__magic_name__ )
305
from math import pi, sqrt, tan def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("surface_area_cube() only accepts non-negative values" ) return 6 * side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("surface_area_cuboid() only accepts non-negative values" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_sphere() only accepts non-negative values" ) return 4 * pi * radius**2 def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("surface_area_hemisphere() only accepts non-negative values" ) return 3 * pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cone() only accepts non-negative values" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( "surface_area_conical_frustum() only accepts non-negative values" ) SCREAMING_SNAKE_CASE_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius < 0 or height < 0: raise ValueError("surface_area_cylinder() only accepts non-negative values" ) return 2 * pi * radius * (height + radius) def a__ ( __UpperCamelCase , __UpperCamelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("surface_area_torus() only accepts non-negative values" ) if torus_radius < tube_radius: raise ValueError( "surface_area_torus() does not support spindle or self intersecting tori" ) return 4 * pow(__UpperCamelCase , 2 ) * torus_radius * tube_radius def a__ ( __UpperCamelCase , __UpperCamelCase ): if length < 0 or width < 0: raise ValueError("area_rectangle() only accepts non-negative values" ) return length * width def a__ ( __UpperCamelCase ): if side_length < 0: raise ValueError("area_square() only accepts non-negative values" ) return side_length**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_triangle() only accepts non-negative values" ) return (base * height) / 2 def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("area_triangle_three_sides() only accepts non-negative values" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("Given three sides do not form a triangle" ) SCREAMING_SNAKE_CASE_ = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a__ ( __UpperCamelCase , __UpperCamelCase ): if base < 0 or height < 0: raise ValueError("area_parallelogram() only accepts non-negative values" ) return base * height def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("area_trapezium() only accepts non-negative values" ) return 1 / 2 * (basea + basea) * height def a__ ( __UpperCamelCase ): if radius < 0: raise ValueError("area_circle() only accepts non-negative values" ) return pi * radius**2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("area_ellipse() only accepts non-negative values" ) return pi * radius_x * radius_y def a__ ( __UpperCamelCase , __UpperCamelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("area_rhombus() only accepts non-negative values" ) return 1 / 2 * diagonal_a * diagonal_a def a__ ( __UpperCamelCase , __UpperCamelCase ): if not isinstance(__UpperCamelCase , __UpperCamelCase ) or sides < 3: raise ValueError( "area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides" ) elif length < 0: raise ValueError( "area_reg_polygon() only accepts non-negative values as \ length of a side" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print("\nSurface Areas of various geometric shapes: \n") print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
305
1
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[Any] , __magic_name__ : TransformeraDModel , __magic_name__ : AutoencoderKL , __magic_name__ : KarrasDiffusionSchedulers , __magic_name__ : Optional[Dict[int, str]] = None , ) -> Dict: super().__init__() self.register_modules(transformer=__magic_name__ , vae=__magic_name__ , scheduler=__magic_name__ ) # create a imagenet -> id dictionary for easier use SCREAMING_SNAKE_CASE_ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): SCREAMING_SNAKE_CASE_ = int(__magic_name__ ) SCREAMING_SNAKE_CASE_ = dict(sorted(self.labels.items() ) ) def __A ( self : List[str] , __magic_name__ : Union[str, List[str]] ) -> List[int]: if not isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = list(__magic_name__ ) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Tuple , __magic_name__ : List[int] , __magic_name__ : float = 4.0 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : int = 50 , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.transformer.config.sample_size SCREAMING_SNAKE_CASE_ = self.transformer.config.in_channels SCREAMING_SNAKE_CASE_ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__magic_name__ , device=self.device , dtype=self.transformer.dtype , ) SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents SCREAMING_SNAKE_CASE_ = torch.tensor(__magic_name__ , device=self.device ).reshape(-1 ) SCREAMING_SNAKE_CASE_ = torch.tensor([1_000] * batch_size , device=self.device ) SCREAMING_SNAKE_CASE_ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: SCREAMING_SNAKE_CASE_ = latent_model_input[: len(__magic_name__ ) // 2] SCREAMING_SNAKE_CASE_ = torch.cat([half, half] , dim=0 ) SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = t if not torch.is_tensor(__magic_name__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) SCREAMING_SNAKE_CASE_ = latent_model_input.device.type == "mps" if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = torch.floataa if is_mps else torch.floataa else: SCREAMING_SNAKE_CASE_ = torch.intaa if is_mps else torch.intaa SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=__magic_name__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE_ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output SCREAMING_SNAKE_CASE_ = self.transformer( __magic_name__ , timestep=__magic_name__ , class_labels=__magic_name__ ).sample # perform guidance if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(__magic_name__ , len(__magic_name__ ) // 2 , dim=0 ) SCREAMING_SNAKE_CASE_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) SCREAMING_SNAKE_CASE_ = torch.cat([half_eps, half_eps] , dim=0 ) SCREAMING_SNAKE_CASE_ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = torch.split(__magic_name__ , __magic_name__ , dim=1 ) else: SCREAMING_SNAKE_CASE_ = noise_pred # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample if guidance_scale > 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = latent_model_input.chunk(2 , dim=0 ) else: SCREAMING_SNAKE_CASE_ = latent_model_input SCREAMING_SNAKE_CASE_ = 1 / self.vae.config.scaling_factor * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(__magic_name__ ).sample SCREAMING_SNAKE_CASE_ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE_ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__magic_name__ )
