code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase_ = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Optional[int]: a_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/")) a_ = self.transformer_dir shutil.copy( os.path.join(__UpperCAmelCase , "src/transformers/models/bert/modeling_bert.py") , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py") , ) def UpperCAmelCase__ ( self) ->int: a_ = "src/transformers" shutil.rmtree(self.transformer_dir) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Dict: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: a_ = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result a_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19) a_ = black.format_str(__UpperCAmelCase , mode=__UpperCAmelCase) a_ = os.path.join(self.transformer_dir , "new_code.py") with open(__UpperCAmelCase , "w" , newline="\n") as f: f.write(__UpperCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCAmelCase) with open(__UpperCAmelCase , "r") as f: self.assertTrue(f.read() , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead") self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) # Copy consistency with a really long name a_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("Bert" , __UpperCAmelCase , __UpperCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __UpperCAmelCase , overwrite_result=re.sub("Bert" , "TestModel" , __UpperCAmelCase) , ) def UpperCAmelCase__ ( self) ->int: a_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) self.assertFalse(__UpperCAmelCase) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__UpperCAmelCase) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) a_ , a_ = check_copies.convert_to_localized_md( __UpperCAmelCase , __UpperCAmelCase , localized_readme["format_model_list"]) # Check if the model link is synchronized. self.assertEqual(__UpperCAmelCase , __UpperCAmelCase)
364
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->List[Any]: """simple docstring""" if not head: return True # split the list to two parts a_ , a_ = head.next, head while fast and fast.next: a_ = fast.next.next a_ = slow.next a_ = slow.next a_ = None # Don't forget here! But forget still works! # reverse the second part a_ = None while second: a_ = second.next a_ = node a_ = second a_ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False a_ = node.next a_ = head.next return True def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) a_ = a_ = a_ = head while fast and fast.next: a_ , a_ = fast.next.next, slow.next # 2. Push the second half into the stack a_ = [slow.val] while slow.next: a_ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False a_ = cur.next return True def UpperCamelCase ( UpperCAmelCase ) ->str: """simple docstring""" if not head or not head.next: return True a_ = {} a_ = 0 while head: if head.val in d: d[head.val].append(UpperCAmelCase ) else: a_ = [pos] a_ = head.next pos += 1 a_ = pos - 1 a_ = 0 for v in d.values(): if len(UpperCAmelCase ) % 2 != 0: middle += 1 else: a_ = 0 for i in range(0 , len(UpperCAmelCase ) ): if v[i] + v[len(UpperCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): a_ : Any = ["""note_seq"""] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Union[str, Any]: requires_backends(self , ["note_seq"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: requires_backends(cls , ["note_seq"]) @classmethod def UpperCAmelCase__ ( cls , *__UpperCAmelCase , **__UpperCAmelCase) ->Dict: requires_backends(cls , ["note_seq"])
366
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
0
"""simple docstring""" import functools def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = len(UpperCAmelCase ) a_ = len(UpperCAmelCase ) @functools.cache def min_distance(UpperCAmelCase , UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa a_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCAmelCase ) , 1 + min_distance(UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCamelCase_ = False class snake_case ( unittest.TestCase ): pass @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion") pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg") a_ = torch.manual_seed(0) a_ = pipe( image=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images a_ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a_ = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
368
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
0
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE__ : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: return F'''gaussian_noise_s={seed}_shape={"_".join([str(__UpperCAmelCase) for s in shape])}.npy''' def UpperCAmelCase__ ( self) ->str: # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 4, 64, 64) , __UpperCAmelCase=False) ->str: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase)) , dtype=__UpperCAmelCase) return image def UpperCAmelCase__ ( self , __UpperCAmelCase=False , __UpperCAmelCase="CompVis/stable-diffusion-v1-4") ->Tuple: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = "bf16" if fpaa else None a_ , a_ = FlaxUNetaDConditionModel.from_pretrained( __UpperCAmelCase , subfolder="unet" , dtype=__UpperCAmelCase , revision=__UpperCAmelCase) return model, params def UpperCAmelCase__ ( self , __UpperCAmelCase=0 , __UpperCAmelCase=(4, 77, 7_68) , __UpperCAmelCase=False) ->Optional[int]: a_ = jnp.bfloataa if fpaa else jnp.floataa a_ = jnp.array(load_hf_numpy(self.get_file_format(__UpperCAmelCase , __UpperCAmelCase)) , dtype=__UpperCAmelCase) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 10_00, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: a_ , a_ = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=__UpperCAmelCase) a_ = self.get_latents(__UpperCAmelCase , fpaa=__UpperCAmelCase) a_ = self.get_encoder_hidden_states(__UpperCAmelCase , fpaa=__UpperCAmelCase) a_ = model.apply( {"params": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape a_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a_ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 10_00, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ , a_ = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=__UpperCAmelCase) a_ = self.get_latents(__UpperCAmelCase , shape=(4, 4, 96, 96) , fpaa=__UpperCAmelCase) a_ = self.get_encoder_hidden_states(__UpperCAmelCase , shape=(4, 77, 10_24) , fpaa=__UpperCAmelCase) a_ = model.apply( {"params": params} , __UpperCAmelCase , jnp.array(__UpperCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=__UpperCAmelCase , ).sample assert sample.shape == latents.shape a_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a_ = jnp.array(__UpperCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-2)
