code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def _lowerCamelCase( ) -> int: '''simple docstring''' __lowercase= randrange(len(lowercase__ ) ), randrange(len(lowercase__ ) ) __lowercase= ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __lowercase= SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _lowerCamelCase( lowercase__ = 1_0_0 ) -> Optional[Any]: '''simple docstring''' return (generate_random_hand() for _ in range(lowercase__ )) @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' assert PokerHand(lowercase__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= PokerHand(lowercase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[Any]: '''simple docstring''' assert PokerHand(lowercase__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' assert PokerHand(lowercase__ ).compare_with(PokerHand(lowercase__ ) ) == expected def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= [PokerHand(lowercase__ ) for hand in SORTED_HANDS] __lowercase= poker_hands.copy() shuffle(lowercase__ ) __lowercase= chain(sorted(lowercase__ ) ) for index, hand in enumerate(lowercase__ ): assert hand == poker_hands[index] def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowercase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= PokerHand('2C 4S AS 3D 5C' ) __lowercase= True __lowercase= [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _lowerCamelCase( ) -> Any: '''simple docstring''' __lowercase= 0 __lowercase= os.path.abspath(os.path.dirname(lowercase__ ) ) __lowercase= os.path.join(lowercase__ , 'poker_hands.txt' ) with open(lowercase__ ) as file_hand: for line in file_hand: __lowercase= line[:1_4].strip() __lowercase= line[1_5:].strip() __lowercase= PokerHand(lowercase__ ), PokerHand(lowercase__ ) __lowercase= player.compare_with(lowercase__ ) if output == "Win": answer += 1 assert answer == 3_7_6
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : List[Any] =AudioLDMPipeline UpperCamelCase_ : List[Any] =TEXT_TO_AUDIO_PARAMS UpperCamelCase_ : int =TEXT_TO_AUDIO_BATCH_PARAMS UpperCamelCase_ : Optional[Any] =frozenset( [ '''num_inference_steps''', '''num_waveforms_per_prompt''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=UpperCamelCase_ , ) __lowercase= DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) __lowercase= AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase= ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) __lowercase= ClapTextModelWithProjection(UpperCamelCase_ ) __lowercase= RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) __lowercase= SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCamelCase_ , ) __lowercase= SpeechTaHifiGan(UpperCamelCase_ ) __lowercase= { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(UpperCamelCase_ ).startswith('mps' ): __lowercase= torch.manual_seed(UpperCamelCase_ ) else: __lowercase= torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase= { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= audioldm_pipe(**UpperCamelCase_ ) __lowercase= output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 2_5_6 __lowercase= audio[:1_0] __lowercase= np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= self.get_dummy_components() __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= 3 * [inputs['prompt']] # forward __lowercase= audioldm_pipe(**UpperCamelCase_ ) __lowercase= output.audios[0] __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= 3 * [inputs.pop('prompt' )] __lowercase= audioldm_pipe.tokenizer( UpperCamelCase_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='pt' , ) __lowercase= text_inputs['input_ids'].to(UpperCamelCase_ ) __lowercase= audioldm_pipe.text_encoder( UpperCamelCase_ , ) __lowercase= prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowercase= F.normalize(UpperCamelCase_ , dim=-1 ) __lowercase= prompt_embeds # forward __lowercase= audioldm_pipe(**UpperCamelCase_ ) __lowercase= output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _A (self ): __lowercase= self.get_dummy_components() __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= 3 * ['this is a negative prompt'] __lowercase= negative_prompt __lowercase= 3 * [inputs['prompt']] # forward __lowercase= audioldm_pipe(**UpperCamelCase_ ) __lowercase= output.audios[0] __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= 3 * [inputs.pop('prompt' )] __lowercase= [] for p in [prompt, negative_prompt]: __lowercase= audioldm_pipe.tokenizer( UpperCamelCase_ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase_ , return_tensors='pt' , ) __lowercase= text_inputs['input_ids'].to(UpperCamelCase_ ) __lowercase= audioldm_pipe.text_encoder( UpperCamelCase_ , ) __lowercase= text_embeds.text_embeds # additional L_2 normalization over each hidden-state __lowercase= F.normalize(UpperCamelCase_ , dim=-1 ) embeds.append(UpperCamelCase_ ) __lowercase, __lowercase= embeds # forward __lowercase= audioldm_pipe(**UpperCamelCase_ ) __lowercase= output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= 'egg cracking' __lowercase= audioldm_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) __lowercase= output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 2_5_6 __lowercase= audio[:1_0] __lowercase= np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __lowercase= audioldm_pipe(UpperCamelCase_ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts __lowercase= 2 __lowercase= audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt __lowercase= 2 __lowercase= audioldm_pipe(UpperCamelCase_ , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts __lowercase= 2 __lowercase= audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase_ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def _A (self ): __lowercase= 'cpu' # ensure determinism for the device-dependent torch.Generator __lowercase= self.get_dummy_components() __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= audioldm_pipe.vocoder.config.sampling_rate __lowercase= self.get_dummy_inputs(UpperCamelCase_ ) __lowercase= audioldm_pipe(audio_length_in_s=0.0_16 , **UpperCamelCase_ ) __lowercase= output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.0_16 __lowercase= audioldm_pipe(audio_length_in_s=0.0_32 , **UpperCamelCase_ ) __lowercase= output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) / vocoder_sampling_rate == 0.0_32 def _A (self ): __lowercase= self.get_dummy_components() __lowercase= AudioLDMPipeline(**UpperCamelCase_ ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= ['hey'] __lowercase= audioldm_pipe(UpperCamelCase_ , num_inference_steps=1 ) __lowercase= output.audios.shape assert audio_shape == (1, 2_5_6) __lowercase= audioldm_pipe.vocoder.config config.model_in_dim *= 2 __lowercase= SpeechTaHifiGan(UpperCamelCase_ ).to(UpperCamelCase_ ) __lowercase= audioldm_pipe(UpperCamelCase_ , num_inference_steps=1 ) __lowercase= output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def _A (self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCamelCase_ ) def _A (self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCamelCase_ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _A (self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ ) @slow class A ( unittest.TestCase ): def _A (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self , lowerCAmelCase , lowerCAmelCase="cpu" , lowerCAmelCase=torch.floataa , lowerCAmelCase=0 ): __lowercase= torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowercase= np.random.RandomState(UpperCamelCase_ ).standard_normal((1, 8, 1_2_8, 1_6) ) __lowercase= torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ , dtype=UpperCamelCase_ ) __lowercase= { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def _A (self ): __lowercase= AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_inputs(UpperCamelCase_ ) __lowercase= 2_5 __lowercase= audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_1_9_2_0 __lowercase= audio[7_7_2_3_0:7_7_2_4_0] __lowercase= np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) __lowercase= np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def _A (self ): __lowercase= AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __lowercase= LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __lowercase= audioldm_pipe.to(UpperCamelCase_ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowercase= self.get_inputs(UpperCamelCase_ ) __lowercase= audioldm_pipe(**UpperCamelCase_ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase_ ) == 8_1_9_2_0 __lowercase= audio[2_7_7_8_0:2_7_7_9_0] __lowercase= np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) __lowercase= np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
import string import numpy def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[Any]: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , lowercase__ ) class A : UpperCamelCase_ : List[Any] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCamelCase_ : List[Any] =numpy.vectorize(lambda A_ : x % 36 ) UpperCamelCase_ : Union[str, Any] =numpy.vectorize(lowerCAmelCase_ ) def __init__(self , lowerCAmelCase ): __lowercase= self.modulus(__lowerCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __lowercase= encrypt_key.shape[0] def _A (self , lowerCAmelCase ): return self.key_string.index(__lowerCAmelCase ) def _A (self , lowerCAmelCase ): return self.key_string[round(__lowerCAmelCase )] def _A (self ): __lowercase= round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase= det % len(self.key_string ) __lowercase= len(self.key_string ) if greatest_common_divisor(__lowerCAmelCase , len(self.key_string ) ) != 1: __lowercase= ( f'determinant modular {req_l} of encryption key({det}) ' f'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(__lowerCAmelCase ) def _A (self , lowerCAmelCase ): __lowercase= [char for char in text.upper() if char in self.key_string] __lowercase= chars[-1] while len(__lowerCAmelCase ) % self.break_key != 0: chars.append(__lowerCAmelCase ) return "".join(__lowerCAmelCase ) def _A (self , lowerCAmelCase ): __lowercase= self.process_text(text.upper() ) __lowercase= '' for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): __lowercase= text[i : i + self.break_key] __lowercase= [self.replace_letters(__lowerCAmelCase ) for char in batch] __lowercase= numpy.array([vec] ).T __lowercase= self.modulus(self.encrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[ 0 ] __lowercase= ''.join( self.replace_digits(__lowerCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def _A (self ): __lowercase= round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: __lowercase= det % len(self.key_string ) __lowercase= None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: __lowercase= i break __lowercase= ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__lowerCAmelCase ) ) def _A (self , lowerCAmelCase ): __lowercase= self.make_decrypt_key() __lowercase= self.process_text(text.upper() ) __lowercase= '' for i in range(0 , len(__lowerCAmelCase ) - self.break_key + 1 , self.break_key ): __lowercase= text[i : i + self.break_key] __lowercase= [self.replace_letters(__lowerCAmelCase ) for char in batch] __lowercase= numpy.array([vec] ).T __lowercase= self.modulus(decrypt_key.dot(__lowerCAmelCase ) ).T.tolist()[0] __lowercase= ''.join( self.replace_digits(__lowerCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= int(input('Enter the order of the encryption key: ' ) ) __lowercase= [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(lowercase__ ): __lowercase= [int(lowercase__ ) for x in input().split()] hill_matrix.append(lowercase__ ) __lowercase= HillCipher(numpy.array(lowercase__ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __lowercase= input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __lowercase= input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(lowercase__ ) ) elif option == "2": __lowercase= input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase = random.Random() def _lowerCamelCase( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: __lowercase= global_rng __lowercase= [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=4_0_0 , lowerCAmelCase=2_0_0_0 , lowerCAmelCase=2_4 , lowerCAmelCase=2_4 , lowerCAmelCase=0.0 , lowerCAmelCase=1_6_0_0_0 , lowerCAmelCase=True , lowerCAmelCase=True , ): __lowercase= parent __lowercase= batch_size __lowercase= min_seq_length __lowercase= max_seq_length __lowercase= (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __lowercase= feature_size __lowercase= num_mel_bins __lowercase= padding_value __lowercase= sampling_rate __lowercase= return_attention_mask __lowercase= do_normalize def _A (self ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _A (self , lowerCAmelCase=False , lowerCAmelCase=False ): def _flatten(lowerCAmelCase ): return list(itertools.chain(*a_ ) ) if equal_length: __lowercase= [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __lowercase= [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __lowercase= [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): UpperCamelCase_ : Dict =SpeechaTextFeatureExtractor if is_speech_available() else None def _A (self ): __lowercase= SpeechaTextFeatureExtractionTester(self ) def _A (self , lowerCAmelCase ): self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1E-3 ) ) def _A (self ): __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size __lowercase= feature_extractor(a_ , padding=a_ , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input __lowercase= feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __lowercase= feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # Test batched __lowercase= feature_extractor(a_ , return_tensors='np' ).input_features __lowercase= feature_extractor(a_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __lowercase= [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] __lowercase= np.asarray(a_ ) __lowercase= feature_extractor(a_ , return_tensors='np' ).input_features __lowercase= feature_extractor(a_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) def _A (self ): __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= ['longest', 'max_length', 'do_not_pad'] __lowercase= [None, 1_6, None] for max_length, padding in zip(a_ , a_ ): __lowercase= feature_extractor( a_ , padding=a_ , max_length=a_ , return_attention_mask=a_ ) __lowercase= inputs.input_features __lowercase= inputs.attention_mask __lowercase= [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _A (self ): __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= ['longest', 'max_length', 'do_not_pad'] __lowercase= [None, 1_6, None] for max_length, padding in zip(a_ , a_ ): __lowercase= feature_extractor( a_ , max_length=a_ , padding=a_ , return_tensors='np' , return_attention_mask=a_ ) __lowercase= inputs.input_features __lowercase= inputs.attention_mask __lowercase= [np.sum(a_ ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _A (self ): __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= feature_extractor( a_ , padding='max_length' , max_length=4 , truncation=a_ , return_tensors='np' , return_attention_mask=a_ , ) __lowercase= inputs.input_features __lowercase= inputs.attention_mask __lowercase= np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _A (self ): __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= feature_extractor( a_ , padding='longest' , max_length=4 , truncation=a_ , return_tensors='np' , return_attention_mask=a_ , ) __lowercase= inputs.input_features __lowercase= inputs.attention_mask __lowercase= np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 2_4) ) __lowercase= [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] __lowercase= feature_extractor( a_ , padding='longest' , max_length=1_6 , truncation=a_ , return_tensors='np' , return_attention_mask=a_ , ) __lowercase= inputs.input_features __lowercase= inputs.attention_mask __lowercase= np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 2_4) ) def _A (self ): import torch __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) __lowercase= np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __lowercase= feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __lowercase= feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _A (self , lowerCAmelCase ): from datasets import load_dataset __lowercase= load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __lowercase= ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _A (self ): __lowercase= np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on __lowercase= self._load_datasamples(1 ) __lowercase= self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __lowercase= feature_extractor(a_ , return_tensors='pt' ).input_features self.assertEquals(input_features.shape , (1, 5_8_4, 2_4) ) self.assertTrue(np.allclose(input_features[0, 0, :3_0] , a_ , atol=1E-4 ) )
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', """emoji""": True, }, } ] lowerCAmelCase = 0 for log in Path().glob('''*.log'''): lowerCAmelCase = 0 with open(log, '''r''') as f: for line in f: lowerCAmelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": lowerCAmelCase = line["""nodeid"""] if line.get('''duration''', None) is not None: lowerCAmelCase = F'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase = [] log.unlink() lowerCAmelCase = """""" lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase = [] lowerCAmelCase = {} for test in failed_tests: lowerCAmelCase = test[0].split('''::''') lowerCAmelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase = [test[0] for test in failed_table] lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCAmelCase = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase = len(err) + 1_0 lowerCAmelCase = message[: 3_0_0_0 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: lowerCAmelCase = """No failed tests! 🤗""" print(F'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient lowerCAmelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) lowerCAmelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) lowerCAmelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) lowerCAmelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase = row[0] else: lowerCAmelCase = """""" lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ = None ) -> list[list[str]]: '''simple docstring''' __lowercase= word_bank or [] # create a table __lowercase= len(a__ ) + 1 __lowercase= [] for _ in range(a__ ): table.append([] ) # seed value __lowercase= [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: __lowercase= [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class A ( __snake_case , __snake_case ): UpperCamelCase_ : str ='nat' UpperCamelCase_ : Optional[int] ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , lowerCAmelCase=4 , lowerCAmelCase=3 , lowerCAmelCase=6_4 , lowerCAmelCase=[3, 4, 6, 5] , lowerCAmelCase=[2, 4, 8, 1_6] , lowerCAmelCase=7 , lowerCAmelCase=3.0 , lowerCAmelCase=True , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.1 , lowerCAmelCase="gelu" , lowerCAmelCase=0.02 , lowerCAmelCase=1E-5 , lowerCAmelCase=0.0 , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) __lowercase= patch_size __lowercase= num_channels __lowercase= embed_dim __lowercase= depths __lowercase= len(lowerCAmelCase ) __lowercase= num_heads __lowercase= kernel_size __lowercase= mlp_ratio __lowercase= qkv_bias __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= drop_path_rate __lowercase= hidden_act __lowercase= layer_norm_eps __lowercase= initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase= int(embed_dim * 2 ** (len(lowerCAmelCase ) - 1) ) __lowercase= layer_scale_init_value __lowercase= ['stem'] + [f'stage{idx}' for idx in range(1 , len(lowerCAmelCase ) + 1 )] __lowercase, __lowercase= get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-ctx_encoder-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-question_encoder-single-nq-base''': 5_1_2, '''facebook/dpr-question_encoder-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-reader-single-nq-base''': 5_1_2, '''facebook/dpr-reader-multiset-base''': 5_1_2, } lowerCAmelCase = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowerCAmelCase = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class A ( A_ ): UpperCamelCase_ : Dict =VOCAB_FILES_NAMES UpperCamelCase_ : Tuple =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class A ( A_ ): UpperCamelCase_ : int =VOCAB_FILES_NAMES UpperCamelCase_ : Optional[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : int =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCAmelCase = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCAmelCase = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(A_ ) class A : def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ): if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: __lowercase= titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) __lowercase= titles if not isinstance(_a , _a ) else [titles] __lowercase= texts if not isinstance(_a , _a ) else [texts] __lowercase= len(_a ) __lowercase= questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( f'There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.' ) __lowercase= super().__call__(_a , _a , padding=_a , truncation=_a )['input_ids'] __lowercase= super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )['input_ids'] __lowercase= { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: __lowercase= [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowercase= attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1_6 , lowerCAmelCase = 6_4 , lowerCAmelCase = 4 , ): __lowercase= reader_input['input_ids'] __lowercase, __lowercase, __lowercase= reader_output[:3] __lowercase= len(_a ) __lowercase= sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) __lowercase= [] for doc_id in sorted_docs: __lowercase= list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowercase= sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowercase= sequence_ids.index(self.pad_token_id ) else: __lowercase= len(_a ) __lowercase= self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowercase= sorted(_a , key=lambda lowerCAmelCase : x[1] , reverse=_a ) __lowercase= [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'Wrong span indices: [{start_index}:{end_index}]' ) __lowercase= end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A_ ) class A ( A_ , A_ ): UpperCamelCase_ : List[str] =VOCAB_FILES_NAMES UpperCamelCase_ : int =READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[Any] =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[Any] =READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Union[str, Any] =['''input_ids''', '''attention_mask''']