305
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[str] = logging.get_logger(__name__) A : int = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''blenderbot-small''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __magic_name__ : Dict=50_265 , __magic_name__ : str=512 , __magic_name__ : List[Any]=8 , __magic_name__ : Any=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Any=8 , __magic_name__ : Optional[int]=2_048 , __magic_name__ : Dict=16 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[int]=True , __magic_name__ : Any=True , __magic_name__ : Dict="gelu" , __magic_name__ : Tuple=512 , __magic_name__ : List[str]=0.1 , __magic_name__ : List[Any]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=False , __magic_name__ : str=0 , __magic_name__ : Dict=1 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Optional[Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , is_encoder_decoder=__magic_name__ , decoder_start_token_id=__magic_name__ , forced_eos_token_id=__magic_name__ , **__magic_name__ , ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def __A ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ = {0: "batch"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} else: SCREAMING_SNAKE_CASE_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super().outputs else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers for i in range(__magic_name__ ): SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} SCREAMING_SNAKE_CASE_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __A ( self : int , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE_ = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE_ = dict(**__magic_name__ , **__magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ = common_inputs["decoder_input_ids"].shape[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = decoder_seq_length + 3 SCREAMING_SNAKE_CASE_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__magic_name__ , __magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ = min(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = max(__magic_name__ , __magic_name__ ) - min_num_layers SCREAMING_SNAKE_CASE_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__magic_name__ ): common_inputs["past_key_values"].append( ( torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__magic_name__ , __magic_name__ ): common_inputs["past_key_values"].append((torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) ) return common_inputs def __A ( self : Union[str, Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_ = seqlen + 2 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_layers SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.num_attention_heads SCREAMING_SNAKE_CASE_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE_ = common_inputs["attention_mask"].dtype SCREAMING_SNAKE_CASE_ = torch.cat( [common_inputs["attention_mask"], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) SCREAMING_SNAKE_CASE_ = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(__magic_name__ ) ] return common_inputs def __A ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE_ = tokenizer.num_special_tokens_to_add(__magic_name__ ) SCREAMING_SNAKE_CASE_ = compute_effective_axis_dimension( __magic_name__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__magic_name__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE_ = dict(tokenizer(__magic_name__ , return_tensors=__magic_name__ ) ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_causal_lm( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) return common_inputs def __A ( self : Optional[Any] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : str , __magic_name__ : List[str] ) -> List[str]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE_ = super()._flatten_past_key_values_(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) else: SCREAMING_SNAKE_CASE_ = super(__magic_name__ , self )._flatten_past_key_values_( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
305
1
from __future__ import annotations def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(len(__UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() A : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] A : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
305
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : int=100 , __magic_name__ : Optional[Any]=13 , __magic_name__ : Dict=30 , __magic_name__ : Tuple=2 , __magic_name__ : str=3 , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : Union[str, Any]=32 , __magic_name__ : Optional[int]=4 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Any="gelu" , __magic_name__ : int=0.1 , __magic_name__ : List[str]=0.1 , __magic_name__ : Optional[int]=10 , __magic_name__ : Tuple=0.02 , __magic_name__ : Optional[int]=3 , __magic_name__ : List[str]=None , __magic_name__ : Tuple=[0, 1, 2, 3] , ) -> List[str]: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 100 SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = type_sequence_label_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = out_indices SCREAMING_SNAKE_CASE_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ = num_patches + 1 def __A ( self : Any ) -> int: SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ) -> Optional[int]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__magic_name__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : Optional[int] , __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = BeitModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : str ) -> int: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Dict , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = BeitForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Tuple , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int ) -> int: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE_ = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase__ = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __A ( self : Tuple ) -> Any: SCREAMING_SNAKE_CASE_ = BeitModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def __A ( self : Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : List[str] ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : str ) -> List[str]: pass def __A ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__magic_name__ , nn.Linear ) ) def __A ( self : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __magic_name__ ) def __A ( self : Tuple ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def __A ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def __A ( self : Optional[Any] ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) def __A ( self : int ) -> Optional[int]: if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : Any ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__magic_name__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE_ = model_class(__magic_name__ ) model.gradient_checkpointing_enable() model.to(__magic_name__ ) model.train() SCREAMING_SNAKE_CASE_ = self._prepare_for_class(__magic_name__ , __magic_name__ , return_labels=__magic_name__ ) SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ).loss loss.backward() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = _config_zero_init(__magic_name__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : int ) -> Optional[int]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = BeitModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[Any] ) -> str: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).pixel_values.to(__magic_name__ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE_ = torch.ones((1, 196) , dtype=torch.bool ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=__magic_name__ , bool_masked_pos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __magic_name__ , atol=1e-2 ) ) @slow def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 281 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([1.6881, -0.2787, 0.5901] ).to(__magic_name__ ) self.assertTrue(torch.allclose(logits[0, :3] , __magic_name__ , atol=1e-4 ) ) SCREAMING_SNAKE_CASE_ = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __magic_name__ ) @slow def __A ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=__magic_name__ , ) else: SCREAMING_SNAKE_CASE_ = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1e-4 ) ) @slow def __A ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE_ = model.to(__magic_name__ ) SCREAMING_SNAKE_CASE_ = BeitImageProcessor(do_resize=__magic_name__ , size=640 , do_center_crop=__magic_name__ ) SCREAMING_SNAKE_CASE_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE_ = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE_ = image_processor(images=__magic_name__ , return_tensors="pt" ).to(__magic_name__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) SCREAMING_SNAKE_CASE_ = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
305
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A : int = logging.getLogger(__name__) A : Optional[int] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) A : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) lowerCamelCase__ = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) lowerCamelCase__ = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) lowerCamelCase__ = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) lowerCamelCase__ = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) lowerCamelCase__ = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) lowerCamelCase__ = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , ): def _dataset(__UpperCamelCase , __UpperCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=__UpperCamelCase , file_path=__UpperCamelCase , block_size=args.block_size , ref_path=__UpperCamelCase , ) return LineByLineTextDataset(tokenizer=__UpperCamelCase , file_path=__UpperCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=__UpperCamelCase , file_path=__UpperCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__UpperCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__UpperCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_ = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) SCREAMING_SNAKE_CASE_ = AutoModelWithLMHead.from_config(__UpperCamelCase ) model.resize_token_embeddings(len(__UpperCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: SCREAMING_SNAKE_CASE_ = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE_ = min(data_args.block_size , tokenizer.max_len ) # Get datasets SCREAMING_SNAKE_CASE_ = ( get_dataset(__UpperCamelCase , tokenizer=__UpperCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_ = ( get_dataset(__UpperCamelCase , tokenizer=__UpperCamelCase , evaluate=__UpperCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE_ = DataCollatorForPermutationLanguageModeling( tokenizer=__UpperCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE_ = DataCollatorForWholeWordMask( tokenizer=__UpperCamelCase , mlm_probability=data_args.mlm_probability ) else: SCREAMING_SNAKE_CASE_ = DataCollatorForLanguageModeling( tokenizer=__UpperCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer SCREAMING_SNAKE_CASE_ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , data_collator=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , prediction_loss_only=__UpperCamelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__UpperCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE_ = trainer.evaluate() SCREAMING_SNAKE_CASE_ = math.exp(eval_output["eval_loss"] ) SCREAMING_SNAKE_CASE_ = {"perplexity": perplexity} SCREAMING_SNAKE_CASE_ = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(__UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , __UpperCamelCase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(__UpperCamelCase ) return results def a__ ( __UpperCamelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