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" from typing import Any def UpperCamelCase ( UpperCAmelCase ) ->list[Any]: """simple docstring""" if not input_list: return [] a_ = [input_list.count(UpperCAmelCase ) for value in input_list] a_ = max(UpperCAmelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCAmelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json', 'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json', 'microsoft/deberta-v2-xlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json' ), 'microsoft/deberta-v2-xxlarge-mnli': ( 'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """deberta-v2""" def __init__( self , __UpperCAmelCase=12_81_00 , __UpperCAmelCase=15_36 , __UpperCAmelCase=24 , __UpperCAmelCase=24 , __UpperCAmelCase=61_44 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-7 , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=0 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=0 , __UpperCAmelCase="gelu" , **__UpperCAmelCase , ) ->Optional[Any]: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = relative_attention a_ = max_relative_positions a_ = pad_token_id a_ = position_biased_input # Backwards compatibility if type(__UpperCAmelCase) == str: a_ = [x.strip() for x in pos_att_type.lower().split("|")] a_ = pos_att_type a_ = vocab_size a_ = layer_norm_eps a_ = kwargs.get("pooler_hidden_size" , __UpperCAmelCase) a_ = pooler_dropout a_ = pooler_hidden_act class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) @property def UpperCAmelCase__ ( self) ->int: return 12 def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = 3 , __UpperCAmelCase = 40 , __UpperCAmelCase = 40 , __UpperCAmelCase = None , ) ->Mapping[str, Any]: a_ = super().generate_dummy_inputs(preprocessor=__UpperCAmelCase , framework=__UpperCAmelCase) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
350
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCamelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" a_ = {} with open(UpperCAmelCase , "r" ) as file: for line_number, line in enumerate(UpperCAmelCase ): a_ = line.strip() if line: a_ = line.split() a_ = line_number a_ = words[0] a_ = value return result def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" for attribute in key.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": a_ = hf_pointer for attribute in hf_param_name.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = shape_pointer.shape # let's reduce dimension a_ = value[0] else: a_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): a_ = getattr(UpperCAmelCase , UpperCAmelCase ) a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a_ = ".".join([key, hf_param_name] ) else: a_ = key a_ = value if "lm_head" in full_key else value[0] UpperCamelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) ->Optional[Any]: """simple docstring""" a_ = False for key, mapped_key in MAPPING.items(): a_ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(UpperCAmelCase )[0].split("." )[-2] a_ = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ = "weight" else: a_ = None if hf_dict is not None: rename_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return is_used return is_used def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a_ = True else: a_ = load_wavaveca_layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False ) ->Tuple: """simple docstring""" if config_path is not None: a_ = WavaVecaConfig.from_pretrained(UpperCAmelCase ) else: a_ = WavaVecaConfig() if is_seq_class: a_ = read_txt_into_dict(UpperCAmelCase ) a_ = idalabel a_ = WavaVecaForSequenceClassification(UpperCAmelCase ) a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) feature_extractor.save_pretrained(UpperCAmelCase ) elif is_finetuned: if dict_path: a_ = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(UpperCAmelCase , "vocab.json" ) if not os.path.isdir(UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = target_dict.indices # fairseq has the <pad> and <s> switched a_ = 0 a_ = 1 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) a_ = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase , ) a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) a_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) a_ = WavaVecaForCTC(UpperCAmelCase ) else: a_ = WavaVecaForPreTraining(UpperCAmelCase ) if is_finetuned or is_seq_class: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a_ = argparse.Namespace(task="audio_pretraining" ) a_ = fairseq.tasks.setup_task(UpperCAmelCase ) a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) a_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
351
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } UpperCamelCase_ = { 'facebook/nllb-large-en-ro': 1024, 'facebook/nllb-200-distilled-600M': 1024, } # fmt: off UpperCamelCase_ = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[str] = VOCAB_FILES_NAMES a_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a_ : List[str] = ["""input_ids""", """attention_mask"""] a_ : Union[str, Any] = NllbTokenizer a_ : List[int] = [] a_ : List[int] = [] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->Optional[Any]: # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token a_ = legacy_behaviour super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , legacy_behaviour=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = vocab_file a_ = False if not self.vocab_file else True a_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens}) a_ = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } a_ = src_lang if src_lang is not None else "eng_Latn" a_ = self.convert_tokens_to_ids(self._src_lang) a_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def UpperCAmelCase__ ( self) ->str: return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") a_ = src_lang a_ = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase) a_ = self.convert_tokens_to_ids(__UpperCAmelCase) a_ = tgt_lang_id return inputs def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = "eng_Latn" , __UpperCAmelCase = None , __UpperCAmelCase = "fra_Latn" , **__UpperCAmelCase , ) ->BatchEncoding: a_ = src_lang a_ = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Any: return self.set_src_lang_special_tokens(self.src_lang) def UpperCAmelCase__ ( self) ->Optional[int]: return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = self.convert_tokens_to_ids(__UpperCAmelCase) if self.legacy_behaviour: a_ = [] a_ = [self.eos_token_id, self.cur_lang_code] else: a_ = [self.cur_lang_code] a_ = [self.eos_token_id] a_ = self.convert_ids_to_tokens(self.prefix_tokens) a_ = self.convert_ids_to_tokens(self.suffix_tokens) a_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = self.convert_tokens_to_ids(__UpperCAmelCase) if self.legacy_behaviour: a_ = [] a_ = [self.eos_token_id, self.cur_lang_code] else: a_ = [self.cur_lang_code] a_ = [self.eos_token_id] a_ = self.convert_ids_to_tokens(self.prefix_tokens) a_ = self.convert_ids_to_tokens(self.suffix_tokens) a_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''') return a_ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
352