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
364
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class A : """simple docstring""" def __init__(self , lowerCAmelCase , lowerCAmelCase=2 , lowerCAmelCase=8 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=1_6 , lowerCAmelCase=5 , lowerCAmelCase=2 , lowerCAmelCase=3_6 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def _A (self ): __lowercase= self.get_config() __lowercase= 3_0_0 return config def _A (self ): ( __lowercase )= self.prepare_config_and_inputs() __lowercase= True __lowercase= floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= MraModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __lowercase= model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) __lowercase= model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= True __lowercase= MraModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) __lowercase= model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , ) __lowercase= model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= MraForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= MraForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= MraForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= MraForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= MraForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( __lowercase )= config_and_inputs __lowercase= {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A ( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Any =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Dict =False UpperCamelCase_ : str =False UpperCamelCase_ : Union[str, Any] =() def _A (self ): __lowercase= MraModelTester(self ) __lowercase= ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase= type self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def _A (self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= MraModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def _A (self ): return @require_torch class A ( unittest.TestCase ): """simple docstring""" @slow def _A (self ): __lowercase= MraModel.from_pretrained('uw-madison/mra-base-512-4' ) __lowercase= torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase= model(UpperCAmelCase_ )[0] __lowercase= torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase_ ) __lowercase= torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def _A (self ): __lowercase= MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) __lowercase= torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase= model(UpperCAmelCase_ )[0] __lowercase= 5_0_2_6_5 __lowercase= torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) __lowercase= torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def _A (self ): __lowercase= MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) __lowercase= torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __lowercase= model(UpperCAmelCase_ )[0] __lowercase= 5_0_2_6_5 __lowercase= torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase_ ) __lowercase= torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
from __future__ import annotations import pandas as pd def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] * no_of_processes __lowercase= [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(SCREAMING_SNAKE_CASE_ ): __lowercase= burst_time[i] __lowercase= 0 __lowercase= 0 __lowercase= 9_9_9_9_9_9_9_9_9 __lowercase= 0 __lowercase= False # Process until all processes are completed while complete != no_of_processes: for j in range(SCREAMING_SNAKE_CASE_ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowercase= remaining_time[j] __lowercase= j __lowercase= True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowercase= remaining_time[short] if minm == 0: __lowercase= 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 __lowercase= False # Find finish time of current process __lowercase= increment_time + 1 # Calculate waiting time __lowercase= finish_time - arrival_time[short] __lowercase= finar - burst_time[short] if waiting_time[short] < 0: __lowercase= 0 # Increment time increment_time += 1 return waiting_time def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE_ ): __lowercase= burst_time[i] + waiting_time[i] return turn_around_time def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> None: '''simple docstring''' __lowercase= 0 __lowercase= 0 for i in range(SCREAMING_SNAKE_CASE_ ): __lowercase= total_waiting_time + waiting_time[i] __lowercase= total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') lowerCAmelCase = int(input()) lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) lowerCAmelCase ,lowerCAmelCase = map(int, input().split()) lowerCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCAmelCase = burst_time lowerCAmelCase = no_of_processes lowerCAmelCase = waiting_time lowerCAmelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCAmelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
"""simple docstring""" import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def _lowerCamelCase( lowercase__ ) -> List[Tuple[int, ...]]: '''simple docstring''' __lowercase= [] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCamelCase__ ) ) elif isinstance(UpperCamelCase__ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple[int, ...]: '''simple docstring''' __lowercase= [] for d in reversed(UpperCamelCase__ ): idx.append(flat_idx % d ) __lowercase= flat_idx // d return tuple(reversed(UpperCamelCase__ ) ) @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(lowercase__ ) -> None: __lowercase= True for i in range(len(UpperCamelCase__ ) ): __lowercase= -1 * (i + 1) l[reversed_idx] &= tally __lowercase= l[reversed_idx] if start_edges is None: __lowercase= [s == 0 for s in start] reduce_edge_list(UpperCamelCase__ ) if end_edges is None: __lowercase= [e == (d - 1) for e, d in zip(UpperCamelCase__ , UpperCamelCase__ )] reduce_edge_list(UpperCamelCase__ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCamelCase__ ) == 0: return [()] elif len(UpperCamelCase__ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase= [] __lowercase= [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCamelCase__ , UpperCamelCase__ ): if s == e: path_list.append(slice(UpperCamelCase__ , s + 1 ) ) else: break __lowercase= tuple(UpperCamelCase__ ) __lowercase= len(UpperCamelCase__ ) # start == end, and we're done if divergence_idx == len(UpperCamelCase__ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase= start[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase= end[divergence_idx] return tuple( path + (slice(UpperCamelCase__ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase= end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> torch.Tensor: '''simple docstring''' __lowercase= t.shape[:no_batch_dims] __lowercase= list(_flat_idx_to_idx(UpperCamelCase__ , UpperCamelCase__ ) ) # _get_minimal_slice_set is inclusive __lowercase= list(_flat_idx_to_idx(flat_end - 1 , UpperCamelCase__ ) ) # Get an ordered list of slices to perform __lowercase= _get_minimal_slice_set( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) __lowercase= [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = None , lowercase__ = False , ) -> Any: '''simple docstring''' if not (len(UpperCamelCase__ ) > 0): raise ValueError('Must provide at least one input' ) __lowercase= [shape[:no_batch_dims] for shape in _fetch_dims(UpperCamelCase__ )] __lowercase= tuple([max(UpperCamelCase__ ) for s in zip(*UpperCamelCase__ )] ) def _prep_inputs(lowercase__ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase= t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase= t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase= t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase= tensor_tree_map(_prep_inputs , UpperCamelCase__ ) __lowercase= None if _out is not None: __lowercase= tensor_tree_map(lambda lowercase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase= 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase= flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowercase__ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase= 0 __lowercase= prepped_outputs for _ in range(UpperCamelCase__ ): # Chunk the input if not low_mem: __lowercase= _select_chunk else: __lowercase= partial( _chunk_slice , flat_start=UpperCamelCase__ , flat_end=min(UpperCamelCase__ , i + chunk_size ) , no_batch_dims=len(UpperCamelCase__ ) , ) __lowercase= tensor_tree_map(UpperCamelCase__ , UpperCamelCase__ ) # Run the layer on the chunk __lowercase= layer(**UpperCamelCase__ ) # Allocate space for the output if out is None: __lowercase= tensor_tree_map(lambda lowercase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCamelCase__ ) # Put the chunk in its pre-allocated space if isinstance(UpperCamelCase__ , UpperCamelCase__ ): def assign(lowercase__ , lowercase__ ) -> None: for k, v in da.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): assign(UpperCamelCase__ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase= da[k] assign(UpperCamelCase__ , UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): for xa, xa in zip(UpperCamelCase__ , UpperCamelCase__ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase= xa elif isinstance(UpperCamelCase__ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase= output_chunk else: raise ValueError('Not supported' ) i += chunk_size __lowercase= tensor_tree_map(lambda lowercase__ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCamelCase__ ) return out class A : def __init__(self , lowerCAmelCase = 5_1_2 , ): __lowercase= max_chunk_size __lowercase= None __lowercase= None def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase= [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowercase= [c for c in candidates if c > min_chunk_size] __lowercase= [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCAmelCase ) -> bool: try: with torch.no_grad(): fn(*__lowerCamelCase , chunk_size=__lowerCamelCase ) return True except RuntimeError: return False __lowercase= 0 __lowercase= len(__lowerCamelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase= test_chunk_size(candidates[i] ) if not viable: __lowercase= (min_viable_chunk_size_index + i) // 2 else: __lowercase= i __lowercase= (i + len(__lowerCamelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= True for aa, aa in zip(__lowerCamelCase , __lowerCamelCase ): assert type(__lowerCamelCase ) == type(__lowerCamelCase ) if isinstance(__lowerCamelCase , (list, tuple) ): consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __lowercase= [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] __lowercase= [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase : x[0] )] consistent &= self._compare_arg_caches(__lowerCamelCase , __lowerCamelCase ) else: consistent &= aa == aa return consistent def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= True __lowercase= tree_map(lambda lowerCAmelCase : a.shape if isinstance(__lowerCamelCase , torch.Tensor ) else a , __lowerCamelCase , __lowerCamelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__lowerCamelCase ) __lowercase= self._compare_arg_caches(self.cached_arg_data , __lowerCamelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase= False if not consistent: __lowercase= self._determine_favorable_chunk_size( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) __lowercase= arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCAmelCase = '''scheduler_config.json''' class A ( A_ ): UpperCamelCase_ : List[Any] =1 UpperCamelCase_ : Tuple =2 UpperCamelCase_ : Optional[Any] =3 UpperCamelCase_ : Optional[int] =4 UpperCamelCase_ : Union[str, Any] =5 UpperCamelCase_ : int =6 UpperCamelCase_ : str =7 UpperCamelCase_ : Tuple =8 UpperCamelCase_ : str =9 UpperCamelCase_ : List[str] =10 UpperCamelCase_ : Dict =11 UpperCamelCase_ : Union[str, Any] =12 UpperCamelCase_ : Any =13 UpperCamelCase_ : int =14 @dataclass class A ( A_ ): UpperCamelCase_ : Optional[int] =42 class A : UpperCamelCase_ : Dict =SCHEDULER_CONFIG_NAME UpperCamelCase_ : List[str] =[] UpperCamelCase_ : Any =True @classmethod def _A (cls , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=False , **lowerCAmelCase , ): __lowercase, __lowercase, __lowercase= cls.load_config( pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , return_commit_hash=_lowerCamelCase , **_lowerCamelCase , ) return cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = False , **lowerCAmelCase ): self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase ) @property def _A (self ): return self._get_compatibles() @classmethod def _A (cls ): __lowercase= list(set([cls.__name__] + cls._compatibles ) ) __lowercase= importlib.import_module(__name__.split('.' )[0] ) __lowercase= [ getattr(_lowerCamelCase , _lowerCamelCase ) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase ) ] return compatible_classes
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=1_8 , lowerCAmelCase=3_0 , lowerCAmelCase=4_0_0 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , ): __lowercase= parent __lowercase= batch_size __lowercase= num_channels __lowercase= image_size __lowercase= min_resolution __lowercase= max_resolution __lowercase= do_resize __lowercase= size if size is not None else {"height": 1_8, "width": 2_0} __lowercase= do_thumbnail __lowercase= do_align_axis __lowercase= do_pad __lowercase= do_normalize __lowercase= image_mean __lowercase= image_std def _A (self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Dict =DonutImageProcessor if is_vision_available() else None def _A (self ): __lowercase= DonutImageProcessingTester(self ) @property def _A (self ): return self.image_processor_tester.prepare_image_processor_dict() def _A (self ): __lowercase= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , 'do_resize' ) ) self.assertTrue(hasattr(_a , 'size' ) ) self.assertTrue(hasattr(_a , 'do_thumbnail' ) ) self.assertTrue(hasattr(_a , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_a , 'do_pad' ) ) self.assertTrue(hasattr(_a , 'do_normalize' ) ) self.assertTrue(hasattr(_a , 'image_mean' ) ) self.assertTrue(hasattr(_a , 'image_std' ) ) def _A (self ): __lowercase= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 2_0} ) __lowercase= self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) # Previous config had dimensions in (width, height) order __lowercase= self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {'height': 8_4, 'width': 4_2} ) def _A (self ): pass @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(_a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
369
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
0
def _lowerCamelCase( lowercase__ = 1_0_0_0_0_0_0 ) -> Any: '''simple docstring''' __lowercase= [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
370
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
0
class A : """simple docstring""" def __init__(self ): __lowercase= """""" __lowercase= """""" __lowercase= [] def _A (self , lowerCAmelCase , lowerCAmelCase ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __lowercase= self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __lowercase= self.__min_dist_top_down_dp(snake_case_ , n - 1 ) __lowercase= self.__min_dist_top_down_dp(m - 1 , snake_case_ ) __lowercase= self.__min_dist_top_down_dp(m - 1 , n - 1 ) __lowercase= 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= worda __lowercase= worda __lowercase= [[-1 for _ in range(len(snake_case_ ) )] for _ in range(len(snake_case_ ) )] return self.__min_dist_top_down_dp(len(snake_case_ ) - 1 , len(snake_case_ ) - 1 ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= worda __lowercase= worda __lowercase= len(snake_case_ ) __lowercase= len(snake_case_ ) __lowercase= [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __lowercase= j elif j == 0: # second string is empty __lowercase= i elif worda[i - 1] == worda[j - 1]: # last characters are equal __lowercase= self.dp[i - 1][j - 1] else: __lowercase= self.dp[i][j - 1] __lowercase= self.dp[i - 1][j] __lowercase= self.dp[i - 1][j - 1] __lowercase= 1 + min(snake_case_ , snake_case_ , snake_case_ ) return self.dp[m][n] if __name__ == "__main__": lowerCAmelCase = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() lowerCAmelCase = input('''Enter the first string: ''').strip() lowerCAmelCase = input('''Enter the second string: ''').strip() print() print(F'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(F'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
371
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= SwinvaConfig() __lowercase= swinva_name.split('_' ) __lowercase= name_split[1] if "to" in name_split[3]: __lowercase= int(name_split[3][-3:] ) else: __lowercase= int(name_split[3] ) if "to" in name_split[2]: __lowercase= int(name_split[2][-2:] ) else: __lowercase= int(name_split[2][6:] ) if model_size == "tiny": __lowercase= 9_6 __lowercase= (2, 2, 6, 2) __lowercase= (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase= 9_6 __lowercase= (2, 2, 1_8, 2) __lowercase= (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase= 1_2_8 __lowercase= (2, 2, 1_8, 2) __lowercase= (4, 8, 1_6, 3_2) else: __lowercase= 1_9_2 __lowercase= (2, 2, 1_8, 2) __lowercase= (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase= (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase= 2_1_8_4_1 __lowercase= '''huggingface/label-files''' __lowercase= '''imagenet-22k-id2label.json''' __lowercase= json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} else: __lowercase= 1_0_0_0 __lowercase= '''huggingface/label-files''' __lowercase= '''imagenet-1k-id2label.json''' __lowercase= json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} __lowercase= img_size __lowercase= num_classes __lowercase= embed_dim __lowercase= depths __lowercase= num_heads __lowercase= window_size return config def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' if "patch_embed.proj" in name: __lowercase= name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase= name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase= '''encoder.''' + name if "attn.proj" in name: __lowercase= name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __lowercase= name.replace('attn' , 'attention.self' ) if "norm1" in name: __lowercase= name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowercase= name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __lowercase= name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase= name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: __lowercase= name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: __lowercase= name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: __lowercase= name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: __lowercase= name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": __lowercase= '''layernorm.weight''' if name == "norm.bias": __lowercase= '''layernorm.bias''' if "head" in name: __lowercase= name.replace('head' , 'classifier' ) else: __lowercase= '''swinv2.''' + name return name def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase= orig_state_dict.pop(__lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: __lowercase= key.split('.' ) __lowercase= int(key_split[1] ) __lowercase= int(key_split[3] ) __lowercase= model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase= val[:dim, :] __lowercase= val[dim : dim * 2, :] __lowercase= val[-dim:, :] else: __lowercase= val[:dim] __lowercase= val[ dim : dim * 2 ] __lowercase= val[-dim:] else: __lowercase= val return orig_state_dict def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() __lowercase= get_swinva_config(__lowerCAmelCase ) __lowercase= SwinvaForImageClassification(__lowerCAmelCase ) model.eval() __lowercase= convert_state_dict(timm_model.state_dict() , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) __lowercase= '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase= AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) __lowercase= Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) __lowercase= image_processor(images=__lowerCAmelCase , return_tensors='pt' ) __lowercase= timm_model(inputs['pixel_values'] ) __lowercase= model(**__lowerCAmelCase ).logits assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowerCAmelCase ) model.push_to_hub( repo_path_or_name=Path(__lowerCAmelCase , __lowerCAmelCase ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
350