305
from __future__ import annotations A : Dict = "#" class lowerCamelCase : """simple docstring""" def __init__( self : Dict ) -> None: SCREAMING_SNAKE_CASE_ = {} def __A ( self : List[Any] , __magic_name__ : str ) -> None: SCREAMING_SNAKE_CASE_ = self._trie for char in text: if char not in trie: SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = trie[char] SCREAMING_SNAKE_CASE_ = True def __A ( self : Union[str, Any] , __magic_name__ : str ) -> tuple | list: SCREAMING_SNAKE_CASE_ = self._trie for char in prefix: if char in trie: SCREAMING_SNAKE_CASE_ = trie[char] else: return [] return self._elements(__magic_name__ ) def __A ( self : int , __magic_name__ : dict ) -> tuple: SCREAMING_SNAKE_CASE_ = [] for c, v in d.items(): SCREAMING_SNAKE_CASE_ = [" "] if c == END else [(c + s) for s in self._elements(__magic_name__ )] result.extend(__magic_name__ ) return tuple(__magic_name__ ) A : Union[str, Any] = Trie() A : Optional[int] = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = trie.find_word(__UpperCamelCase ) return tuple(string + word for word in suffixes ) def a__ ( ): print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
305
1
from __future__ import annotations import math def a__ ( __UpperCamelCase , __UpperCamelCase ): if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) SCREAMING_SNAKE_CASE_ = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def a__ ( __UpperCamelCase , __UpperCamelCase ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def a__ ( __UpperCamelCase , __UpperCamelCase ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) SCREAMING_SNAKE_CASE_ = len(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_length // 2 SCREAMING_SNAKE_CASE_ = [[a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE_ = [ [a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase ) ] SCREAMING_SNAKE_CASE_ = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] SCREAMING_SNAKE_CASE_ = [[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase )] return top_left, top_right, bot_left, bot_right def a__ ( __UpperCamelCase ): return len(__UpperCamelCase ), len(matrix[0] ) def a__ ( __UpperCamelCase ): print("\n".join(str(__UpperCamelCase ) for line in matrix ) ) def a__ ( __UpperCamelCase , __UpperCamelCase ): if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split_matrix(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = split_matrix(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ = matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_addition(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_addition(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE_ = [] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def a__ ( __UpperCamelCase , __UpperCamelCase ): if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: SCREAMING_SNAKE_CASE_ = ( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_dimensions(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE_ = max(*__UpperCamelCase , *__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = int(math.pow(2 , math.ceil(math.loga(__UpperCamelCase ) ) ) ) SCREAMING_SNAKE_CASE_ = matrixa SCREAMING_SNAKE_CASE_ = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE_ = actual_strassen(__UpperCamelCase , __UpperCamelCase ) # Removing the additional zeros for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : Any = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
305
from collections import deque class lowerCamelCase : """simple docstring""" def __init__( self : str , __magic_name__ : str , __magic_name__ : int , __magic_name__ : int ) -> None: SCREAMING_SNAKE_CASE_ = process_name # process name SCREAMING_SNAKE_CASE_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time SCREAMING_SNAKE_CASE_ = arrival_time SCREAMING_SNAKE_CASE_ = burst_time # remaining burst time SCREAMING_SNAKE_CASE_ = 0 # total time of the process wait in ready queue SCREAMING_SNAKE_CASE_ = 0 # time from arrival time to completion time class lowerCamelCase : """simple docstring""" def __init__( self : Tuple , __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : deque[Process] , __magic_name__ : int , ) -> None: # total number of mlfq's queues SCREAMING_SNAKE_CASE_ = number_of_queues # time slice of queues that round robin algorithm applied SCREAMING_SNAKE_CASE_ = time_slices # unfinished process is in this ready_queue SCREAMING_SNAKE_CASE_ = queue # current time SCREAMING_SNAKE_CASE_ = current_time # finished process is in this sequence queue SCREAMING_SNAKE_CASE_ = deque() def __A ( self : Dict ) -> list[str]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : List[str] , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : Tuple , __magic_name__ : list[Process] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [] for i in range(len(__magic_name__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : str , __magic_name__ : deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def __A ( self : Optional[Any] , __magic_name__ : Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Optional[Any] , __magic_name__ : deque[Process] ) -> deque[Process]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of finished process while len(__magic_name__ ) != 0: SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__magic_name__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 SCREAMING_SNAKE_CASE_ = 0 # set the process's turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # set the completion time SCREAMING_SNAKE_CASE_ = self.current_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : Any , __magic_name__ : deque[Process] , __magic_name__ : int ) -> tuple[deque[Process], deque[Process]]: SCREAMING_SNAKE_CASE_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__magic_name__ ) ): SCREAMING_SNAKE_CASE_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__magic_name__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time SCREAMING_SNAKE_CASE_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__magic_name__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished SCREAMING_SNAKE_CASE_ = 0 # set the finish time SCREAMING_SNAKE_CASE_ = self.current_time # update the process' turnaround time because it is finished SCREAMING_SNAKE_CASE_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__magic_name__ ) self.finish_queue.extend(__magic_name__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Any ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest A : Dict = Process("P1", 0, 53) A : str = Process("P2", 0, 17) A : List[Any] = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Dict = 3 A : Any = [17, 25] A : Dict = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) A : Union[str, Any] = Process("P1", 0, 53) A : Any = Process("P2", 0, 17) A : Dict = Process("P3", 0, 68) A : List[str] = Process("P4", 0, 24) A : Optional[int] = 3 A : int = [17, 25] A : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) A : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) A : Tuple = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( f"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( f"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( f"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
305
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
305
import torch def a__ ( ): if torch.cuda.is_available(): SCREAMING_SNAKE_CASE_ = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE_ = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
305
1
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: A : Dict = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __init__( self : Any , __magic_name__ : int , __magic_name__ : int=7 , __magic_name__ : List[Any]=3 , __magic_name__ : List[str]=18 , __magic_name__ : Union[str, Any]=30 , __magic_name__ : str=400 , __magic_name__ : str=None , __magic_name__ : str=True , __magic_name__ : Tuple=True , __magic_name__ : Dict=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = size if size is not None else {"height": 20, "width": 20} SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = min_resolution SCREAMING_SNAKE_CASE_ = max_resolution SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = do_convert_rgb SCREAMING_SNAKE_CASE_ = [512, 1_024, 2_048, 4_096] SCREAMING_SNAKE_CASE_ = patch_size if patch_size is not None else {"height": 16, "width": 16} def __A ( self : Optional[Any] ) -> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __A ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def __A ( self : List[Any] ) -> Any: SCREAMING_SNAKE_CASE_ = PixaStructImageProcessingTester(self ) @property def __A ( self : Tuple ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) ) self.assertTrue(hasattr(__magic_name__ , "do_convert_rgb" ) ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.image_processor_tester.prepare_dummy_image() SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) SCREAMING_SNAKE_CASE_ = 2_048 SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="pt" , max_patches=__magic_name__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def __A ( self : List[str] ) -> Union[str, Any]: # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( __magic_name__ , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : Dict ) -> Tuple: # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 SCREAMING_SNAKE_CASE_ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__magic_name__ ): SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches SCREAMING_SNAKE_CASE_ = "Hello" SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( __magic_name__ , return_tensors="pt" , max_patches=__magic_name__ , header_text=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : int ) -> List[str]: # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , numpify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , np.ndarray ) SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( __magic_name__ , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __A ( self : List[str] ) -> List[Any]: # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ , torchify=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( __magic_name__ , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = PixaStructImageProcessor if is_vision_available() else None def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = PixaStructImageProcessingTester(self , num_channels=4 ) SCREAMING_SNAKE_CASE_ = 3 @property def __A ( self : Any ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : str ) -> int: SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__magic_name__ , "do_normalize" ) ) self.assertTrue(hasattr(__magic_name__ , "do_convert_rgb" ) ) def __A ( self : Union[str, Any] ) -> int: # Initialize image_processor SCREAMING_SNAKE_CASE_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__magic_name__ ) for image in image_inputs: self.assertIsInstance(__magic_name__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE_ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input SCREAMING_SNAKE_CASE_ = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched SCREAMING_SNAKE_CASE_ = image_processor( __magic_name__ , return_tensors="pt" , max_patches=__magic_name__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
305