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=[0, 1, 2, 3] , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=[1, 3_84, 24, 24] , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->List[str]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_size a_ = num_channels a_ = is_training a_ = use_labels a_ = hidden_size a_ = num_hidden_layers a_ = backbone_out_indices a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = num_labels a_ = backbone_featmap_shape a_ = scope a_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a_ = (image_size // patch_size) ** 2 a_ = num_patches + 1 def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->List[Any]: a_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: a_ = DPTModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = self.num_labels a_ = DPTForDepthEstimation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = DPTForSemanticSegmentation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size)) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a_ : Optional[int] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a_ : str = False a_ : Union[str, Any] = False a_ : List[str] = False def UpperCAmelCase__ ( self) ->Optional[int]: a_ = DPTModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Any: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds") def UpperCAmelCase__ ( self) ->Optional[Any]: pass def UpperCAmelCase__ ( self) ->List[str]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear)) def UpperCAmelCase__ ( self) ->str: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True if model_class in get_values(__UpperCAmelCase): continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() def UpperCAmelCase__ ( self) ->Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = False a_ = True if model_class in get_values(__UpperCAmelCase) or not model_class.supports_gradient_checkpointing: continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.gradient_checkpointing_enable() model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = _config_zero_init(__UpperCAmelCase) for model_class in self.all_model_classes: a_ = model_class(config=__UpperCAmelCase) # Skip the check for the backbone a_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def UpperCAmelCase__ ( self) ->int: pass @slow def UpperCAmelCase__ ( self) ->Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a_ = DPTModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = "add" with self.assertRaises(__UpperCAmelCase): a_ = DPTForDepthEstimation(__UpperCAmelCase) def UpperCamelCase ( ) ->Union[str, Any]: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Any: a_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") a_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(__UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt").to(__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(**__UpperCAmelCase) a_ = outputs.predicted_depth # verify the predicted depth a_ = torch.Size((1, 3_84, 3_84)) self.assertEqual(predicted_depth.shape , __UpperCAmelCase) a_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCAmelCase , atol=1E-4))
353
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = MgpstrTokenizer a_ : Any = False a_ : Tuple = {} a_ : str = False def UpperCAmelCase__ ( self ) ->Any: super().setUp() # fmt: off a_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on a_ = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) def UpperCAmelCase__ ( self , **__UpperCAmelCase ) ->Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def UpperCAmelCase__ ( self , __UpperCAmelCase ) ->Optional[int]: a_ = "tester" a_ = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def UpperCAmelCase__ ( self ) ->List[str]: pass def UpperCAmelCase__ ( self ) ->Optional[Any]: a_ = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a_ = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) a_ = tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 1 ) a_ = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def UpperCAmelCase__ ( self ) ->Dict: a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a_ , a_ = self.get_input_output_texts(__UpperCAmelCase ) a_ = tokenizer.tokenize(__UpperCAmelCase ) a_ = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) a_ = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a_ = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertNotEqual(len(__UpperCAmelCase ) , 0 ) a_ = tokenizer.decode(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , __UpperCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def UpperCAmelCase__ ( self ) ->List[Any]: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def UpperCAmelCase__ ( self ) ->int: pass
354
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase_ = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" inspect_dataset(UpperCAmelCase , UpperCAmelCase ) a_ = path + ".py" assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" inspect_metric(UpperCAmelCase , UpperCAmelCase ) a_ = path + ".py" assert script_name in os.listdir(UpperCAmelCase ) assert "__pycache__" not in os.listdir(UpperCAmelCase ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" with pytest.raises(UpperCAmelCase ): get_dataset_config_info(UpperCAmelCase , config_name=UpperCAmelCase ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" a_ = get_dataset_config_names(UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = get_dataset_infos(UpperCAmelCase ) assert list(infos.keys() ) == expected_configs a_ = expected_configs[0] assert expected_config in infos a_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = get_dataset_infos(UpperCAmelCase ) assert expected_config in infos a_ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" with pytest.raises(UpperCAmelCase ): get_dataset_split_names(UpperCAmelCase , config_name=UpperCAmelCase )
355
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->int: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "hidden_sizes")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_attention_heads")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_encoder_blocks")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[16, 32, 64, 1_28] , __UpperCAmelCase=[1, 4, 8, 16] , __UpperCAmelCase=[1, 2, 4, 8] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , ) ->str: a_ = parent a_ = batch_size a_ = image_size a_ = num_channels a_ = num_encoder_blocks a_ = sr_ratios a_ = depths a_ = hidden_sizes a_ = downsampling_rates a_ = num_attention_heads a_ = is_training a_ = use_labels a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = num_labels a_ = scope def UpperCAmelCase__ ( self) ->List[str]: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Optional[Any]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = SegformerModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) a_ = a_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = self.num_labels a_ = SegformerForSemanticSegmentation(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = 1 a_ = SegformerForSemanticSegmentation(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertGreater(result.loss , 0.0) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) a_ : Any = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) a_ : Optional[int] = True a_ : List[Any] = False a_ : int = False a_ : Dict = False def UpperCAmelCase__ ( self) ->int: a_ = SegformerModelTester(self) a_ = SegformerConfigTester(self , config_class=__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__UpperCAmelCase) @unittest.skip("SegFormer does not use inputs_embeds") def UpperCAmelCase__ ( self) ->Optional[int]: pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods") def UpperCAmelCase__ ( self) ->str: pass def UpperCAmelCase__ ( self) ->Any: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True for model_class in self.all_model_classes: a_ = True a_ = False a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.attentions a_ = sum(self.model_tester.depths) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.attentions self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first