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCAmelCase = logging.getLogger(__name__) class A : def __init__(self ): __lowercase= False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if not self.initialized: __lowercase= RagRetriever( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) __lowercase= True def _A (self ): self.retriever.index.init_index() def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.retriever._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return doc_ids, retrieved_doc_embeds class A ( __UpperCamelCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): if index is not None and index.is_initialized() and len(lowerCAmelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , index=lowerCAmelCase , init_retrieval=lowerCAmelCase , ) __lowercase= retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for worker in self.retrieval_workers ] ) def _A (self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _A (self , lowerCAmelCase , lowerCAmelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowercase= self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowercase= ray.get(random_worker.retrieve.remote(lowerCAmelCase , lowerCAmelCase ) ) else: __lowercase= self._main_retrieve(lowerCAmelCase , lowerCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase ) @classmethod def _A (cls , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ): return super(lowerCAmelCase , cls ).get_tokenizers(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) @classmethod def _A (cls , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ): __lowercase= kwargs.pop('config' , lowerCAmelCase ) or RagConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) __lowercase= RagTokenizer.from_pretrained(lowerCAmelCase , config=lowerCAmelCase ) __lowercase= rag_tokenizer.question_encoder __lowercase= rag_tokenizer.generator if indexed_dataset is not None: __lowercase= 'custom' __lowercase= CustomHFIndex(config.retrieval_vector_size , lowerCAmelCase ) else: __lowercase= cls._build_index(lowerCAmelCase ) return cls( lowerCAmelCase , question_encoder_tokenizer=lowerCAmelCase , generator_tokenizer=lowerCAmelCase , retrieval_workers=lowerCAmelCase , index=lowerCAmelCase , )
351
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
0
import random from typing import Any def _lowerCamelCase( lowercase__ ) -> list[Any]: '''simple docstring''' for _ in range(len(lowercase__ ) ): __lowercase= random.randint(0 , len(lowercase__ ) - 1 ) __lowercase= random.randint(0 , len(lowercase__ ) - 1 ) __lowercase, __lowercase= data[b], data[a] return data if __name__ == "__main__": lowerCAmelCase = [0, 1, 2, 3, 4, 5, 6, 7] lowerCAmelCase = ["""python""", """says""", """hello""", """!"""] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A ( snake_case_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =PriorTransformer UpperCamelCase_ : Any ='''hidden_states''' @property def _A (self ): __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= 4 __lowercase= 8 __lowercase= 7 __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def _A (self ): return (4, 8) @property def _A (self ): return (4, 8) def _A (self ): __lowercase= { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } __lowercase= self.dummy_input return init_dict, inputs_dict def _A (self ): __lowercase, __lowercase= PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCAmelCase ) __lowercase= model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def _A (self ): __lowercase, __lowercase= self.prepare_init_args_and_inputs_for_common() __lowercase= self.model_class(**lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowerCAmelCase ) def _A (self ): __lowercase= PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowercase= model.to(lowerCAmelCase ) if hasattr(lowerCAmelCase , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowercase= self.get_dummy_seed_input() with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] __lowercase= output[0, :5].flatten().cpu() print(lowerCAmelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowercase= torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowerCAmelCase , lowerCAmelCase , rtol=1E-2 ) ) @slow class A ( unittest.TestCase ): def _A (self , lowerCAmelCase=1 , lowerCAmelCase=7_6_8 , lowerCAmelCase=7_7 , lowerCAmelCase=0 ): torch.manual_seed(lowerCAmelCase ) __lowercase= batch_size __lowercase= embedding_dim __lowercase= num_embeddings __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, embedding_dim) ).to(lowerCAmelCase ) __lowercase= torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCAmelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [3_7, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCAmelCase ) __lowercase= self.get_dummy_seed_input(seed=lowerCAmelCase ) with torch.no_grad(): __lowercase= model(**lowerCAmelCase )[0] assert list(sample.shape ) == [1, 7_6_8] __lowercase= sample[0, :8].flatten().cpu() print(lowerCAmelCase ) __lowercase= torch.tensor(lowerCAmelCase ) assert torch_all_close(lowerCAmelCase , lowerCAmelCase , atol=1E-3 )
353
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
0
import requests lowerCAmelCase = '''''' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase = '''https://api.openweathermap.org/data/2.5/''' def _lowerCamelCase( lowercase__ = "Chicago" , lowercase__ = APPID ) -> Dict: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCamelCase( lowercase__ = "Kolkata, India" , lowercase__ = APPID ) -> Optional[int]: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCamelCase( lowercase__ = 55.68 , lowercase__ = 12.57 , lowercase__ = APPID ) -> str: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
354
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ = "x" , lowercase__ = 1_0**-1_0 , lowercase__ = 1 , ) -> complex: '''simple docstring''' __lowercase= symbols(_A ) __lowercase= lambdify(_A , _A ) __lowercase= lambdify(_A , diff(_A , _A ) ) __lowercase= starting_point while True: if diff_function(_A ) != 0: __lowercase= prev_guess - multiplicity * func(_A ) / diff_function( _A ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowercase= next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}') # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F'{newton_raphson("exp(x) - 1", 1_0, precision=0.0_0_5)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
355
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
0
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase = logging.get_logger(__name__) class A ( snake_case_ ): def __init__(self , *lowerCAmelCase , **lowerCAmelCase ): warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class A ( __lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Tuple =PhobertTokenizer UpperCamelCase_ : List[Any] =False def _A (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase= ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] __lowercase= dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __lowercase= ['''#version: 0.2''', '''l à</w>'''] __lowercase= {'''unk_token''': '''<unk>'''} __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def _A (self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _A (self , lowerCAmelCase ): __lowercase= '''Tôi là VinAI Research''' __lowercase= '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def _A (self ): __lowercase= PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase= '''Tôi là VinAI Research''' __lowercase= '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() __lowercase= tokenizer.tokenize(lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowercase= tokens + [tokenizer.unk_token] __lowercase= [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
from collections.abc import Callable import numpy as np def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= int(np.ceil((x_end - xa) / step_size ) ) __lowercase= np.zeros((n + 1,) ) __lowercase= ya __lowercase= xa for k in range(A__ ): __lowercase= y[k] + step_size * ode_func(A__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
from sklearn.metrics import mean_squared_error import datasets lowerCAmelCase = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' lowerCAmelCase = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' lowerCAmelCase = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def _A (self ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase="uniform_average" , lowerCAmelCase=True ): __lowercase= mean_squared_error( lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase , multioutput=lowerCAmelCase , squared=lowerCAmelCase ) return {"mse": mse}
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''T5Config''' def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> jnp.ndarray: '''simple docstring''' __lowercase= jnp.zeros_like(a__ ) __lowercase= shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase= shifted_input_ids.at[:, 0].set(a__ ) __lowercase= jnp.where(shifted_input_ids == -1_0_0 , a__ , a__ ) return shifted_input_ids class A ( _lowercase ): UpperCamelCase_ : int ='''mt5''' UpperCamelCase_ : Optional[Any] =MTaConfig class A ( _lowercase ): UpperCamelCase_ : List[str] ='''mt5''' UpperCamelCase_ : Any =MTaConfig class A ( _lowercase ): UpperCamelCase_ : str ='''mt5''' UpperCamelCase_ : Tuple =MTaConfig
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class A ( __lowercase ): UpperCamelCase_ : Tuple ='''bridgetower_vision_model''' def __init__(self , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=3 , lowerCAmelCase=1_6 , lowerCAmelCase=2_8_8 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=False , **lowerCAmelCase , ): super().__init__(**UpperCAmelCase__ ) __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_channels __lowercase= patch_size __lowercase= image_size __lowercase= initializer_factor __lowercase= layer_norm_eps __lowercase= stop_gradient __lowercase= share_layernorm __lowercase= remove_last_layer @classmethod def _A (cls , lowerCAmelCase , **lowerCAmelCase ): __lowercase, __lowercase= cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": __lowercase= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class A ( __lowercase ): UpperCamelCase_ : str ='''bridgetower_text_model''' def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_4 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__(**UpperCAmelCase__ ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= initializer_factor __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= layer_norm_eps __lowercase= position_embedding_type __lowercase= use_cache __lowercase= pad_token_id __lowercase= bos_token_id __lowercase= eos_token_id @classmethod def _A (cls , lowerCAmelCase , **lowerCAmelCase ): __lowercase, __lowercase= cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": __lowercase= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class A ( __lowercase ): UpperCamelCase_ : Optional[Any] ='''bridgetower''' def __init__(self , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=7_6_8 , lowerCAmelCase=1 , lowerCAmelCase=1E-05 , lowerCAmelCase=False , lowerCAmelCase="add" , lowerCAmelCase=1_2 , lowerCAmelCase=6 , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): # TODO: remove this once the Hub files are updated. __lowercase= kwargs.pop('text_config_dict' , UpperCAmelCase__ ) __lowercase= kwargs.pop('vision_config_dict' , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) __lowercase= share_cross_modal_transformer_layers __lowercase= hidden_act __lowercase= hidden_size __lowercase= initializer_factor __lowercase= layer_norm_eps __lowercase= share_link_tower_layers __lowercase= link_tower_type __lowercase= num_attention_heads __lowercase= num_hidden_layers __lowercase= tie_word_embeddings __lowercase= init_layernorm_from_vision_encoder if text_config is None: __lowercase= {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __lowercase= {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __lowercase= BridgeTowerTextConfig(**UpperCAmelCase__ ) __lowercase= BridgeTowerVisionConfig(**UpperCAmelCase__ ) @classmethod def _A (cls , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def _A (self ): __lowercase= copy.deepcopy(self.__dict__ ) __lowercase= self.text_config.to_dict() __lowercase= self.vision_config.to_dict() __lowercase= self.__class__.model_type return output
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} lowerCAmelCase = [ { "type": "header", "text": { "type": "plain_text", "text": F'🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results', "emoji": True, }, } ] lowerCAmelCase = 0 for log in Path().glob('''*.log'''): lowerCAmelCase = 0 with open(log, '''r''') as f: for line in f: lowerCAmelCase = json.loads(line) if line.get('''nodeid''', '''''') != "": lowerCAmelCase = line["nodeid"] if line.get('''duration''', None) is not None: lowerCAmelCase = F'{line["duration"]:.4f}' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase = [] log.unlink() lowerCAmelCase = "" lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase = [] lowerCAmelCase = {} for test in failed_tests: lowerCAmelCase = test[0].split('''::''') lowerCAmelCase = data[0].split('''/''')[-1] if data[0] not in filesafailed: lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase = [test[0] for test in failed_table] lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: lowerCAmelCase = "Too many failed tests, please see the full report in the Action results." lowerCAmelCase = len(err) + 1_0 lowerCAmelCase = message[: 3_0_0_0 - offset] + F'\n...\n```\n{err}' print(F'### {message}') else: lowerCAmelCase = "No failed tests! 🤗" print(F'## {message}') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient lowerCAmelCase = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) lowerCAmelCase = { "type": "context", "elements": [ { "type": "plain_text", "text": F'Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}', } ], } payload.append(date_report) lowerCAmelCase = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) lowerCAmelCase = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase = "" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase = row[0] else: lowerCAmelCase = "" lowerCAmelCase = { "type": "section", "text": { "type": "mrkdwn", "text": F'Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
"""simple docstring""" def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' while second != 0: __lowercase= first & second first ^= second __lowercase= c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = int(input('''Enter the first number: ''').strip()) lowerCAmelCase = int(input('''Enter the second number: ''').strip()) print(F'{add(first, second) = }')
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class A ( __SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Dict ='''retribert''' def __init__(self , lowerCAmelCase=3_0_5_2_2 , lowerCAmelCase=7_6_8 , lowerCAmelCase=8 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=1_2_8 , lowerCAmelCase=0 , **lowerCAmelCase , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= share_encoders __lowercase= projection_dim
364
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
0
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase = logging.getLogger(__name__) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=_a , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=_a , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=_a , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=_a , default=1_0_0_0 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=_a , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=_a , type=_a , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=_a , default=5_1_2 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=_a , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) __lowercase= parser.parse_args() return args def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' def fn(lowercase__ ): return tokenizer(examples['text'] ) return fn def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= [] for i in range(len(tokenized_data['input_ids'] ) ): __lowercase= { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } __lowercase= tf.train.Features(feature=_a ) __lowercase= tf.train.Example(features=_a ) __lowercase= example.SerializeToString() records.append(_a ) return records def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __lowercase= min(len(_a ) , args.limit ) __lowercase= dataset.select(range(_a ) ) print(F'Limiting the dataset to {args.limit} entries.' ) __lowercase= AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __lowercase= os.path.join(args.output_dir , args.split ) if not os.path.exists(_a ): os.makedirs(_a ) else: __lowercase= os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __lowercase= tokenize_function(_a ) __lowercase= dataset.map(_a , batched=_a , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase__ ): # Concatenate all texts. __lowercase= {k: sum(examples[k] , [] ) for k in examples.keys()} __lowercase= len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __lowercase= (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __lowercase= { k: [t[i : i + args.max_length] for i in range(0 , _a , args.max_length )] for k, t in concatenated_examples.items() } return result __lowercase= dataset_tokenized.map(_a , batched=_a , batch_size=1_0_0_0 , num_proc=4 ) __lowercase= 0 __lowercase= 0 for shard in range(0 , len(_a ) , args.shard_size ): __lowercase= grouped_dataset[shard : shard + args.shard_size] __lowercase= len(dataset_snapshot['input_ids'] ) __lowercase= os.path.join(_a , F'dataset-{shard_count}-{records_containing}.tfrecord' ) __lowercase= get_serialized_examples(_a ) with tf.io.TFRecordWriter(_a ) as out_file: for i in range(len(_a ) ): __lowercase= serialized_examples[i] out_file.write(_a ) print('Wrote file {} containing {} records'.format(_a , _a ) ) shard_count += 1 total_records += records_containing with open(F'split-{args.split}-records-count.txt' , 'w' ) as f: print(F'Total {args.split} records: {total_records}' , file=_a ) if __name__ == "__main__": lowerCAmelCase = parse_args() main(args)
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=True , lowercase__="pt" ) -> int: '''simple docstring''' __lowercase= {'add_prefix_space': True} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not line.startswith(' ' ) else {} __lowercase= padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE_ , padding='max_length' if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=None , ) -> Tuple: '''simple docstring''' __lowercase= input_ids.ne(SCREAMING_SNAKE_CASE_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="train" , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="" , ): super().__init__() __lowercase= Path(_lowercase ).joinpath(type_path + '.source' ) __lowercase= Path(_lowercase ).joinpath(type_path + '.target' ) __lowercase= self.get_char_lens(self.src_file ) __lowercase= max_source_length __lowercase= max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' __lowercase= tokenizer __lowercase= prefix if n_obs is not None: __lowercase= self.src_lens[:n_obs] __lowercase= src_lang __lowercase= tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowerCAmelCase ): __lowercase= index + 1 # linecache starts at 1 __lowercase= self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip('\n' ) __lowercase= linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip('\n' ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowercase= ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) __lowercase= self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer __lowercase= encode_line(_lowercase , _lowercase , self.max_source_length , 'right' ) __lowercase= encode_line(_lowercase , _lowercase , self.max_target_length , 'right' ) __lowercase= source_inputs['input_ids'].squeeze() __lowercase= target_inputs['input_ids'].squeeze() __lowercase= source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _A (lowerCAmelCase ): return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def _A (self , lowerCAmelCase ): __lowercase= torch.stack([x['input_ids'] for x in batch] ) __lowercase= torch.stack([x['attention_mask'] for x in batch] ) __lowercase= torch.stack([x['decoder_input_ids'] for x in batch] ) __lowercase= ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) __lowercase= ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) __lowercase= trim_batch(_lowercase , _lowercase ) __lowercase, __lowercase= trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) __lowercase= { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase = getLogger(__name__) def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_ ) ) def _lowerCamelCase( lowercase__ ) -> None: '''simple docstring''' __lowercase= get_git_info() save_json(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , 'git_log.json' ) ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=4 , **lowercase__ ) -> Tuple: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE_ ) __lowercase= { 'repo_id': str(SCREAMING_SNAKE_CASE_ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _lowerCamelCase( lowercase__ , lowercase__ ) -> List: '''simple docstring''' return list(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as f: return pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' def remove_articles(lowercase__ ): return re.sub(R'\b(a|an|the)\b' , ' ' , SCREAMING_SNAKE_CASE_ ) def white_space_fix(lowercase__ ): return " ".join(text.split() ) def remove_punc(lowercase__ ): __lowercase= set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE_ ) ) ) ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= normalize_answer(SCREAMING_SNAKE_CASE_ ).split() __lowercase= normalize_answer(SCREAMING_SNAKE_CASE_ ).split() __lowercase= Counter(SCREAMING_SNAKE_CASE_ ) & Counter(SCREAMING_SNAKE_CASE_ ) __lowercase= sum(common.values() ) if num_same == 0: return 0 __lowercase= 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) __lowercase= 1.0 * num_same / len(SCREAMING_SNAKE_CASE_ ) __lowercase= (2 * precision * recall) / (precision + recall) return fa def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' return normalize_answer(SCREAMING_SNAKE_CASE_ ) == normalize_answer(SCREAMING_SNAKE_CASE_ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' assert len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) __lowercase= 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): em += exact_match_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: em /= len(SCREAMING_SNAKE_CASE_ ) return {"em": em} def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return model_prefix.startswith('rag' ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowercase= 'dropout_rate' for p in extra_params: if getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and not hasattr(SCREAMING_SNAKE_CASE_ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue __lowercase= p if hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) delattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return hparams, config