from collections.abc import Generator from math import sin def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) != 3_2: raise ValueError("Input must be of length 32" ) SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "08x" )[-8:] SCREAMING_SNAKE_CASE_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = b"" for char in message: bit_string += format(__UpperCamelCase , "08b" ).encode("utf-8" ) SCREAMING_SNAKE_CASE_ = format(len(__UpperCamelCase ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__UpperCamelCase ) % 5_1_2 != 4_4_8: bit_string += b"0" bit_string += to_little_endian(start_len[3_2:] ) + to_little_endian(start_len[:3_2] ) return bit_string def a__ ( __UpperCamelCase ): if len(__UpperCamelCase ) % 5_1_2 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__UpperCamelCase ) , 5_1_2 ): SCREAMING_SNAKE_CASE_ = bit_string[pos : pos + 5_1_2] SCREAMING_SNAKE_CASE_ = [] for i in range(0 , 5_1_2 , 3_2 ): block_words.append(int(to_little_endian(block[i : i + 3_2] ) , 2 ) ) yield block_words def a__ ( __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) SCREAMING_SNAKE_CASE_ = format(__UpperCamelCase , "032b" ) SCREAMING_SNAKE_CASE_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__UpperCamelCase , 2 ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return (a + b) % 2**3_2 def a__ ( __UpperCamelCase , __UpperCamelCase ): if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (3_2 - shift))) % 2**3_2 def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = preprocess(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = [int(2**3_2 * abs(sin(i + 1 ) ) ) for i in range(6_4 )] # Starting states SCREAMING_SNAKE_CASE_ = 0X67452301 SCREAMING_SNAKE_CASE_ = 0Xefcdab89 SCREAMING_SNAKE_CASE_ = 0X98badcfe SCREAMING_SNAKE_CASE_ = 0X10325476 SCREAMING_SNAKE_CASE_ = [ 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 7, 1_2, 1_7, 2_2, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 5, 9, 1_4, 2_0, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 4, 1_1, 1_6, 2_3, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, 6, 1_0, 1_5, 2_1, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = aa SCREAMING_SNAKE_CASE_ = ba SCREAMING_SNAKE_CASE_ = ca SCREAMING_SNAKE_CASE_ = da # Hash current chunk for i in range(6_4 ): if i <= 1_5: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE_ = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE_ = i elif i <= 3_1: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE_ = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE_ = (5 * i + 1) % 1_6 elif i <= 4_7: SCREAMING_SNAKE_CASE_ = b ^ c ^ d SCREAMING_SNAKE_CASE_ = (3 * i + 5) % 1_6 else: SCREAMING_SNAKE_CASE_ = c ^ (b | not_aa(__UpperCamelCase )) SCREAMING_SNAKE_CASE_ = (7 * i) % 1_6 SCREAMING_SNAKE_CASE_ = (f + a + added_consts[i] + block_words[g]) % 2**3_2 SCREAMING_SNAKE_CASE_ = d SCREAMING_SNAKE_CASE_ = c SCREAMING_SNAKE_CASE_ = b SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , left_rotate_aa(__UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = sum_aa(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) + reformat_hex(__UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
305
1
def a__ ( ): return [ a * b * (1_0_0_0 - a - b) for a in range(1 , 9_9_9 ) for b in range(__UpperCamelCase , 9_9_9 ) if (a * a + b * b == (1_0_0_0 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"{solution() = }")
305
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : int ) -> Any: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = BlipImageProcessor() SCREAMING_SNAKE_CASE_ = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) SCREAMING_SNAKE_CASE_ = BlipaProcessor(__magic_name__ , __magic_name__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self : str , **__magic_name__ : int ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).tokenizer def __A ( self : Dict , **__magic_name__ : List[Any] ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ).image_processor def __A ( self : int ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ = [Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : str ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ , return_token_type_ids=__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = BlipaProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "lower newer" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
305
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = (1, 2, 1) SCREAMING_SNAKE_CASE_ = (1, 1, 0, 7) SCREAMING_SNAKE_CASE_ = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = model.fit(disp=__UpperCamelCase , maxiter=6_0_0 , method="nm" ) SCREAMING_SNAKE_CASE_ = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = regressor.predict(__UpperCamelCase ) return y_pred[0] def a__ ( __UpperCamelCase ): train_user.sort() SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 2_5 ) SCREAMING_SNAKE_CASE_ = np.percentile(__UpperCamelCase , 7_5 ) SCREAMING_SNAKE_CASE_ = qa - qa SCREAMING_SNAKE_CASE_ = qa - (iqr * 0.1) return low_lim def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in list_vote: if i > actual_result: SCREAMING_SNAKE_CASE_ = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] A : Optional[Any] = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) A : Union[str, Any] = Normalizer().fit_transform(data_input_df.values) # split data A : Optional[int] = normalize_df[:, 2].tolist() A : List[str] = normalize_df[:, 0].tolist() A : int = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) A : int = normalize_df[:, [1, 2]].tolist() A : Tuple = x[: len(x) - 1] A : str = x[len(x) - 1 :] # for linear regression & sarimax A : Tuple = total_date[: len(total_date) - 1] A : Optional[int] = total_user[: len(total_user) - 1] A : str = total_match[: len(total_match) - 1] A : List[Any] = total_date[len(total_date) - 1 :] A : List[Any] = total_user[len(total_user) - 1 :] A : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting A : Optional[int] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data A : str = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
305
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A : List[Any] = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ["DPTFeatureExtractor"] A : str = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
305
1