attentions (first block, first layer) a_ = (self.model_tester.image_size // 4) ** 2 a_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a_ = (self.model_tester.image_size // 32) ** 2 a_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a_ = len(__UpperCAmelCase) # Check attention is always last and order is fine a_ = True a_ = True a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) self.assertEqual(out_len + 1 , len(__UpperCAmelCase)) a_ = outputs.attentions self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first attentions (first block, first layer) a_ = (self.model_tester.image_size // 4) ** 2 a_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCAmelCase__ ( self) ->Optional[Any]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = self.model_tester.num_encoder_blocks self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[Any]: if not self.model_tester.is_training: return a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase): continue a_ = model_class(__UpperCAmelCase) model.to(__UpperCAmelCase) model.train() a_ = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase) a_ = model(**__UpperCAmelCase).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def UpperCAmelCase__ ( self) ->List[Any]: pass @slow def UpperCAmelCase__ ( self) ->str: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = SegformerModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->List[Any]: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Dict: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4)) @slow def UpperCAmelCase__ ( self) ->List[Any]: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024").to(__UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(__UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-1)) @slow def UpperCAmelCase__ ( self) ->Dict: # only resize + normalize a_ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__UpperCAmelCase , align=__UpperCAmelCase , do_random_crop=__UpperCAmelCase) a_ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to( __UpperCAmelCase) a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="pt") a_ = encoded_inputs.pixel_values.to(__UpperCAmelCase) with torch.no_grad(): a_ = model(__UpperCAmelCase) a_ = outputs.logits.detach().cpu() a_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(5_00, 3_00)]) a_ = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , __UpperCAmelCase) a_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase) a_ = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , __UpperCAmelCase)
356
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] UpperCamelCase_ = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
357
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """git_vision_model""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=30_72 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase="quick_gelu" , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , **__UpperCAmelCase , ) ->int: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = intermediate_size a_ = num_hidden_layers a_ = num_attention_heads a_ = num_channels a_ = patch_size a_ = image_size a_ = initializer_range a_ = attention_dropout a_ = layer_norm_eps a_ = hidden_act @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , **__UpperCAmelCase) ->"PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase) a_ , a_ = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type") == "git": a_ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''') return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : int = """git""" def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10_24 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1_01 , __UpperCAmelCase=1_02 , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Optional[int]: super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) if vision_config is None: a_ = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values.") a_ = GitVisionConfig(**__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = tie_word_embeddings a_ = num_image_with_embedding a_ = bos_token_id a_ = eos_token_id def UpperCAmelCase__ ( self) ->Tuple: a_ = copy.deepcopy(self.__dict__) a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
358
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCamelCase_ = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , **__UpperCAmelCase) ->int: super().__init__(**__UpperCAmelCase) requires_backends(self , "vision") requires_backends(self , "torch") if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''') self.check_model_type(__UpperCAmelCase) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Union[str, Any]: a_ = {} a_ = {} a_ = {} # preprocess args if "points_per_batch" in kwargs: a_ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: a_ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: a_ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: a_ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: a_ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: a_ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: a_ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: a_ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: a_ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: a_ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: a_ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: a_ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->str: return super().__call__(__UpperCAmelCase , *__UpperCAmelCase , num_workers=__UpperCAmelCase , batch_size=__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=64 , __UpperCAmelCase = 0 , __UpperCAmelCase = 5_12 / 15_00 , __UpperCAmelCase = 32 , __UpperCAmelCase = 1 , ) ->Union[str, Any]: a_ = load_image(__UpperCAmelCase) a_ = self.image_processor.size["longest_edge"] a_ , a_ , a_ , a_ = self.image_processor.generate_crop_boxes( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = self.image_processor(images=__UpperCAmelCase , return_tensors="pt") with self.device_placement(): if self.framework == "pt": a_ = self.get_inference_context() with inference_context(): a_ = self._ensure_tensor_on_device(__UpperCAmelCase , device=self.device) a_ = self.model.get_image_embeddings(model_inputs.pop("pixel_values")) a_ = image_embeddings a_ = grid_points.shape[1] a_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None") for i in range(0 , __UpperCAmelCase , __UpperCAmelCase): a_ = grid_points[:, i : i + points_per_batch, :, :] a_ = input_labels[:, i : i + points_per_batch] a_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=0.88 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , ) ->Optional[int]: a_ = model_inputs.pop("input_boxes") a_ = model_inputs.pop("is_last") a_ = model_inputs.pop("original_sizes").tolist() a_ = model_inputs.pop("reshaped_input_sizes").tolist() a_ = self.model(**__UpperCAmelCase) # post processing happens here in order to avoid CPU GPU copies of ALL the masks a_ = model_outputs["pred_masks"] a_ = self.image_processor.post_process_masks( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , binarize=__UpperCAmelCase) a_ = model_outputs["iou_scores"] a_ , a_ , a_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.7 , ) ->Optional[Any]: a_ = [] a_ = [] a_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores")) all_masks.extend(model_output.pop("masks")) all_boxes.append(model_output.pop("boxes")) a_ = torch.cat(__UpperCAmelCase) a_ = torch.cat(__UpperCAmelCase) a_ , a_ , a_ , a_ = self.image_processor.post_process_for_mask_generation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = defaultdict(__UpperCAmelCase) for output in model_outputs: for k, v in output.items(): extra[k].append(__UpperCAmelCase) a_ = {} if output_rle_mask: a_ = rle_mask if output_bboxes_mask: a_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