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
"""simple docstring""" import requests lowerCAmelCase = '''''' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase = '''https://api.openweathermap.org/data/2.5/''' def _lowerCamelCase( lowercase__ = "Chicago" , lowercase__ = APPID ) -> List[Any]: '''simple docstring''' return requests.get(URL_BASE + 'weather' , params=locals() ).json() def _lowerCamelCase( lowercase__ = "Kolkata, India" , lowercase__ = APPID ) -> List[str]: '''simple docstring''' return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def _lowerCamelCase( lowercase__ = 55.68 , lowercase__ = 12.57 , lowercase__ = APPID ) -> List[Any]: '''simple docstring''' return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCAmelCase = logging.get_logger('''transformers.models.encodec''') lowerCAmelCase = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCAmelCase = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCAmelCase = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCAmelCase = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCAmelCase = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCAmelCase = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCAmelCase = [] lowerCAmelCase = [] def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): __lowercase= getattr(lowercase__ , lowercase__ ) if weight_type is not None: __lowercase= getattr(lowercase__ , lowercase__ ).shape else: __lowercase= hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase= value elif weight_type == "weight_g": __lowercase= value elif weight_type == "weight_v": __lowercase= value elif weight_type == "bias": __lowercase= value elif weight_type == "running_mean": __lowercase= value elif weight_type == "running_var": __lowercase= value elif weight_type == "num_batches_tracked": __lowercase= value elif weight_type == "weight_ih_l0": __lowercase= value elif weight_type == "weight_hh_l0": __lowercase= value elif weight_type == "bias_ih_l0": __lowercase= value elif weight_type == "bias_hh_l0": __lowercase= value elif weight_type == "weight_ih_l1": __lowercase= value elif weight_type == "weight_hh_l1": __lowercase= value elif weight_type == "bias_ih_l1": __lowercase= value elif weight_type == "bias_hh_l1": __lowercase= value else: __lowercase= value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __lowercase= key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= [] if model_name == "encodec_24khz" or "encodec_32khz": __lowercase= MAPPING_24K elif model_name == "encodec_48khz": __lowercase= MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowercase__ , lowercase__ ): logger.info(F'{name} was ignored' ) continue __lowercase= False for key, mapped_key in MAPPING.items(): if "*" in key: __lowercase= key.split('.*.' ) if prefix in name and suffix in name: __lowercase= suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue __lowercase= True if "*" in mapped_key: __lowercase= name.split(lowercase__ )[0].split('.' )[-2] __lowercase= mapped_key.replace('*' , lowercase__ ) if "weight_g" in name: __lowercase= """weight_g""" elif "weight_v" in name: __lowercase= """weight_v""" elif "weight_ih_l0" in name: __lowercase= """weight_ih_l0""" elif "weight_hh_l0" in name: __lowercase= """weight_hh_l0""" elif "bias_ih_l0" in name: __lowercase= """bias_ih_l0""" elif "bias_hh_l0" in name: __lowercase= """bias_hh_l0""" elif "weight_ih_l1" in name: __lowercase= """weight_ih_l1""" elif "weight_hh_l1" in name: __lowercase= """weight_hh_l1""" elif "bias_ih_l1" in name: __lowercase= """bias_ih_l1""" elif "bias_hh_l1" in name: __lowercase= """bias_hh_l1""" elif "bias" in name: __lowercase= """bias""" elif "weight" in name: __lowercase= """weight""" elif "running_mean" in name: __lowercase= """running_mean""" elif "running_var" in name: __lowercase= """running_var""" elif "num_batches_tracked" in name: __lowercase= """num_batches_tracked""" else: __lowercase= None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ) -> List[str]: '''simple docstring''' if config_path is not None: __lowercase= EncodecConfig.from_pretrained(lowercase__ ) else: __lowercase= EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __lowercase= [8, 5, 4, 4] __lowercase= [2.2] __lowercase= 6_4 __lowercase= 3_2_0_0_0 __lowercase= 2_0_4_8 __lowercase= False __lowercase= False __lowercase= False elif model_name == "encodec_48khz": __lowercase= [8, 5, 4, 2] __lowercase= [3.0, 6.0, 12.0, 24.0] __lowercase= 4_8_0_0_0 __lowercase= 2 __lowercase= False __lowercase= """time_group_norm""" __lowercase= True __lowercase= 1.0 __lowercase= 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) __lowercase= EncodecModel(lowercase__ ) __lowercase= EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowercase__ ) __lowercase= torch.load(lowercase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __lowercase= original_checkpoint["""best_state"""] recursively_load_weights(lowercase__ , lowercase__ , lowercase__ ) model.save_pretrained(lowercase__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(lowercase__ ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCAmelCase = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__(self , lowerCAmelCase ): super().__init__() __lowercase= model __lowercase= 2 __lowercase= nn.Linear(self.model.config.hidden_size , self.num_labels ) def _A (self ): pass def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= LongformerModel.from_pretrained(a__ ) __lowercase= LightningModel(a__ ) __lowercase= torch.load(a__ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __lowercase= LongformerForQuestionAnswering.from_pretrained(a__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(a__ ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
369
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
0
import math def _lowerCamelCase( lowercase__ = 1_0_0 ) -> int: '''simple docstring''' __lowercase= sum(i * i for i in range(1 , n + 1 ) ) __lowercase= int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
370
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
0
def _lowerCamelCase( lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase= str(bin(lowerCamelCase__ ) ) binary_number += "0" * shift_amount return binary_number def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) __lowercase= str(bin(lowerCamelCase__ ) )[2:] if shift_amount >= len(lowerCamelCase__ ): return "0b0" __lowercase= binary_number[: len(lowerCamelCase__ ) - shift_amount] return "0b" + shifted_binary_number def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' if number >= 0: # Get binary representation of positive number __lowercase= '0' + str(bin(lowerCamelCase__ ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number __lowercase= len(bin(lowerCamelCase__ )[3:] ) # Find 2's complement of number __lowercase= bin(abs(lowerCamelCase__ ) - (1 << binary_number_length) )[3:] __lowercase= ( '1' + '0' * (binary_number_length - len(lowerCamelCase__ )) + binary_number ) if shift_amount >= len(lowerCamelCase__ ): return "0b" + binary_number[0] * len(lowerCamelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowerCamelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
350
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase = datasets.load_iris() lowerCAmelCase = np.array(data['''data''']) lowerCAmelCase = np.array(data['''target''']) lowerCAmelCase = data['''target_names'''] lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = train_test_split(X, y) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[Any]: '''simple docstring''' return np.linalg.norm(np.array(_SCREAMING_SNAKE_CASE ) - np.array(_SCREAMING_SNAKE_CASE ) ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=5 ) -> Optional[Any]: '''simple docstring''' __lowercase= zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified __lowercase= [] for data_point in data: __lowercase= euclidean_distance(data_point[0] , _SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __lowercase= [i[1] for i in sorted(_SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowercase= Counter(_SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
351
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
import sys from collections import defaultdict class A : def __init__(self ): __lowercase= [] def _A (self , lowerCAmelCase ): return self.node_position[vertex] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= pos def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowercase= 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowercase= 2 * start + 1 else: __lowercase= 2 * start + 2 if heap[smallest_child] < heap[start]: __lowercase, __lowercase= heap[smallest_child], positions[smallest_child] __lowercase, __lowercase= ( heap[start], positions[start], ) __lowercase, __lowercase= temp, tempa __lowercase= self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase ) self.top_to_bottom(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= position[index] while index != 0: __lowercase= int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowercase= heap[parent] __lowercase= position[parent] self.set_position(position[parent] , lowerCAmelCase ) else: __lowercase= val __lowercase= temp self.set_position(lowerCAmelCase , lowerCAmelCase ) break __lowercase= parent else: __lowercase= val __lowercase= temp self.set_position(lowerCAmelCase , 0 ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) // 2 - 1 for i in range(lowerCAmelCase , -1 , -1 ): self.top_to_bottom(lowerCAmelCase , lowerCAmelCase , len(lowerCAmelCase ) , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= positions[0] __lowercase= sys.maxsize self.top_to_bottom(lowerCAmelCase , 0 , len(lowerCAmelCase ) , lowerCAmelCase ) return temp def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= Heap() __lowercase= [0] * len(UpperCAmelCase_ ) __lowercase= [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowercase= [] # Heap of Distance of vertices from their neighboring vertex __lowercase= [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowercase= [] __lowercase= 1 __lowercase= sys.maxsize for neighbor, distance in adjacency_list[0]: __lowercase= 0 __lowercase= distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowercase= heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowercase= 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowercase= distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowercase= vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowerCAmelCase = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase = defaultdict(list) for _ in range(edges_number): lowerCAmelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
353
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class A ( lowerCamelCase__ ): UpperCamelCase_ : Tuple =field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : int =Features({'''audio''': Audio()} ) UpperCamelCase_ : List[str] =Features({'''labels''': ClassLabel} ) UpperCamelCase_ : Any ='''audio''' UpperCamelCase_ : Dict ='''labels''' def _A (self , lowerCAmelCase ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __lowercase= copy.deepcopy(self ) __lowercase= self.label_schema.copy() __lowercase= features[self.label_column] __lowercase= label_schema return task_template @property def _A (self ): return { self.audio_column: "audio", self.label_column: "labels", }
354
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
0
def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= 0 for i in range(1 , 1_0_0_1 ): total += i**i return str(lowercase__ )[-1_0:] if __name__ == "__main__": print(solution())
355
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( _lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : Any =KandinskyVaaImgaImgPipeline UpperCamelCase_ : str =['''image_embeds''', '''negative_image_embeds''', '''image'''] UpperCamelCase_ : Tuple =[ '''image_embeds''', '''negative_image_embeds''', '''image''', ] UpperCamelCase_ : Tuple =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Tuple =False @property def _A (self ): return 3_2 @property def _A (self ): return 3_2 @property def _A (self ): return self.time_input_dim @property def _A (self ): return self.time_input_dim * 4 @property def _A (self ): return 1_0_0 @property def _A (self ): torch.manual_seed(0 ) __lowercase= { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __lowercase= UNetaDConditionModel(**lowercase_ ) return model @property def _A (self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _A (self ): torch.manual_seed(0 ) __lowercase= VQModel(**self.dummy_movq_kwargs ) return model def _A (self ): __lowercase= self.dummy_unet __lowercase= self.dummy_movq __lowercase= { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.0_00_85, 'beta_end': 0.0_12, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __lowercase= DDIMScheduler(**lowercase_ ) __lowercase= { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): __lowercase= floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) __lowercase= floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase_ ) # create init_image __lowercase= floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) __lowercase= image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase= Image.fromarray(np.uinta(lowercase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) if str(lowercase_ ).startswith('mps' ): __lowercase= torch.manual_seed(lowercase_ ) else: __lowercase= torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) __lowercase= { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _A (self ): __lowercase= 'cpu' __lowercase= self.get_dummy_components() __lowercase= self.pipeline_class(**lowercase_ ) __lowercase= pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) __lowercase= pipe(**self.get_dummy_inputs(lowercase_ ) ) __lowercase= output.images __lowercase= pipe( **self.get_dummy_inputs(lowercase_ ) , return_dict=lowercase_ , )[0] __lowercase= image[0, -3:, -3:, -1] __lowercase= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowercase= np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __lowercase= 'A red cartoon frog, 4k' __lowercase= KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase_ ) __lowercase= KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) __lowercase= pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) __lowercase= torch.Generator(device='cpu' ).manual_seed(0 ) __lowercase, __lowercase= pipe_prior( lowercase_ , generator=lowercase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __lowercase= pipeline( image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , generator=lowercase_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='np' , ) __lowercase= output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase = open # noqa: we just need to have a builtin inside this module to test it properly
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
from math import factorial lowerCAmelCase = {str(d): factorial(d) for d in range(1_0)} def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(A_ ) ) def _lowerCamelCase( ) -> Tuple: '''simple docstring''' __lowercase= 7 * factorial(9 ) + 1 return sum(i for i in range(3 , A_ ) if sum_of_digit_factorial(A_ ) == i ) if __name__ == "__main__": print(F'{solution() = }')
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
from __future__ import annotations lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= [] __lowercase= len(_lowercase ) for i in range(_lowercase ): __lowercase= -1 for j in range(i + 1 , _lowercase ): if arr[i] < arr[j]: __lowercase= arr[j] break result.append(_lowercase ) return result def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= [] for i, outer in enumerate(_lowercase ): __lowercase= -1 for inner in arr[i + 1 :]: if outer < inner: __lowercase= inner break result.append(_lowercase ) return result def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= len(_lowercase ) __lowercase= [] __lowercase= [-1] * arr_size for index in reversed(range(_lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowercase= stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): @slow @require_torch def _A (self ): __lowercase= EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= bertabert.config.encoder.vocab_size __lowercase= tokenizer.sep_token_id __lowercase= tokenizer.cls_token_id __lowercase= 1_2_8 __lowercase= datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __lowercase= datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __lowercase= train_dataset.select(range(3_2 ) ) __lowercase= val_dataset.select(range(1_6 ) ) __lowercase= 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowercase= tokenizer(batch['article'] , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=5_1_2 ) __lowercase= tokenizer(batch['highlights'] , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=1_2_8 ) __lowercase= inputs.input_ids __lowercase= inputs.attention_mask __lowercase= outputs.input_ids __lowercase= outputs.input_ids.copy() __lowercase= [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __lowercase= outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 5_1_2 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(lowerCAmelCase ): __lowercase= pred.label_ids __lowercase= pred.predictions # all unnecessary tokens are removed __lowercase= tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowercase= tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) __lowercase= sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset __lowercase= train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __lowercase= val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __lowercase= self.get_auto_remove_tmp_dir() __lowercase= SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy='steps' , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowercase= SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=1_0_2_4 ) -> Optional[Any]: '''simple docstring''' __lowercase, __lowercase= [], [] __lowercase= list(zip(_a , _a ) ) __lowercase, __lowercase= sorted_examples[0] def is_too_big(lowercase__ ): return tok(_a , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __lowercase= new_src + ' ' + src __lowercase= new_tgt + ' ' + tgt if is_too_big(_a ) or is_too_big(_a ): # cant fit, finalize example finished_src.append(_a ) finished_tgt.append(_a ) __lowercase, __lowercase= src, tgt else: # can fit, keep adding __lowercase, __lowercase= cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_a ) finished_tgt.append(_a ) return finished_src, finished_tgt def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' __lowercase= Path(_a ) save_path.mkdir(exist_ok=_a ) for split in ["train"]: __lowercase, __lowercase= data_dir / F'{split}.source', data_dir / F'{split}.target' __lowercase= [x.rstrip() for x in Path(_a ).open().readlines()] __lowercase= [x.rstrip() for x in Path(_a ).open().readlines()] __lowercase, __lowercase= pack_examples(_a , _a , _a , _a ) print(F'packed {split} split from {len(_a )} examples -> {len(_a )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(_a ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(_a ) ) for split in ["val", "test"]: __lowercase, __lowercase= data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(_a , save_path / F'{split}.source' ) shutil.copyfile(_a , save_path / F'{split}.target' ) def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= argparse.ArgumentParser() parser.add_argument('--tok_name' , type=_a , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=_a , default=1_2_8 ) parser.add_argument('--data_dir' , type=_a ) parser.add_argument('--save_path' , type=_a ) __lowercase= parser.parse_args() __lowercase= AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' assert column_title.isupper() __lowercase= 0 __lowercase= len(__lowerCAmelCase ) - 1 __lowercase= 0 while index >= 0: __lowercase= (ord(column_title[index] ) - 6_4) * pow(2_6 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
from __future__ import annotations from collections import deque class A : def __init__(self , lowerCAmelCase ): __lowercase= [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(a__ ) self.set_fail_transitions() def _A (self , lowerCAmelCase , lowerCAmelCase ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _A (self , lowerCAmelCase ): __lowercase= 0 for character in keyword: __lowercase= self.find_next_state(a__ , a__ ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __lowercase= len(self.adlist ) - 1 else: __lowercase= next_state self.adlist[current_state]["output"].append(a__ ) def _A (self ): __lowercase= deque() for node in self.adlist[0]["next_states"]: q.append(a__ ) __lowercase= 0 while q: __lowercase= q.popleft() for child in self.adlist[r]["next_states"]: q.append(a__ ) __lowercase= self.adlist[r]['fail_state'] while ( self.find_next_state(a__ , self.adlist[child]['value'] ) is None and state != 0 ): __lowercase= self.adlist[state]['fail_state'] __lowercase= self.find_next_state( a__ , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: __lowercase= 0 __lowercase= ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def _A (self , lowerCAmelCase ): __lowercase= {} # returns a dict with keywords and list of its occurrences __lowercase= 0 for i in range(len(a__ ) ): while ( self.find_next_state(a__ , string[i] ) is None and current_state != 0 ): __lowercase= self.adlist[current_state]['fail_state'] __lowercase= self.find_next_state(a__ , string[i] ) if next_state is None: __lowercase= 0 else: __lowercase= next_state for key in self.adlist[current_state]["output"]: if key not in result: __lowercase= [] result[key].append(i - len(a__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
364
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
0
def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' if n_term == "": return [] __lowercase= [] for temp in range(int(snake_case__ ) ): series.append(F'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } lowerCAmelCase = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } lowerCAmelCase = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class A ( _lowerCAmelCase ): UpperCamelCase_ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str =PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Tuple =SqueezeBertTokenizer def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowercase= json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowercase= getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowercase= do_lower_case __lowercase= strip_accents __lowercase= tokenize_chinese_chars __lowercase= normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowercase= do_lower_case def _A (self , lowerCAmelCase , lowerCAmelCase=None ): __lowercase= [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= [self.sep_token_id] __lowercase= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class A ( __SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def _A (lowerCAmelCase ): raise NotImplementedError() @abstractmethod def _A (self ): raise NotImplementedError()
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= 1_3 __lowercase= 7 __lowercase= True __lowercase= True __lowercase= True __lowercase= True __lowercase= 9_9 __lowercase= 3_8_4 __lowercase= 2 __lowercase= 4 __lowercase= 3_7 __lowercase= 'gelu' __lowercase= 0.1 __lowercase= 0.1 __lowercase= 5_1_2 __lowercase= 1_6 __lowercase= 2 __lowercase= 0.02 __lowercase= 3 __lowercase= 4 __lowercase= 1_2_8 __lowercase= 2 __lowercase= 9 __lowercase= 1 __lowercase= None def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertModel(config=lowerCAmelCase ) __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase= [input_ids, input_mask] __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertForMaskedLM(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= TFConvBertForSequenceClassification(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_choices __lowercase= TFConvBertForMultipleChoice(config=lowerCAmelCase ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase= { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= TFConvBertForTokenClassification(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFConvBertForQuestionAnswering(config=lowerCAmelCase ) __lowercase= { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( __lowercase )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A ( _a , _a , unittest.TestCase ): UpperCamelCase_ : List[Any] =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : Tuple =( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : int =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : List[Any] =False def _A (self ): __lowercase= TFConvBertModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= True __lowercase= True if hasattr(lowerCAmelCase , 'use_cache' ): __lowercase= True __lowercase= getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) for model_class in self.all_model_classes: __lowercase= self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) __lowercase= model_class(lowerCAmelCase ) __lowercase= len(model(lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase , saved_model=lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , 'saved_model' , '1' ) __lowercase= tf.keras.models.load_model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) if self.is_encoder_decoder: __lowercase= outputs['encoder_hidden_states'] __lowercase= outputs['encoder_attentions'] else: __lowercase= outputs['hidden_states'] __lowercase= outputs['attentions'] self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) __lowercase= getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _A (self ): __lowercase= TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= True __lowercase= getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) __lowercase= getattr(self.model_tester , 'key_length' , lowerCAmelCase ) def check_decoder_attentions_output(lowerCAmelCase ): __lowercase= len(lowerCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase= outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(lowerCAmelCase ): __lowercase= [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase= True __lowercase= False __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase= True __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine __lowercase= True __lowercase= True __lowercase= model_class(lowerCAmelCase ) __lowercase= model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase= tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase= model(lowerCAmelCase )[0] __lowercase= [1, 6, 7_6_8] self.assertEqual(output.shape , lowerCAmelCase ) __lowercase= tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-4 )
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _lowerCamelCase( lowercase__ = "" ) -> Union[str, Any]: '''simple docstring''' __lowercase= url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __lowercase= BeautifulSoup(requests.get(__UpperCamelCase ).text , 'html.parser' ) __lowercase= soup.find_all('td' , attrs='titleColumn' ) __lowercase= soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCamelCase , __UpperCamelCase ) } def _lowerCamelCase( lowercase__ = "IMDb_Top_250_Movies.csv" ) -> Optional[Any]: '''simple docstring''' __lowercase= get_imdb_top_aaa_movies() with open(__UpperCamelCase , 'w' , newline='' ) as out_file: __lowercase= csv.writer(__UpperCamelCase ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
369
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A ( _lowerCAmelCase ): UpperCamelCase_ : Tuple =(UnCLIPScheduler,) def _A (self , **lowerCAmelCase ): __lowercase= { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**_lowercase ) return config def _A (self ): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowercase ) def _A (self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowercase ) def _A (self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _A (self ): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_lowercase ) def _A (self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowercase ) def _A (self ): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowercase , prev_timestep=_lowercase ) def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config(variance_type='fixed_small_log' ) __lowercase= scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config(variance_type='learned_range' ) __lowercase= scheduler_class(**_lowercase ) __lowercase= 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowercase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=_lowercase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=_lowercase ) - -0.0_01_00_11 < 1E-5 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config() __lowercase= scheduler_class(**_lowercase ) __lowercase= scheduler.timesteps __lowercase= self.dummy_model() __lowercase= self.dummy_sample_deter __lowercase= torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual __lowercase= model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 __lowercase= scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample __lowercase= pred_prev_sample __lowercase= torch.sum(torch.abs(_lowercase ) ) __lowercase= torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def _A (self ): __lowercase= self.scheduler_classes[0] __lowercase= self.get_scheduler_config() __lowercase= scheduler_class(**_lowercase ) scheduler.set_timesteps(2_5 ) __lowercase= scheduler.timesteps __lowercase= self.dummy_model() __lowercase= self.dummy_sample_deter __lowercase= torch.manual_seed(0 ) for i, t in enumerate(_lowercase ): # 1. predict noise residual __lowercase= model(_lowercase , _lowercase ) if i + 1 == timesteps.shape[0]: __lowercase= None else: __lowercase= timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase= scheduler.step( _lowercase , _lowercase , _lowercase , prev_timestep=_lowercase , generator=_lowercase ).prev_sample __lowercase= pred_prev_sample __lowercase= torch.sum(torch.abs(_lowercase ) ) __lowercase= torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def _A (self ): pass def _A (self ): pass
370
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class A ( _a ): """simple docstring""" UpperCamelCase_ : Optional[int] ="""open-llama""" def __init__(self , lowerCAmelCase=1_0_0_0_0_0 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_1_0_0_8 , lowerCAmelCase=3_2 , lowerCAmelCase=3_2 , lowerCAmelCase="silu" , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-6 , lowerCAmelCase=True , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= hidden_size __lowercase= intermediate_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= initializer_range __lowercase= rms_norm_eps __lowercase= use_cache __lowercase= kwargs.pop( 'use_memorry_efficient_attention' , __lowerCAmelCase ) __lowercase= hidden_dropout_prob __lowercase= attention_dropout_prob __lowercase= use_stable_embedding __lowercase= shared_input_output_embedding __lowercase= rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , tie_word_embeddings=__lowerCAmelCase , **__lowerCAmelCase , ) def _A (self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'got {self.rope_scaling}' ) __lowercase= self.rope_scaling.get('type' , __lowerCAmelCase ) __lowercase= self.rope_scaling.get('factor' , __lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
371
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
0
def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= int(__a ) # Initialize Result __lowercase= [] # Traverse through all denomination for denomination in reversed(__a ): # Find denominations while int(__a ) >= int(__a ): total_value -= int(__a ) answer.append(__a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase = [] lowerCAmelCase = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) lowerCAmelCase = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] lowerCAmelCase = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'Following is minimal change for {value}: ') lowerCAmelCase = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
350
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= Mock() __lowercase= conn, Mock() __lowercase= iter([1, None] ) __lowercase= lambda lowercase__ : next(A__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=A__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
351
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Any =ShapEPipeline UpperCamelCase_ : Any =["prompt"] UpperCamelCase_ : List[Any] =["prompt"] UpperCamelCase_ : List[str] =[ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCamelCase_ : Dict =False @property def _A (self ): return 3_2 @property def _A (self ): return 3_2 @property def _A (self ): return self.time_input_dim * 4 @property def _A (self ): return 8 @property def _A (self ): __lowercase= CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _A (self ): torch.manual_seed(0 ) __lowercase= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(snake_case_ ) @property def _A (self ): torch.manual_seed(0 ) __lowercase= { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } __lowercase= PriorTransformer(**snake_case_ ) return model @property def _A (self ): torch.manual_seed(0 ) __lowercase= { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } __lowercase= ShapERenderer(**snake_case_ ) return model def _A (self ): __lowercase= self.dummy_prior __lowercase= self.dummy_text_encoder __lowercase= self.dummy_tokenizer __lowercase= self.dummy_renderer __lowercase= HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_0_2_4 , prediction_type='sample' , use_karras_sigmas=snake_case_ , clip_sample=snake_case_ , clip_sample_range=1.0 , ) __lowercase= { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(snake_case_ ).startswith('mps' ): __lowercase= torch.manual_seed(snake_case_ ) else: __lowercase= torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowercase= { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def _A (self ): __lowercase= '''cpu''' __lowercase= self.get_dummy_components() __lowercase= self.pipeline_class(**snake_case_ ) __lowercase= pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowercase= pipe(**self.get_dummy_inputs(snake_case_ ) ) __lowercase= output.images[0] __lowercase= image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) __lowercase= np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A (self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _A (self ): __lowercase= torch_device == '''cpu''' __lowercase= True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=snake_case_ , relax_max_difference=snake_case_ , ) def _A (self ): __lowercase= self.get_dummy_components() __lowercase= self.pipeline_class(**snake_case_ ) __lowercase= pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowercase= 1 __lowercase= 2 __lowercase= self.get_dummy_inputs(snake_case_ ) for key in inputs.keys(): if key in self.batch_params: __lowercase= batch_size * [inputs[key]] __lowercase= pipe(**snake_case_ , num_images_per_prompt=snake_case_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __lowercase= ShapEPipeline.from_pretrained('openai/shap-e' ) __lowercase= pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowercase= torch.Generator(device=snake_case_ ).manual_seed(0 ) __lowercase= pipe( 'a shark' , generator=snake_case_ , guidance_scale=15.0 , num_inference_steps=6_4 , frame_size=6_4 , output_type='np' , ).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class A ( unittest.TestCase , A_ ): def _A (self ): __lowercase= load_tool('text-classification' ) self.tool.setup() __lowercase= load_tool('text-classification' , remote=lowerCAmelCase ) def _A (self ): __lowercase= self.tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(lowerCAmelCase , 'positive' ) def _A (self ): __lowercase= self.remote_tool('That\'s quite cool' , ['positive', 'negative'] ) self.assertEqual(lowerCAmelCase , 'positive' ) def _A (self ): __lowercase= self.tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(lowerCAmelCase , 'positive' ) def _A (self ): __lowercase= self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative'] ) self.assertEqual(lowerCAmelCase , 'positive' )
353
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
0
def _lowerCamelCase( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> int: '''simple docstring''' __lowercase= set() # Replace all the whitespace in our sentence __lowercase= input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase__ ) == 2_6 def _lowerCamelCase( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> Any: '''simple docstring''' __lowercase= [False] * 2_6 for char in input_str: if char.islower(): __lowercase= True elif char.isupper(): __lowercase= True return all(lowercase__ ) def _lowerCamelCase( lowercase__ = "The quick brown fox jumps over the lazy dog" , ) -> Tuple: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 2_6 def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' from timeit import timeit __lowercase= 'from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=lowercase__ ) ) print(timeit('is_pangram_faster()' , setup=lowercase__ ) ) print(timeit('is_pangram_fastest()' , setup=lowercase__ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
354
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCAmelCase = ['''gpt2'''] lowerCAmelCase = '''gpt2''' if is_tf_available(): class A ( tf.Module ): def __init__(self , lowerCAmelCase ): super().__init__() __lowercase= tokenizer __lowercase= AutoConfig.from_pretrained(UpperCamelCase_ ) __lowercase= TFGPTaLMHeadModel.from_config(UpperCamelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def _A (self , lowerCAmelCase ): __lowercase= self.tokenizer(UpperCamelCase_ ) __lowercase= tokenized['input_ids'].to_tensor() __lowercase= tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowercase= self.model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class A ( unittest.TestCase ): def _A (self ): super().setUp() __lowercase= [GPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowercase= [TFGPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowercase= [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __lowercase= list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _A (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowercase= tokenizer([test_inputs] , return_tensors='tf' ) __lowercase= tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowercase= python_outputs[key].numpy() __lowercase= tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def _A (self ): for tf_tokenizer in self.tf_tokenizers: __lowercase= tf.function(UpperCamelCase_ ) for test_inputs in self.test_sentences: __lowercase= tf.constant(UpperCamelCase_ ) __lowercase= compiled_tokenizer(UpperCamelCase_ ) __lowercase= tf_tokenizer(UpperCamelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _A (self ): for tf_tokenizer in self.tf_tokenizers: __lowercase= ModelToSave(tokenizer=UpperCamelCase_ ) __lowercase= tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase= model.serving(UpperCamelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowercase= Path(UpperCamelCase_ ) / 'saved.model' tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'serving_default': model.serving} ) __lowercase= tf.saved_model.load(UpperCamelCase_ ) __lowercase= loaded_model.signatures['serving_default'](UpperCamelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _A (self ): for tf_tokenizer in self.tf_tokenizers: __lowercase= tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase= tf_tokenizer(UpperCamelCase_ ) # Build model with some sample inputs __lowercase= tf_tokenizer.get_config() __lowercase= TFGPTaTokenizer.from_config(UpperCamelCase_ ) __lowercase= model_from_config(UpperCamelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _A (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowercase= 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __lowercase= tf.convert_to_tensor([self.test_sentences[0]] ) __lowercase= tf_tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ ) __lowercase= out['input_ids'].numpy().shape[1] assert out_length == max_length
355
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class A ( unittest.TestCase , lowerCamelCase__ ): def _A (self ): __lowercase= load_tool('text-to-speech' ) self.tool.setup() def _A (self ): torch.manual_seed(0 ) __lowercase= self.tool('hey' ) __lowercase= result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def _A (self ): torch.manual_seed(0 ) __lowercase= self.tool('hey' ) __lowercase= result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Tuple =IFInpaintingPipeline UpperCamelCase_ : Optional[Any] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} UpperCamelCase_ : Dict =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Dict =PipelineTesterMixin.required_optional_params - {"""latents"""} def _A (self ): return self._get_dummy_components() def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(_A ).startswith('mps' ): __lowercase= torch.manual_seed(_A ) else: __lowercase= torch.Generator(device=_A ).manual_seed(_A ) __lowercase= floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_A ) ).to(_A ) __lowercase= floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_A ) ).to(_A ) __lowercase= { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _A (self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _A (self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _A (self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _A (self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _A (self ): self._test_save_load_local() def _A (self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=1_6 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=3 , lowerCAmelCase=4 , lowerCAmelCase=None , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_mask __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_act __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= scope def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= None if self.use_input_mask: __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A (self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= BioGptModel(config=__snake_case ) model.to(__snake_case ) model.eval() __lowercase= model(__snake_case , attention_mask=__snake_case ) __lowercase= model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= BioGptForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() __lowercase= model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= BioGptModel(config=__snake_case ) model.to(__snake_case ) model.eval() # create attention mask __lowercase= torch.ones(input_ids.shape , dtype=torch.long , device=__snake_case ) __lowercase= self.seq_length // 2 __lowercase= 0 # first forward pass __lowercase= model(__snake_case , attention_mask=__snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase= ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __lowercase= ids_tensor((1,) , __snake_case ).item() + 1 __lowercase= ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __lowercase= random_other_next_tokens # append to next input_ids and attn_mask __lowercase= torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase= torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__snake_case )] , dim=1 , ) # get two different outputs __lowercase= model(__snake_case , attention_mask=__snake_case )['last_hidden_state'] __lowercase= model(__snake_case , past_key_values=__snake_case , attention_mask=__snake_case )['last_hidden_state'] # select random slice __lowercase= ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase= output_from_no_past[:, -1, random_slice_idx].detach() __lowercase= output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= BioGptModel(config=__snake_case ).to(__snake_case ).eval() __lowercase= torch.ones(input_ids.shape , dtype=torch.long , device=__snake_case ) # first forward pass __lowercase= model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) __lowercase= outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase= ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase= ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase= torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase= torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase= model(__snake_case , attention_mask=__snake_case )['last_hidden_state'] __lowercase= model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[ 'last_hidden_state' ] # select random slice __lowercase= ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase= output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase= output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase , lowerCAmelCase=False ): __lowercase= BioGptForCausalLM(__snake_case ) model.to(__snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() __lowercase= model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _A (self , lowerCAmelCase , *lowerCAmelCase ): __lowercase= BioGptModel(__snake_case ) __lowercase= model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= self.num_labels __lowercase= BioGptForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __lowercase= model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( __lowercase )= config_and_inputs __lowercase= {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCamelCase_ : Tuple =( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase_ : Dict =(BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase_ : Tuple =( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] =False def _A (self ): __lowercase= BioGptModelTester(self ) __lowercase= ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase= type self.model_tester.create_and_check_model(*__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__snake_case , gradient_checkpointing=__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__snake_case ) @slow def _A (self ): __lowercase= BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__snake_case ) __lowercase= BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowercase= 'left' # Define PAD Token = EOS Token = 50256 __lowercase= tokenizer.eos_token __lowercase= model.config.eos_token_id # use different length sentences to test batching __lowercase= [ 'Hello, my dog is a little', 'Today, I', ] __lowercase= tokenizer(__snake_case , return_tensors='pt' , padding=__snake_case ) __lowercase= inputs['input_ids'].to(__snake_case ) __lowercase= model.generate( input_ids=__snake_case , attention_mask=inputs['attention_mask'].to(__snake_case ) , ) __lowercase= tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(__snake_case ) __lowercase= model.generate(input_ids=__snake_case ) __lowercase= inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __lowercase= tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(__snake_case ) __lowercase= model.generate(input_ids=__snake_case , max_length=model.config.max_length - num_paddings ) __lowercase= tokenizer.batch_decode(__snake_case , skip_special_tokens=__snake_case ) __lowercase= tokenizer.decode(output_non_padded[0] , skip_special_tokens=__snake_case ) __lowercase= tokenizer.decode(output_padded[0] , skip_special_tokens=__snake_case ) __lowercase= [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , [non_padded_sentence, padded_sentence] ) @slow def _A (self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= BioGptModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= 3 __lowercase= input_dict['input_ids'] __lowercase= input_ids.ne(1 ).to(__snake_case ) __lowercase= ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase= BioGptForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __lowercase= model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() __lowercase= 3 __lowercase= 'multi_label_classification' __lowercase= input_dict['input_ids'] __lowercase= input_ids.ne(1 ).to(__snake_case ) __lowercase= ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase= BioGptForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __lowercase= model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __lowercase= torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] ) __lowercase= model(__snake_case )[0] __lowercase= 4_2_3_8_4 __lowercase= torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __snake_case ) __lowercase= torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def _A (self ): __lowercase= BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowercase= BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__snake_case ) torch.manual_seed(0 ) __lowercase= tokenizer('COVID-19 is' , return_tensors='pt' ).to(__snake_case ) __lowercase= model.generate( **__snake_case , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__snake_case , ) __lowercase= tokenizer.decode(output_ids[0] , skip_special_tokens=__snake_case ) __lowercase= ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__snake_case , __snake_case )
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase = imread(R'''digital_image_processing/image_data/lena_small.jpg''') lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= cn.convert_to_negative(lowerCAmelCase__ ) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase( ) -> str: '''simple docstring''' with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase__ , 1_1_0 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _lowerCamelCase( ) -> Dict: '''simple docstring''' __lowercase= canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowercase= canny.canny(lowerCAmelCase__ ) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' assert gg.gaussian_filter(lowerCAmelCase__ , 5 , sigma=0.9 ).all() def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowercase= conv.img_convolve(lowerCAmelCase__ , lowerCAmelCase__ ).astype(lowerCAmelCase__ ) assert res.any() def _lowerCamelCase( ) -> Tuple: '''simple docstring''' assert med.median_filter(lowerCAmelCase__ , 3 ).any() def _lowerCamelCase( ) -> Dict: '''simple docstring''' __lowercase, __lowercase= sob.sobel_filter(lowerCAmelCase__ ) assert grad.any() and theta.any() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= sp.make_sepia(lowerCAmelCase__ , 2_0 ) assert sepia.all() def _lowerCamelCase( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ) -> List[Any]: '''simple docstring''' __lowercase= bs.Burkes(imread(lowerCAmelCase__ , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def _lowerCamelCase( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[Any]: '''simple docstring''' __lowercase= rs.NearestNeighbour(imread(lowerCAmelCase__ , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __lowercase= imread(lowerCAmelCase__ , 0 ) # Test for get_neighbors_pixel function() return not None __lowercase= 0 __lowercase= 0 __lowercase= image[x_coordinate][y_coordinate] __lowercase= lbp.get_neighbors_pixel( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowercase= np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowercase= lbp.local_binary_value(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert lbp_image.any()
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
0
import functools def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= len(lowercase__ ) __lowercase= len(lowercase__ ) @functools.cache def min_distance(lowercase__ , lowercase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __lowercase= int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowercase__ ) , 1 + min_distance(lowercase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A ( unittest.TestCase ): UpperCamelCase_ : Union[str, Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase_ : List[str] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase_ : Dict ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase_ : Dict ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= ZeroShotClassificationPipeline( model=__A , tokenizer=__A , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(__A , {'sequence': ANY(__A ), 'labels': [ANY(__A )], 'scores': [ANY(__A )]} ) # No kwarg __lowercase= classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(__A , {'sequence': ANY(__A ), 'labels': [ANY(__A )], 'scores': [ANY(__A )]} ) __lowercase= classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(__A , {'sequence': ANY(__A ), 'labels': [ANY(__A )], 'scores': [ANY(__A )]} ) __lowercase= classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( __A , {'sequence': ANY(__A ), 'labels': [ANY(__A ), ANY(__A )], 'scores': [ANY(__A ), ANY(__A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __lowercase= classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( __A , {'sequence': ANY(__A ), 'labels': [ANY(__A ), ANY(__A )], 'scores': [ANY(__A ), ANY(__A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) __lowercase= classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(__A , {'sequence': ANY(__A ), 'labels': [ANY(__A )], 'scores': [ANY(__A )]} ) # https://github.com/huggingface/transformers/issues/13846 __lowercase= classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'labels': [ANY(__A ), ANY(__A )], 'scores': [ANY(__A ), ANY(__A )]} for i in range(1 ) ] , ) __lowercase= classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( __A , [ {'sequence': ANY(__A ), 'labels': [ANY(__A ), ANY(__A )], 'scores': [ANY(__A ), ANY(__A )]} for i in range(2 ) ] , ) with self.assertRaises(__A ): classifier('' , candidate_labels='politics' ) with self.assertRaises(__A ): classifier(__A , candidate_labels='politics' ) with self.assertRaises(__A ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(__A ): classifier('Who are you voting for in 2020?' , candidate_labels=__A ) with self.assertRaises(__A ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(__A ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=__A , ) self.run_entailment_id(__A ) def _A (self , lowerCAmelCase ): __lowercase= zero_shot_classifier.model.config __lowercase= config.labelaid __lowercase= zero_shot_classifier.entailment_id __lowercase= {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) __lowercase= {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __lowercase= {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) __lowercase= {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) __lowercase= original_labelaid self.assertEqual(__A , zero_shot_classifier.entailment_id ) @require_torch def _A (self ): __lowercase= pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 1_0_0 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def _A (self ): __lowercase= pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) __lowercase= zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__A ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def _A (self ): __lowercase= pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) __lowercase= zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__A ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def _A (self ): __lowercase= pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) __lowercase= zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__A ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) __lowercase= zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__A , ) self.assertEqual( nested_simplify(__A ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def _A (self ): __lowercase= pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) __lowercase= zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(__A ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) __lowercase= zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=__A , ) self.assertEqual( nested_simplify(__A ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
import os from collections import deque import torch from torch.utils.data import Dataset class A ( A_ ): def __init__(self , lowerCAmelCase="" , lowerCAmelCase="train" ): assert os.path.isdir(__a ) __lowercase= [] __lowercase= os.listdir(__a ) for story_filename in story_filenames_list: if "summary" in story_filename: continue __lowercase= os.path.join(__a , __a ) if not os.path.isfile(__a ): continue self.documents.append(__a ) def __len__(self ): return len(self.documents ) def __getitem__(self , lowerCAmelCase ): __lowercase= self.documents[idx] __lowercase= document_path.split('/' )[-1] with open(__a , encoding='utf-8' ) as source: __lowercase= source.read() __lowercase, __lowercase= process_story(__a ) return document_name, story_lines, summary_lines def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= list(filter(lambda lowercase__ : len(__snake_case ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it __lowercase= [_add_missing_period(__snake_case ) for line in nonempty_lines] # gather article lines __lowercase= [] __lowercase= deque(__snake_case ) while True: try: __lowercase= lines.popleft() if element.startswith('@highlight' ): break story_lines.append(__snake_case ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines __lowercase= list(filter(lambda lowercase__ : not t.startswith('@highlight' ) , __snake_case ) ) return story_lines, summary_lines def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Optional[Any]: '''simple docstring''' if len(__snake_case ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__snake_case )) ) return sequence def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= torch.ones_like(__snake_case ) __lowercase= sequence == pad_token_id __lowercase= 0 return mask def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= [tokenizer.encode(__snake_case ) for line in story_lines] __lowercase= [token for sentence in story_lines_token_ids for token in sentence] __lowercase= [tokenizer.encode(__snake_case ) for line in summary_lines] __lowercase= [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def _lowerCamelCase( lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' __lowercase= [] for sequence in batch: __lowercase= -1 __lowercase= [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__snake_case ) return torch.tensor(__snake_case )
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A ( _snake_case ): UpperCamelCase_ : List[str] ='''time_series_transformer''' UpperCamelCase_ : int ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__(self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = "student_t" , lowerCAmelCase = "nll" , lowerCAmelCase = 1 , lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase = "mean" , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = 0 , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = 3_2 , lowerCAmelCase = 3_2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = 2 , lowerCAmelCase = True , lowerCAmelCase = "gelu" , lowerCAmelCase = 6_4 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 0.1 , lowerCAmelCase = 1_0_0 , lowerCAmelCase = 0.02 , lowerCAmelCase=True , **lowerCAmelCase , ): __lowercase= prediction_length __lowercase= context_length or prediction_length __lowercase= distribution_output __lowercase= loss __lowercase= input_size __lowercase= num_time_features __lowercase= lags_sequence __lowercase= scaling __lowercase= num_dynamic_real_features __lowercase= num_static_real_features __lowercase= num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowercase= cardinality else: __lowercase= [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCamelCase__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowercase= embedding_dimension else: __lowercase= [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] __lowercase= num_parallel_samples # Transformer architecture configuration __lowercase= input_size * len(UpperCamelCase__ ) + self._number_of_features __lowercase= d_model __lowercase= encoder_attention_heads __lowercase= decoder_attention_heads __lowercase= encoder_ffn_dim __lowercase= decoder_ffn_dim __lowercase= encoder_layers __lowercase= decoder_layers __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= activation_function __lowercase= init_std __lowercase= use_cache super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__ ) @property def _A (self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class A ( unittest.TestCase ): def _A (self ): __lowercase= Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __lowercase= Vector() def _A (self ): __lowercase= Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_A ) , '(0,0,0,0,0,1)' ) def _A (self ): __lowercase= Vector([1, 2, 3, 4] ) self.assertEqual(len(_A ) , 4 ) def _A (self ): __lowercase= Vector([1, 2] ) __lowercase= Vector([1, 2, 3, 4, 5] ) __lowercase= Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __lowercase= Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3 ) def _A (self ): __lowercase= Vector([1, 2, 3] ) __lowercase= Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _A (self ): __lowercase= Vector([1, 2, 3] ) __lowercase= Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _A (self ): __lowercase= Vector([1, 2, 3] ) __lowercase= Vector([2, -1, 4] ) # for test of dot product __lowercase= Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def _A (self ): self.assertEqual(str(zero_vector(1_0 ) ).count('0' ) , 1_0 ) def _A (self ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def _A (self ): __lowercase= Vector([1, 2, 3] ) __lowercase= Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _A , _A ) ) , '(3,4,7)' ) def _A (self ): __lowercase= Vector([1, 0, 0, 0, 0, 0] ) __lowercase= x.copy() self.assertEqual(str(_A ) , str(_A ) ) def _A (self ): __lowercase= Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_A ) , '(0,1,0)' ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_A ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowercase= [[-3, -1_4, -1_0], [-5, -1_0, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_A , _A ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowercase= [[-3, 1_4, -1_0], [5, -1_0, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_A , _A ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __lowercase= Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_A ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowercase= Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def _A (self ): __lowercase= Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __lowercase= Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 1_0]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def _A (self ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
364
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
0
from math import factorial lowerCAmelCase = {str(d): factorial(d) for d in range(1_0)} def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(snake_case__ ) ) def _lowerCamelCase( ) -> int: '''simple docstring''' __lowercase= 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case__ ) if sum_of_digit_factorial(snake_case__ ) == i ) if __name__ == "__main__": print(F'{solution() = }')
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): UpperCamelCase_ : Tuple =StableDiffusionSAGPipeline UpperCamelCase_ : Tuple =TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Tuple =TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : List[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : Optional[Any] =TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase_ : List[str] =False def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __lowercase= DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __lowercase= AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __lowercase= CLIPTextModel(__lowercase ) __lowercase= CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowercase= { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(__lowercase ).startswith('mps' ): __lowercase= torch.manual_seed(__lowercase ) else: __lowercase= torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowercase= { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _A (self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowercase= sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __lowercase= '''.''' __lowercase= torch.manual_seed(0 ) __lowercase= sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _A (self ): __lowercase= StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase= sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __lowercase= '''.''' __lowercase= torch.manual_seed(0 ) __lowercase= sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' ) __lowercase= output.images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def _A (self ): __lowercase= StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase= sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __lowercase= '''.''' __lowercase= torch.manual_seed(0 ) __lowercase= sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type='np' , ) __lowercase= output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' with open(snake_case_ ) as metadata_file: __lowercase= json.load(snake_case_ ) __lowercase= LukeConfig(use_entity_aware_attention=snake_case_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __lowercase= torch.load(snake_case_ , map_location='cpu' ) # Load the entity vocab file __lowercase= load_entity_vocab(snake_case_ ) __lowercase= RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __lowercase= AddedToken('<ent>' , lstrip=snake_case_ , rstrip=snake_case_ ) __lowercase= AddedToken('<ent2>' , lstrip=snake_case_ , rstrip=snake_case_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case_ ) with open(os.path.join(snake_case_ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(snake_case_ , snake_case_ ) __lowercase= LukeTokenizer.from_pretrained(snake_case_ ) # Initialize the embeddings of the special tokens __lowercase= state_dict['embeddings.word_embeddings.weight'] __lowercase= word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __lowercase= word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __lowercase= torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowercase= F'encoder.layer.{layer_index}.attention.self.' __lowercase= state_dict[prefix + matrix_name] __lowercase= state_dict[prefix + matrix_name] __lowercase= state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowercase= state_dict['entity_embeddings.entity_embeddings.weight'] __lowercase= entity_emb[entity_vocab['[MASK]']] __lowercase= LukeModel(config=snake_case_ ).eval() __lowercase, __lowercase= model.load_state_dict(snake_case_ , strict=snake_case_ ) if not (len(snake_case_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(snake_case_ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __lowercase= LukeTokenizer.from_pretrained(snake_case_ , task='entity_classification' ) __lowercase= ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __lowercase= (3_9, 4_2) __lowercase= tokenizer(snake_case_ , entity_spans=[span] , add_prefix_space=snake_case_ , return_tensors='pt' ) __lowercase= model(**snake_case_ ) # Verify word hidden states if model_size == "large": __lowercase= torch.Size((1, 4_2, 1_0_2_4) ) __lowercase= torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base __lowercase= torch.Size((1, 4_2, 7_6_8) ) __lowercase= torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowercase= torch.Size((1, 1, 1_0_2_4) ) __lowercase= torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base __lowercase= torch.Size((1, 1, 7_6_8) ) __lowercase= torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , snake_case_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(snake_case_ ) ) model.save_pretrained(snake_case_ ) def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= {} with open(snake_case_ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(snake_case_ ): __lowercase, __lowercase= line.rstrip().split('\t' ) __lowercase= index return entity_vocab if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCAmelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