359
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
"""simple docstring""" import warnings from functools import wraps from typing import Callable def UpperCamelCase ( UpperCAmelCase ) ->Callable: """simple docstring""" @wraps(UpperCAmelCase ) def _inner_fn(*UpperCAmelCase , **UpperCAmelCase ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , UpperCAmelCase , ) return fn(*UpperCAmelCase , **UpperCAmelCase ) return _inner_fn
360
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase_ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase_ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase_ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase_ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = 'pytorch_model.bin' @dataclasses.dataclass class snake_case : a_ : str = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) a_ : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class snake_case : a_ : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) a_ : str = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) a_ : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) a_ : Optional[str] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The name of the task to train on."""} , ) a_ : Optional[List[str]] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class snake_case : a_ : str = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) a_ : Optional[str] = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) a_ : Optional[str] = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) a_ : Optional[int] = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a_ : Optional[float] = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) a_ : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) a_ : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) a_ : Optional[bool] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) a_ : Optional[float] = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) a_ : Optional[int] = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) a_ : Optional[int] = dataclasses.field( default=SCREAMING_SNAKE_CASE_ , metadata={"""help""": """Random seed for initialization."""} , ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" a_ = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: a_ = dataset.filter(lambda UpperCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 a_ = int(eval_result * len(UpperCAmelCase ) ) print(UpperCAmelCase ) a_ = dataset.sort("probability" , reverse=UpperCAmelCase ) a_ = dataset.select(range(UpperCAmelCase ) ) a_ = dataset.remove_columns(["label", "probability"] ) a_ = dataset.rename_column("prediction" , "label" ) a_ = dataset.map(lambda UpperCAmelCase : {"label": idalabel[example["label"]]} ) a_ = dataset.shuffle(seed=args.seed ) a_ = os.path.join(UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(UpperCAmelCase , index=UpperCAmelCase ) else: dataset.to_json(UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() a_ = STModelArguments(model_name_or_path=UpperCAmelCase ) a_ = STDataArguments(train_file=UpperCAmelCase , infer_file=UpperCAmelCase ) a_ = STTrainingArguments(output_dir=UpperCAmelCase ) a_ = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCAmelCase ).items(): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for key, value in kwargs.items(): if hasattr(UpperCAmelCase , UpperCAmelCase ): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Sanity checks a_ = {} a_ = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None a_ = args.train_file a_ = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None a_ = args.eval_file for key in data_files: a_ = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: a_ = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) a_ = F'''{args.output_dir}/self-train_iter-{{}}'''.format a_ = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCAmelCase ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) accelerator.wait_for_everyone() a_ = None a_ = None a_ = 0 a_ = False # Show the progress bar a_ = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): a_ = data_dir_format(UpperCAmelCase ) assert os.path.exists(UpperCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 a_ = os.path.join(UpperCAmelCase , "stage-1" ) a_ = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCAmelCase , UpperCAmelCase ): arguments_dict.update({key: value} ) a_ = os.path.join(UpperCAmelCase , "best-checkpoint" , UpperCAmelCase ) if os.path.exists(UpperCAmelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , UpperCAmelCase , UpperCAmelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , UpperCAmelCase ) finetune(**UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(UpperCAmelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , UpperCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data a_ = os.path.join(UpperCAmelCase , "best-checkpoint" ) a_ = os.path.join(UpperCAmelCase , "stage-2" ) # Update arguments_dict a_ = model_path a_ = data_files["train"] a_ = current_output_dir a_ = os.path.join(UpperCAmelCase , "best-checkpoint" , UpperCAmelCase ) if os.path.exists(UpperCAmelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , UpperCAmelCase , UpperCAmelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , UpperCAmelCase ) finetune(**UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(UpperCAmelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , UpperCAmelCase ) a_ = iteration a_ = data_dir_format(iteration + 1 ) a_ = AutoConfig.from_pretrained(os.path.join(UpperCAmelCase , "best-checkpoint" ) ) a_ = config.idalabel a_ = os.path.join(UpperCAmelCase , "eval_results_best-checkpoint.json" ) a_ = os.path.join(UpperCAmelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(UpperCAmelCase ) with open(UpperCAmelCase , "r" ) as f: a_ = float(json.load(UpperCAmelCase )[args.eval_metric] ) a_ = os.path.join(UpperCAmelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(UpperCAmelCase ) # Loading the dataset from local csv or json files. a_ = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] a_ = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) shutil.copy(UpperCAmelCase , os.path.join(UpperCAmelCase , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(UpperCAmelCase ): shutil.copy(UpperCAmelCase , os.path.join(UpperCAmelCase , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.wait_for_everyone() a_ = os.path.join(UpperCAmelCase , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: a_ = eval_result if best_iteration is None: a_ = new_iteration a_ = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: a_ = new_iteration a_ = new_eval_result a_ = 0 else: if new_eval_result == best_eval_result: a_ = new_iteration a_ = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: a_ = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , UpperCAmelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCAmelCase , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(UpperCAmelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCAmelCase , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(UpperCAmelCase , "eval_results_best-iteration.json" ) , )