368
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class A ( pl.LightningModule ): def __init__(self , lowerCAmelCase ): super().__init__() __lowercase= model __lowercase= 2 __lowercase= nn.Linear(self.model.config.hidden_size , self.num_labels ) def _A (self ): pass def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= LongformerModel.from_pretrained(lowerCAmelCase_ ) __lowercase= LightningModel(lowerCAmelCase_ ) __lowercase= torch.load(lowerCAmelCase_ , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __lowercase= LongformerForQuestionAnswering.from_pretrained(lowerCAmelCase_ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCAmelCase_ ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
369
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''▁''' lowerCAmelCase = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} lowerCAmelCase = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } lowerCAmelCase = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } lowerCAmelCase = { '''ernie-m-base''': 5_1_4, '''ernie-m-large''': 5_1_4, } lowerCAmelCase = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class A ( __snake_case ): UpperCamelCase_ : List[str] =["input_ids"] UpperCamelCase_ : Dict =VOCAB_FILES_NAMES UpperCamelCase_ : List[str] =PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple =RESOURCE_FILES_NAMES def __init__(self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase="utf8" , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase = None , **lowerCAmelCase , ): __lowercase= {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , vocab_file=UpperCamelCase__ , encoding=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) __lowercase= do_lower_case __lowercase= sentencepiece_model_ckpt __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __lowercase= self.load_vocab(filepath=UpperCamelCase__ ) else: __lowercase= {self.sp_model.id_to_piece(UpperCamelCase__ ): id for id in range(self.sp_model.get_piece_size() )} __lowercase= {v: k for k, v in self.vocab.items()} def _A (self , lowerCAmelCase ): if text is None: return None __lowercase= self.tokenize(UpperCamelCase__ ) __lowercase= "", [] for i, ch in enumerate(UpperCamelCase__ ): if ch in self.SP_CHAR_MAPPING: __lowercase= self.SP_CHAR_MAPPING.get(UpperCamelCase__ ) else: __lowercase= unicodedata.normalize('NFKC' , UpperCamelCase__ ) if self.is_whitespace(UpperCamelCase__ ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase__ ) ) __lowercase= normalized_text, [], 0 if self.do_lower_case: __lowercase= text.lower() for token in split_tokens: if token[:1] == "▁": __lowercase= token[1:] __lowercase= text[offset:].index(UpperCamelCase__ ) + offset __lowercase= start + len(UpperCamelCase__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __lowercase= end return token_mapping @property def _A (self ): return len(self.vocab ) def _A (self ): return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self ): __lowercase= self.__dict__.copy() __lowercase= None return state def __setstate__(self , lowerCAmelCase ): __lowercase= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase= {} __lowercase= spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _A (self , lowerCAmelCase ): return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase__ , UpperCamelCase__ ) for c in text) ) def _A (self , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=6_4 , lowerCAmelCase=0.1 ): if self.sp_model_kwargs.get('enable_sampling' ) is True: __lowercase= True if self.sp_model_kwargs.get('alpha' ) is not None: __lowercase= self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: __lowercase= self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: __lowercase= self.sp_model.EncodeAsPieces(UpperCamelCase__ ) else: __lowercase= self.sp_model.SampleEncodeAsPieces(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowercase= [] for pi, piece in enumerate(UpperCamelCase__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase__ ) and pi != 0: new_pieces.append(UpperCamelCase__ ) continue else: continue __lowercase= 0 for i, chunk in enumerate(UpperCamelCase__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase__ ) or self.is_punct(UpperCamelCase__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase__ ) __lowercase= i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase= i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __lowercase= i if len(UpperCamelCase__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _A (self , lowerCAmelCase ): __lowercase= "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def _A (self , lowerCAmelCase ): __lowercase= self.convert_ids_to_tokens(UpperCamelCase__ ) __lowercase= "".join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def _A (self , lowerCAmelCase ): return self.vocab.get(UpperCamelCase__ , self.vocab.get(self.unk_token ) ) def _A (self , lowerCAmelCase ): return self.reverse_vocab.get(UpperCamelCase__ , self.unk_token ) def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase= [self.cls_token_id] __lowercase= [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _A (self , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1] def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase__ ) + 1) + [1] * (len(UpperCamelCase__ ) + 3) def _A (self , lowerCAmelCase ): if "\u4e00" <= char <= "\u9fff": return True return False def _A (self , lowerCAmelCase ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _A (self , lowerCAmelCase ): if char in ",;:.?!~,;:。?!《》【】": return True return False def _A (self , lowerCAmelCase ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase__ ) == 1: __lowercase= unicodedata.category(UpperCamelCase__ ) if cat == "Zs": return True return False def _A (self , lowerCAmelCase ): __lowercase= {} with io.open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(UpperCamelCase__ ): __lowercase= line.rstrip('\n' ) __lowercase= int(UpperCamelCase__ ) return token_to_idx def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= 0 if os.path.isdir(UpperCamelCase__ ): __lowercase= os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __lowercase= (filename_prefix + "-" if filename_prefix else "") + save_directory with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __lowercase= token_index writer.write(token + '\n' ) index += 1 __lowercase= os.path.join(UpperCamelCase__ , 'sentencepiece.bpe.model' ) with open(UpperCamelCase__ , 'wb' ) as fi: __lowercase= self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (vocab_file,)
370
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
0
import argparse import os import re lowerCAmelCase = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase = re.compile(R'''\[([^\]]+)\]''') def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= _re_indent.search(__lowerCAmelCase ) return "" if search is None else search.groups()[0] def _lowerCamelCase( lowercase__ , lowercase__="" , lowercase__=None , lowercase__=None ) -> int: '''simple docstring''' __lowercase= 0 __lowercase= code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__lowerCAmelCase ): index += 1 __lowercase= ['\n'.join(lines[:index] )] else: __lowercase= [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase= [lines[index]] index += 1 while index < len(__lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(__lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__lowerCAmelCase ) ) if index < len(__lowerCAmelCase ) - 1: __lowercase= [lines[index + 1]] index += 1 else: __lowercase= [] else: blocks.append('\n'.join(__lowerCAmelCase ) ) __lowercase= [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__lowerCAmelCase ) > 0: blocks.append('\n'.join(__lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__lowerCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' def _inner(lowercase__ ): return key(__lowerCAmelCase ).lower().replace('_' , '' ) return _inner def _lowerCamelCase( lowercase__ , lowercase__=None ) -> List[Any]: '''simple docstring''' def noop(lowercase__ ): return x if key is None: __lowercase= noop # Constants are all uppercase, they go first. __lowercase= [obj for obj in objects if key(__lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase= [obj for obj in objects if key(__lowerCAmelCase )[0].isupper() and not key(__lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. __lowercase= [obj for obj in objects if not key(__lowerCAmelCase )[0].isupper()] __lowercase= ignore_underscore(__lowerCAmelCase ) return sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase ) + sorted(__lowerCAmelCase , key=__lowerCAmelCase ) def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' def _replace(lowercase__ ): __lowercase= match.groups()[0] if "," not in imports: return F'[{imports}]' __lowercase= [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase= keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(__lowerCAmelCase )] ) + "]" __lowercase= import_statement.split('\n' ) if len(__lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase= 2 if lines[1].strip() == '[' else 1 __lowercase= [(i, _re_strip_line.search(__lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase= sort_objects(__lowerCAmelCase , key=lambda lowercase__ : x[1] ) __lowercase= [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase= _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase= [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase= keys[:-1] __lowercase= get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(__lowerCAmelCase )] ) return "\n".join(__lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line __lowercase= _re_bracket_content.sub(_replace , __lowerCAmelCase ) return import_statement def _lowerCamelCase( lowercase__ , lowercase__=True ) -> Optional[Any]: '''simple docstring''' with open(__lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase= split_code_in_indented_blocks( __lowerCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase= main_blocks[block_idx] __lowercase= block.split('\n' ) # Get to the start of the imports. __lowercase= 0 while line_idx < len(__lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase= len(__lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(__lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. __lowercase= '\n'.join(block_lines[line_idx:-1] ) __lowercase= get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase= split_code_in_indented_blocks(__lowerCAmelCase , indent_level=__lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase= _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase= [(pattern.search(__lowerCAmelCase ).groups()[0] if pattern.search(__lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase= [(i, key) for i, key in enumerate(__lowerCAmelCase ) if key is not None] __lowercase= [x[0] for x in sorted(__lowerCAmelCase , key=lambda lowercase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase= 0 __lowercase= [] for i in range(len(__lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowercase= sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. __lowercase= '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__lowerCAmelCase ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(__lowerCAmelCase ) ) def _lowerCamelCase( lowercase__=True ) -> str: '''simple docstring''' __lowercase= [] for root, _, files in os.walk(__lowerCAmelCase ): if "__init__.py" in files: __lowercase= sort_imports(os.path.join(__lowerCAmelCase , '__init__.py' ) , check_only=__lowerCAmelCase ) if result: __lowercase= [os.path.join(__lowerCAmelCase , '__init__.py' )] if len(__lowerCAmelCase ) > 0: raise ValueError(F'Would overwrite {len(__lowerCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
371
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
350
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
0
lowerCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
351
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) # TODO Update this lowerCAmelCase = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class A ( A_ ): UpperCamelCase_ : Any ='''esm''' def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=1_0_2_6 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , mask_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= position_embedding_type __lowercase= use_cache __lowercase= emb_layer_norm_before __lowercase= token_dropout __lowercase= is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowercase= EsmFoldConfig() elif isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= EsmFoldConfig(**lowerCAmelCase ) __lowercase= esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowercase= get_default_vocab_list() else: __lowercase= vocab_list else: __lowercase= None __lowercase= None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowerCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def _A (self ): __lowercase= super().to_dict() if isinstance(self.esmfold_config , lowerCAmelCase ): __lowercase= self.esmfold_config.to_dict() return output @dataclass class A : UpperCamelCase_ : str =None UpperCamelCase_ : bool =True UpperCamelCase_ : bool =False UpperCamelCase_ : bool =False UpperCamelCase_ : bool =False UpperCamelCase_ : float =0 UpperCamelCase_ : bool =True UpperCamelCase_ : bool =False UpperCamelCase_ : int =128 UpperCamelCase_ : "TrunkConfig" =None def _A (self ): if self.trunk is None: __lowercase= TrunkConfig() elif isinstance(self.trunk , lowerCAmelCase ): __lowercase= TrunkConfig(**self.trunk ) def _A (self ): __lowercase= asdict(self ) __lowercase= self.trunk.to_dict() return output @dataclass class A : UpperCamelCase_ : int =48 UpperCamelCase_ : int =1_024 UpperCamelCase_ : int =128 UpperCamelCase_ : int =32 UpperCamelCase_ : int =32 UpperCamelCase_ : int =32 UpperCamelCase_ : float =0 UpperCamelCase_ : float =0 UpperCamelCase_ : bool =False UpperCamelCase_ : int =4 UpperCamelCase_ : Optional[int] =128 UpperCamelCase_ : "StructureModuleConfig" =None def _A (self ): if self.structure_module is None: __lowercase= StructureModuleConfig() elif isinstance(self.structure_module , lowerCAmelCase ): __lowercase= StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowercase= self.sequence_state_dim // self.sequence_head_width __lowercase= self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def _A (self ): __lowercase= asdict(self ) __lowercase= self.structure_module.to_dict() return output @dataclass class A : UpperCamelCase_ : int =384 UpperCamelCase_ : int =128 UpperCamelCase_ : int =16 UpperCamelCase_ : int =128 UpperCamelCase_ : int =12 UpperCamelCase_ : int =4 UpperCamelCase_ : int =8 UpperCamelCase_ : float =0.1 UpperCamelCase_ : int =8 UpperCamelCase_ : int =1 UpperCamelCase_ : int =2 UpperCamelCase_ : int =7 UpperCamelCase_ : int =10 UpperCamelCase_ : float =1e-8 UpperCamelCase_ : float =1e5 def _A (self ): return asdict(self ) def _lowerCamelCase( ) -> int: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
352
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
0
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__="attention" ) -> Dict: '''simple docstring''' __lowercase= params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] __lowercase= params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] __lowercase= params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] __lowercase= params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=False ) -> Any: '''simple docstring''' if split_mlp_wi: __lowercase= params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] __lowercase= params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] __lowercase= (wi_a, wi_a) else: __lowercase= params[F'{prefix}/layers_{i}/mlp/wi/kernel'] __lowercase= params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def _lowerCamelCase( lowercase__ , *, lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= traverse_util.flatten_dict(variables['target'] ) __lowercase= {'/'.join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowercase= 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , lowercase__ ) __lowercase= collections.OrderedDict() # Shared embeddings. __lowercase= old['token_embedder/embedding'] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). __lowercase= tax_layer_norm_lookup(lowercase__ , lowercase__ , 'encoder' , 'pre_attention_layer_norm' ) __lowercase, __lowercase, __lowercase, __lowercase= tax_attention_lookup(lowercase__ , lowercase__ , 'encoder' , 'attention' ) __lowercase= layer_norm __lowercase= k.T __lowercase= o.T __lowercase= q.T __lowercase= v.T # Block i, layer 1 (MLP). __lowercase= tax_layer_norm_lookup(lowercase__ , lowercase__ , 'encoder' , 'pre_mlp_layer_norm' ) __lowercase, __lowercase= tax_mlp_lookup(lowercase__ , lowercase__ , 'encoder' , lowercase__ ) __lowercase= layer_norm if split_mlp_wi: __lowercase= wi[0].T __lowercase= wi[1].T else: __lowercase= wi.T __lowercase= wo.T __lowercase= old[ 'encoder/relpos_bias/rel_embedding' ].T __lowercase= old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). __lowercase= tax_layer_norm_lookup(lowercase__ , lowercase__ , 'decoder' , 'pre_self_attention_layer_norm' ) __lowercase, __lowercase, __lowercase, __lowercase= tax_attention_lookup(lowercase__ , lowercase__ , 'decoder' , 'self_attention' ) __lowercase= layer_norm __lowercase= k.T __lowercase= o.T __lowercase= q.T __lowercase= v.T # Block i, layer 1 (Cross Attention). __lowercase= tax_layer_norm_lookup(lowercase__ , lowercase__ , 'decoder' , 'pre_cross_attention_layer_norm' ) __lowercase, __lowercase, __lowercase, __lowercase= tax_attention_lookup(lowercase__ , lowercase__ , 'decoder' , 'encoder_decoder_attention' ) __lowercase= layer_norm __lowercase= k.T __lowercase= o.T __lowercase= q.T __lowercase= v.T # Block i, layer 2 (MLP). __lowercase= tax_layer_norm_lookup(lowercase__ , lowercase__ , 'decoder' , 'pre_mlp_layer_norm' ) __lowercase, __lowercase= tax_mlp_lookup(lowercase__ , lowercase__ , 'decoder' , lowercase__ ) __lowercase= layer_norm if split_mlp_wi: __lowercase= wi[0].T __lowercase= wi[1].T else: __lowercase= wi.T __lowercase= wo.T __lowercase= old['decoder/decoder_norm/scale'] __lowercase= old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowercase= old['decoder/logits_dense/kernel'].T return new def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowercase= state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowercase= state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __lowercase= state_dict['shared.weight'] return state_dict def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= checkpoints.load_tax_checkpoint(lowercase__ ) __lowercase= convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) __lowercase= make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ) -> int: '''simple docstring''' __lowercase= TaConfig.from_json_file(lowercase__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowercase= TaEncoderModel(lowercase__ ) else: __lowercase= TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print('Done' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
353
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
0