363
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
0
"""simple docstring""" from typing import Any class snake_case : def __init__( self , __UpperCAmelCase) ->List[str]: a_ = data a_ = None def __repr__( self) ->str: return F'''Node({self.data})''' class snake_case : def __init__( self) ->Optional[int]: a_ = None def __iter__( self) ->Any: a_ = self.head while node: yield node.data a_ = node.next def __len__( self) ->int: return sum(1 for _ in self) def __repr__( self) ->str: return "->".join([str(__UpperCAmelCase) for item in self]) def __getitem__( self , __UpperCAmelCase) ->Any: if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node return None def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase) ->None: if not 0 <= index < len(self): raise ValueError("list index out of range.") a_ = self.head for _ in range(__UpperCAmelCase): a_ = current.next a_ = data def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: self.insert_nth(len(self) , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: self.insert_nth(0 , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->None: if not 0 <= index <= len(self): raise IndexError("list index out of range") a_ = Node(__UpperCAmelCase) if self.head is None: a_ = new_node elif index == 0: a_ = self.head # link new_node to head a_ = new_node else: a_ = self.head for _ in range(index - 1): a_ = temp.next a_ = temp.next a_ = new_node def UpperCAmelCase__ ( self) ->None: # print every node data print(self) def UpperCAmelCase__ ( self) ->Any: return self.delete_nth(0) def UpperCAmelCase__ ( self) ->Any: # delete from tail return self.delete_nth(len(self) - 1) def UpperCAmelCase__ ( self , __UpperCAmelCase = 0) ->Any: if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("List index out of range.") a_ = self.head # default first node if index == 0: a_ = self.head.next else: a_ = self.head for _ in range(index - 1): a_ = temp.next a_ = temp.next a_ = temp.next.next return delete_node.data def UpperCAmelCase__ ( self) ->bool: return self.head is None def UpperCAmelCase__ ( self) ->None: a_ = None a_ = self.head while current: # Store the current node's next node. a_ = current.next # Make the current node's next point backwards a_ = prev # Make the previous node be the current node a_ = current # Make the current node the next node (to progress iteration) a_ = next_node # Return prev in order to put the head at the end a_ = prev def UpperCamelCase ( ) ->None: """simple docstring""" a_ = LinkedList() assert linked_list.is_empty() is True assert str(UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCAmelCase ) == i linked_list.insert_nth(UpperCAmelCase , i + 1 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCAmelCase ) == 9 assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): a_ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCAmelCase ) == "->".join(str(UpperCAmelCase ) for i in range(-8 , 1 ) ) def UpperCamelCase ( ) ->None: """simple docstring""" a_ = [ -9, 100, Node(77_345_112 ), "dlrow olleH", 7, 5_555, 0, -192.55555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] a_ = LinkedList() for i in test_input: linked_list.insert_tail(UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head a_ = linked_list.delete_head() assert result == -9 assert ( str(UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail a_ = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list a_ = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCAmelCase ) assert ( str(UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def UpperCamelCase ( ) ->List[str]: """simple docstring""" from doctest import testmod testmod() a_ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(UpperCAmelCase ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) a_ = input("Enter New Value: " ).strip() print("New list:" ) print(UpperCAmelCase ) print(F'''length of linked_list is : {len(UpperCAmelCase )}''' ) if __name__ == "__main__": main()
364
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
0
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
0
"""simple docstring""" import fire from utils import calculate_rouge, save_json def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ) ->Dict: """simple docstring""" a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()] a_ = [x.strip() for x in open(UpperCAmelCase ).readlines()][: len(UpperCAmelCase )] a_ = calculate_rouge(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) if save_path is not None: save_json(UpperCAmelCase , UpperCAmelCase , indent=UpperCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
366
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCamelCase_ = logging.get_logger(__name__) # General docstring UpperCamelCase_ = 'ResNetConfig' # Base docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCamelCase_ = 'microsoft/resnet-50' UpperCamelCase_ = 'tiger cat' UpperCamelCase_ = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = nn.Convad( __UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=kernel_size // 2 , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) a_ = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase) ->Any: super().__init__() a_ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act) a_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1) a_ = config.num_channels def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") a_ = self.embedder(__UpperCAmelCase) a_ = self.pooler(__UpperCAmelCase) return embedding class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2) ->List[str]: super().__init__() a_ = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , stride=__UpperCAmelCase , bias=__UpperCAmelCase) a_ = nn.BatchNormad(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = self.convolution(__UpperCAmelCase) a_ = self.normalization(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu") ->Union[str, Any]: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[Any]: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = "relu" , __UpperCAmelCase = 4) ->Dict: super().__init__() a_ = in_channels != out_channels or stride != 1 a_ = out_channels // reduction a_ = ( ResNetShortCut(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) if should_apply_shortcut else nn.Identity() ) a_ = nn.Sequential( ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase) , ResNetConvLayer(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 , activation=__UpperCAmelCase) , ) a_ = ACTaFN[activation] def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ = hidden_state a_ = self.layer(__UpperCAmelCase) a_ = self.shortcut(__UpperCAmelCase) hidden_state += residual a_ = self.activation(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , ) ->str: super().