from __future__ import annotations import math import random from typing import Any class A : def __init__(self ): __lowercase= [] __lowercase= 0 __lowercase= 0 def _A (self ): return self.head == self.tail def _A (self , lowerCAmelCase ): self.data.append(lowerCAmelCase ) __lowercase= self.tail + 1 def _A (self ): __lowercase= self.data[self.head] __lowercase= self.head + 1 return ret def _A (self ): return self.tail - self.head def _A (self ): print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class A : def __init__(self , lowerCAmelCase ): __lowercase= data __lowercase= None __lowercase= None __lowercase= 1 def _A (self ): return self.data def _A (self ): return self.left def _A (self ): return self.right def _A (self ): return self.height def _A (self , lowerCAmelCase ): __lowercase= data def _A (self , lowerCAmelCase ): __lowercase= node def _A (self , lowerCAmelCase ): __lowercase= node def _A (self , lowerCAmelCase ): __lowercase= height def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' if node is None: return 0 return node.get_height() def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' if a > b: return a return b def _lowerCamelCase( lowercase__ ) -> MyNode: '''simple docstring''' print('left rotation node:' , node.get_data() ) __lowercase= node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase__ ) __lowercase= my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase__ ) __lowercase= my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase__ ) return ret def _lowerCamelCase( lowercase__ ) -> MyNode: '''simple docstring''' print('right rotation node:' , node.get_data() ) __lowercase= node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase__ ) __lowercase= my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase__ ) __lowercase= my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase__ ) return ret def _lowerCamelCase( lowercase__ ) -> MyNode: '''simple docstring''' __lowercase= node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase__ ) ) return right_rotation(lowercase__ ) def _lowerCamelCase( lowercase__ ) -> MyNode: '''simple docstring''' __lowercase= node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase__ ) ) return left_rotation(lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> MyNode | None: '''simple docstring''' if node is None: return MyNode(lowercase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __lowercase= node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __lowercase= right_rotation(lowercase__ ) else: __lowercase= lr_rotation(lowercase__ ) else: node.set_right(insert_node(node.get_right() , lowercase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __lowercase= node.get_right() assert right_child is not None if data < right_child.get_data(): __lowercase= rl_rotation(lowercase__ ) else: __lowercase= left_rotation(lowercase__ ) __lowercase= my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase__ ) return node def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' while True: __lowercase= root.get_right() if right_child is None: break __lowercase= right_child return root.get_data() def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' while True: __lowercase= root.get_left() if left_child is None: break __lowercase= left_child return root.get_data() def _lowerCamelCase( lowercase__ , lowercase__ ) -> MyNode | None: '''simple docstring''' __lowercase= root.get_left() __lowercase= root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __lowercase= get_left_most(lowercase__ ) root.set_data(lowercase__ ) root.set_right(del_node(lowercase__ , lowercase__ ) ) elif left_child is not None: __lowercase= left_child elif right_child is not None: __lowercase= right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(lowercase__ , lowercase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase__ , lowercase__ ) ) if get_height(lowercase__ ) - get_height(lowercase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __lowercase= left_rotation(lowercase__ ) else: __lowercase= rl_rotation(lowercase__ ) elif get_height(lowercase__ ) - get_height(lowercase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __lowercase= right_rotation(lowercase__ ) else: __lowercase= lr_rotation(lowercase__ ) __lowercase= my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase__ ) return root class A : def __init__(self ): __lowercase= None def _A (self ): return get_height(self.root ) def _A (self , lowerCAmelCase ): print('insert:' + str(lowerCAmelCase ) ) __lowercase= insert_node(self.root , lowerCAmelCase ) def _A (self , lowerCAmelCase ): print('delete:' + str(lowerCAmelCase ) ) if self.root is None: print('Tree is empty!' ) return __lowercase= del_node(self.root , lowerCAmelCase ) def __str__(self , ): # a level traversale, gives a more intuitive look on the tree __lowercase= '' __lowercase= MyQueue() q.push(self.root ) __lowercase= self.get_height() if layer == 0: return output __lowercase= 0 while not q.is_empty(): __lowercase= q.pop() __lowercase= ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __lowercase= cnt + 1 for i in range(1_0_0 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: __lowercase= layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _lowerCamelCase( ) -> None: '''simple docstring''' import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCAmelCase = AVLtree() lowerCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
354
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
0
import cva import numpy as np class A : def __init__(self , lowerCAmelCase , lowerCAmelCase ): if k in (0.04, 0.06): __lowercase= k __lowercase= window_size else: raise ValueError('invalid k value' ) def __str__(self ): return str(self.k ) def _A (self , lowerCAmelCase ): __lowercase= cva.imread(lowerCAmelCase , 0 ) __lowercase, __lowercase= img.shape __lowercase= [] __lowercase= img.copy() __lowercase= cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB ) __lowercase, __lowercase= np.gradient(lowerCAmelCase ) __lowercase= dx**2 __lowercase= dy**2 __lowercase= dx * dy __lowercase= 0.04 __lowercase= self.window_size // 2 for y in range(lowerCAmelCase , h - offset ): for x in range(lowerCAmelCase , w - offset ): __lowercase= ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase= iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase= ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __lowercase= (wxx * wyy) - (wxy**2) __lowercase= wxx + wyy __lowercase= det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_5_5 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase = HarrisCorner(0.0_4, 3) lowerCAmelCase ,lowerCAmelCase = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
355
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
0
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers lowerCAmelCase = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
357
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
358
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = '''▁''' lowerCAmelCase = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCAmelCase = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCAmelCase = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off lowerCAmelCase = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A ( A_ ): UpperCamelCase_ : Tuple =VOCAB_FILES_NAMES UpperCamelCase_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : List[int] =[] UpperCamelCase_ : List[int] =[] def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<unk>" , lowerCAmelCase="m2m100" , lowerCAmelCase = None , lowerCAmelCase=8 , **lowerCAmelCase , ): __lowercase= {} if sp_model_kwargs is None else sp_model_kwargs __lowercase= language_codes __lowercase= FAIRSEQ_LANGUAGE_CODES[language_codes] __lowercase= {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __lowercase= kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , language_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= vocab_file __lowercase= load_json(lowerCAmelCase ) __lowercase= {v: k for k, v in self.encoder.items()} __lowercase= spm_file __lowercase= load_spm(lowerCAmelCase , self.sp_model_kwargs ) __lowercase= len(self.encoder ) __lowercase= { self.get_lang_token(lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase ) } __lowercase= {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCAmelCase )} __lowercase= {v: k for k, v in self.lang_token_to_id.items()} __lowercase= src_lang if src_lang is not None else 'en' __lowercase= tgt_lang __lowercase= self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __lowercase= num_madeup_words @property def _A (self ): return len(self.encoder ) + len(self.lang_token_to_id ) @property def _A (self ): return self._src_lang @src_lang.setter def _A (self , lowerCAmelCase ): __lowercase= new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A (self , lowerCAmelCase ): return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def _A (self , lowerCAmelCase ): if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def _A (self , lowerCAmelCase ): if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCAmelCase , self.unk_token ) def _A (self , lowerCAmelCase ): __lowercase= [] __lowercase= '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase ) + token __lowercase= [] else: current_sub_tokens.append(lowerCAmelCase ) out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) __lowercase= [1] * len(self.prefix_tokens ) __lowercase= [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A (self ): __lowercase= {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): __lowercase= self.__dict__.copy() __lowercase= None return state def __setstate__(self , lowerCAmelCase ): __lowercase= d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowercase= {} __lowercase= load_spm(self.spm_file , self.sp_model_kwargs ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= Path(lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __lowercase= save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __lowercase= save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , 'wb' ) as fi: __lowercase= self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def _A (self , lowerCAmelCase , lowerCAmelCase = "en" , lowerCAmelCase = None , lowerCAmelCase = "ro" , **lowerCAmelCase , ): __lowercase= src_lang __lowercase= tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowercase= src_lang __lowercase= self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , **lowerCAmelCase ) __lowercase= self.get_lang_id(lowerCAmelCase ) __lowercase= tgt_lang_id return inputs def _A (self ): self.set_src_lang_special_tokens(self.src_lang ) def _A (self ): self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) __lowercase= self.lang_token_to_id[lang_token] __lowercase= [self.cur_lang_id] __lowercase= [self.eos_token_id] def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) __lowercase= self.lang_token_to_id[lang_token] __lowercase= [self.cur_lang_id] __lowercase= [self.eos_token_id] def _A (self , lowerCAmelCase ): return self.lang_code_to_token[lang] def _A (self , lowerCAmelCase ): __lowercase= self.get_lang_token(lowerCAmelCase ) return self.lang_token_to_id[lang_token] def _lowerCamelCase( lowercase__ , lowercase__ ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' __lowercase= sentencepiece.SentencePieceProcessor(**lowercase__ ) spm.Load(str(lowercase__ ) ) return spm def _lowerCamelCase( lowercase__ ) -> Union[Dict, List]: '''simple docstring''' with open(lowercase__ , 'r' ) as f: return json.load(lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> None: '''simple docstring''' with open(lowercase__ , 'w' ) as f: json.dump(lowercase__ , lowercase__ , indent=2 )
359
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
0
class A : def __init__(self , lowerCAmelCase ): # we need a list not a string, so do something to change the type __lowercase= arr.split(',' ) def _A (self ): __lowercase= [int(self.array[0] )] * len(self.array ) __lowercase= [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowercase= max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowercase= max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase = input('''please input some numbers:''') lowerCAmelCase = SubArray(whole_array) lowerCAmelCase = array.solve_sub_array() print(('''the results is:''', re))
360
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
0
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class A ( unittest.TestCase ): def _A (self ): __lowercase= inspect.getfile(accelerate.test_utils ) __lowercase= os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __lowercase= os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) __lowercase= os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def _A (self ): print(f'Found {torch.cuda.device_count()} devices.' ) __lowercase= ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _A (self ): print(f'Found {torch.cuda.device_count()} devices.' ) __lowercase= ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _A (self ): __lowercase= ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) @require_multi_gpu def _A (self ): print(f'Found {torch.cuda.device_count()} devices, using 2 devices only' ) __lowercase= ['torchrun', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase = Accelerator() lowerCAmelCase = (accelerator.state.process_index + 2, 1_0) lowerCAmelCase = torch.randint(0, 1_0, shape).to(accelerator.device) lowerCAmelCase = '''''' lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
361
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=1_8 , lowerCAmelCase=3_0 , lowerCAmelCase=4_0_0 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , ): __lowercase= parent __lowercase= batch_size __lowercase= num_channels __lowercase= image_size __lowercase= min_resolution __lowercase= max_resolution __lowercase= do_resize __lowercase= size if size is not None else {'height': 1_8, 'width': 2_0} __lowercase= do_thumbnail __lowercase= do_align_axis __lowercase= do_pad __lowercase= do_normalize __lowercase= image_mean __lowercase= image_std def _A (self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Optional[Any] =DonutImageProcessor if is_vision_available() else None def _A (self ): __lowercase= DonutImageProcessingTester(self ) @property def _A (self ): return self.image_processor_tester.prepare_image_processor_dict() def _A (self ): __lowercase= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_thumbnail' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_pad' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) def _A (self ): __lowercase= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 2_0} ) __lowercase= self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) # Previous config had dimensions in (width, height) order __lowercase= self.image_processing_class.from_dict(self.image_processor_dict , size=(4_2, 8_4) ) self.assertEqual(image_processor.size , {'height': 8_4, 'width': 4_2} ) def _A (self ): pass @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig lowerCAmelCase = logging.get_logger(__name__) # General docstring lowerCAmelCase = '''RegNetConfig''' # Base docstring lowerCAmelCase = '''facebook/regnet-y-040''' lowerCAmelCase = [1, 1_0_8_8, 7, 7] # Image classification docstring lowerCAmelCase = '''facebook/regnet-y-040''' lowerCAmelCase = '''tabby, tabby cat''' lowerCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase = 3 , lowerCAmelCase = 1 , lowerCAmelCase = 1 , lowerCAmelCase = "relu" , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowercase= tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowercase= tf.keras.layers.ConvaD( filters=lowerCAmelCase , kernel_size=lowerCAmelCase , strides=lowerCAmelCase , padding='VALID' , groups=lowerCAmelCase , use_bias=lowerCAmelCase , name='convolution' , ) __lowercase= tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) __lowercase= ACTaFN[activation] if activation is not None else tf.identity def _A (self , lowerCAmelCase ): __lowercase= self.convolution(self.padding(lowerCAmelCase ) ) __lowercase= self.normalization(lowerCAmelCase ) __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= config.num_channels __lowercase= TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _A (self , lowerCAmelCase ): __lowercase= shape_list(lowerCAmelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 2, 3, 1) ) __lowercase= self.embedder(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase = 2 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= tf.keras.layers.ConvaD( filters=lowerCAmelCase , kernel_size=1 , strides=lowerCAmelCase , use_bias=lowerCAmelCase , name='convolution' ) __lowercase= tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def _A (self , lowerCAmelCase , lowerCAmelCase = False ): return self.normalization(self.convolution(lowerCAmelCase ) , training=lowerCAmelCase ) class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase , name='pooler' ) __lowercase= [ tf.keras.layers.ConvaD(filters=lowerCAmelCase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowerCAmelCase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _A (self , lowerCAmelCase ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowercase= self.pooler(lowerCAmelCase ) for layer_module in self.attention: __lowercase= layer_module(lowerCAmelCase ) __lowercase= hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= in_channels != out_channels or stride != 1 __lowercase= max(1 , out_channels // config.groups_width ) __lowercase= ( TFRegNetShortCut(lowerCAmelCase , stride=lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowercase= [ TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase , name='layer.2' ), ] __lowercase= ACTaFN[config.hidden_act] def _A (self , lowerCAmelCase ): __lowercase= hidden_state for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) __lowercase= self.shortcut(lowerCAmelCase ) hidden_state += residual __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= in_channels != out_channels or stride != 1 __lowercase= max(1 , out_channels // config.groups_width ) __lowercase= ( TFRegNetShortCut(lowerCAmelCase , stride=lowerCAmelCase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __lowercase= [ TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase , name='layer.3' ), ] __lowercase= ACTaFN[config.hidden_act] def _A (self , lowerCAmelCase ): __lowercase= hidden_state for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) __lowercase= self.shortcut(lowerCAmelCase ) hidden_state += residual __lowercase= self.activation(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 2 , lowerCAmelCase = 2 , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __lowercase= [ # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , name='layers.0' ), *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def _A (self , lowerCAmelCase ): for layer_module in self.layers: __lowercase= layer_module(lowerCAmelCase ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __lowercase= zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase , name=f'stages.{i+1}' ) ) def _A (self , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = True ): __lowercase= () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase= hidden_states + (hidden_state,) __lowercase= stage_module(lowerCAmelCase ) if output_hidden_states: __lowercase= hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase ) @keras_serializable class A ( tf.keras.layers.Layer ): UpperCamelCase_ : Union[str, Any] =RegNetConfig def __init__(self , lowerCAmelCase , **lowerCAmelCase ): super().__init__(**lowerCAmelCase ) __lowercase= config __lowercase= TFRegNetEmbeddings(lowerCAmelCase , name='embedder' ) __lowercase= TFRegNetEncoder(lowerCAmelCase , name='encoder' ) __lowercase= tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase , name='pooler' ) @unpack_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.embedder(lowerCAmelCase , training=lowerCAmelCase ) __lowercase= self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase ) __lowercase= encoder_outputs[0] __lowercase= self.pooler(lowerCAmelCase ) # Change to NCHW output format have uniformity in the modules __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) __lowercase= tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowercase= tuple([tf.transpose(lowerCAmelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( A_ ): UpperCamelCase_ : Optional[Any] =RegNetConfig UpperCamelCase_ : Optional[int] ='''regnet''' UpperCamelCase_ : Union[str, Any] ='''pixel_values''' @property def _A (self ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} lowerCAmelCase = R''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCAmelCase = R''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , A_ , ) class A ( A_ ): def __init__(self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) __lowercase= TFRegNetMainLayer(lowerCAmelCase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.regnet( pixel_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , A_ , ) class A ( A_ , A_ ): def __init__(self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) __lowercase= config.num_labels __lowercase= TFRegNetMainLayer(lowerCAmelCase , name='regnet' ) # classification head __lowercase= [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _A (self , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase=False , ): __lowercase= ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase= return_dict if return_dict is not None else self.config.use_return_dict __lowercase= self.regnet( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase , training=lowerCAmelCase ) __lowercase= outputs.pooler_output if return_dict else outputs[1] __lowercase= self.classifier[0](lowerCAmelCase ) __lowercase= self.classifier[1](lowerCAmelCase ) __lowercase= None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase , logits=lowerCAmelCase ) if not return_dict: __lowercase= (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states )
363
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
0
import string def _lowerCamelCase( lowercase__ ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __lowercase= '' for symbol in message: if symbol in string.ascii_uppercase: __lowercase= string.ascii_uppercase.find(lowercase__ ) __lowercase= num - key if num < 0: __lowercase= num + len(string.ascii_uppercase ) __lowercase= translated + string.ascii_uppercase[num] else: __lowercase= translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= input('Encrypted message: ' ) __lowercase= message.upper() decrypt(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
364
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
0
from ... import PretrainedConfig lowerCAmelCase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase_ : List[str] ='''nezha''' def __init__(self , lowerCAmelCase=2_1_1_2_8 , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=6_4 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= max_relative_position __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout __lowercase= use_cache
366
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
0
"""simple docstring""" def _lowerCamelCase( lowercase__ ) -> list[int]: '''simple docstring''' __lowercase= len(lowercase__ ) for i in range(lowercase__ ): for j in range(i + 1 , lowercase__ ): if numbers[j] < numbers[i]: __lowercase, __lowercase= numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
367
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
0