__init__() a_ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer a_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__UpperCAmelCase , __UpperCAmelCase , stride=__UpperCAmelCase , activation=config.hidden_act) , *[layer(__UpperCAmelCase , __UpperCAmelCase , activation=config.hidden_act) for _ in range(depth - 1)] , ) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tensor: a_ = input for layer in self.layers: a_ = layer(__UpperCAmelCase) return hidden_state class snake_case ( nn.Module ): """simple docstring""" def __init__( self , __UpperCAmelCase) ->List[Any]: super().__init__() a_ = nn.ModuleList([]) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(__UpperCAmelCase , config.depths[1:]): self.stages.append(ResNetStage(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , depth=__UpperCAmelCase)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True) ->BaseModelOutputWithNoAttention: a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(__UpperCAmelCase) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : List[Any] = ResNetConfig a_ : List[Any] = """resnet""" a_ : Tuple = """pixel_values""" a_ : Any = True def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: if isinstance(__UpperCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu") elif isinstance(__UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False) ->List[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = value UpperCamelCase_ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase_ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , __UpperCAmelCase) ->Tuple: super().__init__(__UpperCAmelCase) a_ = config a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) a_ = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BaseModelOutputWithPoolingAndNoAttention: a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = encoder_outputs[0] a_ = self.pooler(__UpperCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , __UpperCAmelCase) ->Union[str, Any]: super().__init__(__UpperCAmelCase) a_ = config.num_labels a_ = ResNetModel(__UpperCAmelCase) # classification head a_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) ->ImageClassifierOutputWithNoAttention: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.resnet(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier(__UpperCAmelCase) a_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ = "single_label_classification" else: a_ = "multi_label_classification" if self.config.problem_type == "regression": a_ = MSELoss() if self.num_labels == 1: a_ = loss_fct(logits.squeeze() , labels.squeeze()) else: a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) elif self.config.problem_type == "single_label_classification": a_ = CrossEntropyLoss() a_ = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": a_ = BCEWithLogitsLoss() a_ = loss_fct(__UpperCAmelCase , __UpperCAmelCase) if not return_dict: a_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , SCREAMING_SNAKE_CASE_ , ) class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , __UpperCAmelCase) ->Dict: super().__init__(__UpperCAmelCase) super()._init_backbone(__UpperCAmelCase) a_ = [config.embedding_size] + config.hidden_sizes a_ = ResNetEmbeddings(__UpperCAmelCase) a_ = ResNetEncoder(__UpperCAmelCase) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None) ->BackboneOutput: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = self.embedder(__UpperCAmelCase) a_ = self.encoder(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase) a_ = outputs.hidden_states a_ = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: a_ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__UpperCAmelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=__UpperCAmelCase , )
367
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
368
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->List[Any]: """simple docstring""" a_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" a_ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ = "" else: a_ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[ : config.hidden_size, : ] a_ = in_proj_bias[: config.hidden_size] a_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ = in_proj_weight[ -config.hidden_size :, : ] a_ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = dct.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( ) ->str: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = DeiTConfig() # all deit models have fine-tuned heads a_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size a_ = 1_000 a_ = "huggingface/label-files" a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} a_ = int(deit_name[-6:-4] ) a_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): a_ = 192 a_ = 768 a_ = 12 a_ = 3 elif deit_name[9:].startswith("small" ): a_ = 384 a_ = 1_536 a_ = 12 a_ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): a_ = 1_024 a_ = 4_096 a_ = 24 a_ = 16 # load original model from timm a_ = timm.create_model(UpperCAmelCase , pretrained=UpperCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys a_ = timm_model.state_dict() a_ = create_rename_keys(UpperCAmelCase , UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # load HuggingFace model a_ = DeiTForImageClassificationWithTeacher(UpperCAmelCase ).eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor a_ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 a_ = DeiTImageProcessor(size=UpperCAmelCase , crop_size=config.image_size ) a_ = image_processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = model(UpperCAmelCase ) a_ = timm_model(UpperCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase , outputs.logits , atol=1E-3 ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase_ = numpy.array([0, 0]) UpperCamelCase_ = numpy.array([0.5, 0.8_66_02_54]) UpperCamelCase_ = numpy.array([1, 0]) UpperCamelCase_ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->list[numpy.ndarray]: """simple docstring""" a_ = initial_vectors for _ in range(UpperCAmelCase ): a_ = iteration_step(UpperCAmelCase ) return vectors def UpperCamelCase ( UpperCAmelCase ) ->list[numpy.ndarray]: """simple docstring""" a_ = [] for i, start_vector in enumerate(vectors[:-1] ): a_ = vectors[i + 1] new_vectors.append(UpperCAmelCase ) a_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->numpy.ndarray: """simple docstring""" a_ = numpy.radians(UpperCAmelCase ) a_ , a_ = numpy.cos(UpperCAmelCase ), numpy.sin(UpperCAmelCase ) a_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->None: """simple docstring""" a_ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() a_ , a_ = zip(*UpperCAmelCase ) plt.plot(UpperCAmelCase , UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=20_48) ->List[Any]: a_ = config.__dict__ a_ = modal_hidden_size if num_labels: a_ = num_labels
350
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F'''{src_lang}-{tgt_lang}''' a_ = F''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "allenai/{model_name}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` ''' model_card_dir.mkdir(parents=UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = os.path.join(UpperCAmelCase , "README.md" ) print(F'''Generating {path}''' ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(UpperCAmelCase ) # make sure we are under the root of the project UpperCamelCase_ = Path(__file__).resolve().parent.parent.parent UpperCamelCase_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: UpperCamelCase_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
303
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[str]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. a_ = [[1, 2, 4], [1, 2, 3, 4]] a_ = DisjunctiveConstraint(__UpperCAmelCase) self.assertTrue(isinstance(dc.token_ids , __UpperCAmelCase)) with self.assertRaises(__UpperCAmelCase): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(__UpperCAmelCase): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def UpperCAmelCase__ ( self) ->List[str]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). a_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCAmelCase): DisjunctiveConstraint(__UpperCAmelCase) # fails here def UpperCAmelCase__ ( self) ->Any: a_ = [[1, 2, 3], [1, 2, 4]] a_ = DisjunctiveConstraint(__UpperCAmelCase) a_ , a_ , a_ = dc.update(1) a_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) a_ , a_ , a_ = dc.update(2) a_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) a_ , a_ , a_ = dc.update(3) a_ = stepped is True and completed is True and reset is False self.assertTrue(__UpperCAmelCase) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] a_ = DisjunctiveConstraint(__UpperCAmelCase) a_ , a_ , a_ = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) a_ , a_ , a_ = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) a_ , a_ , a_ = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) a_ , a_ , a_ = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() a_ , a_ , a_ = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) a_ , a_ , a_ = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) a_ , a_ , a_ = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
351
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCAmelCase , n - 1 , UpperCAmelCase ) * a) % mod else: a_ = binary_exponentiation(UpperCAmelCase , n / 2 , UpperCAmelCase ) return (b * b) % mod # a prime number UpperCamelCase_ = 701 UpperCamelCase_ = 1000000000 UpperCamelCase_ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
303
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase ) ->list: """simple docstring""" a_ = len(UpperCAmelCase ) for _ in range(UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: a_ , a_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": UpperCamelCase_ = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
352
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->None: warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase)
303
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : str = KandinskyVaaPriorPipeline a_ : int = ["""prompt"""] a_ : int = ["""prompt""", """negative_prompt"""] a_ : Union[str, Any] = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] a_ : Union[str, Any] = False @property def UpperCAmelCase__ ( self) ->List[str]: return 32 @property def UpperCAmelCase__ ( self) ->Optional[int]: return 32 @property def UpperCAmelCase__ ( self) ->List[str]: return self.time_input_dim @property def UpperCAmelCase__ ( self) ->str: return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self) ->int: return 1_00 @property def UpperCAmelCase__ ( self) ->str: a_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def UpperCAmelCase__ ( self) ->str: torch.manual_seed(0) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__UpperCAmelCase) @property def UpperCAmelCase__ ( self) ->Tuple: torch.manual_seed(0) a_ = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } a_ = PriorTransformer(**__UpperCAmelCase) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 a_ = nn.Parameter(torch.ones(model.clip_std.shape)) return model @property def UpperCAmelCase__ ( self) ->List[Any]: torch.manual_seed(0) a_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) a_ = CLIPVisionModelWithProjection(__UpperCAmelCase) return model @property def UpperCAmelCase__ ( self) ->int: a_ = CLIPImageProcessor( crop_size=2_24 , do_center_crop=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_resize=__UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , ) return image_processor def UpperCAmelCase__ ( self) ->Dict: a_ = self.dummy_prior a_ = self.dummy_image_encoder a_ = self.dummy_text_encoder a_ = self.dummy_tokenizer a_ = self.dummy_image_processor a_ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=10_00 , clip_sample=__UpperCAmelCase , clip_sample_range=10.0 , ) a_ = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=0) ->List[str]: if str(__UpperCAmelCase).startswith("mps"): a_ = torch.manual_seed(__UpperCAmelCase) else: a_ = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a_ = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase__ ( self) ->Optional[int]: a_ = "cpu" a_ = self.get_dummy_components() a_ = self.pipeline_class(**__UpperCAmelCase) a_ = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a_ = pipe(**self.get_dummy_inputs(__UpperCAmelCase)) a_ = output.image_embeds a_ = pipe( **self.get_dummy_inputs(__UpperCAmelCase) , return_dict=__UpperCAmelCase , )[0] a_ = image[0, -10:] a_ = image_from_tuple[0, -10:] assert image.shape == (1, 32) a_ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @skip_mps def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = torch_device == "cpu" a_ = True a_ = False self._test_inference_batch_single_identical( test_max_difference=__UpperCAmelCase , relax_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , ) @skip_mps def UpperCAmelCase__ ( self) ->Dict: a_ = torch_device == "cpu" a_ = False self._test_attention_slicing_forward_pass( test_max_difference=__UpperCAmelCase , test_mean_pixel_difference=__UpperCAmelCase , )
353
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Dict: a_ = inspect.getfile(accelerate.test_utils) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) a_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"]) a_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def UpperCAmelCase__ ( self) ->Any: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->str: print(F'''Found {torch.cuda.device_count()} devices.''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path] print(F'''Command: {cmd}''') with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) @require_multi_gpu def UpperCAmelCase__ ( self) ->List[Any]: print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''') a_ = ["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1"): execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy()) if __name__ == "__main__": UpperCamelCase_ = Accelerator() UpperCamelCase_ = (accelerator.state.process_index + 2, 10) UpperCamelCase_ = torch.randint(0, 10, shape).to(accelerator.device) UpperCamelCase_ = '' UpperCamelCase_ = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." UpperCamelCase_ = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." UpperCamelCase_ = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
303
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """vit_mae""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=2_24 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=5_12 , __UpperCAmelCase=8 , __UpperCAmelCase=20_48 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->int: super().__init__(**__UpperCAmelCase ) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = image_size a_ = patch_size a_ = num_channels a_ = qkv_bias a_ = decoder_num_attention_heads a_ = decoder_hidden_size a_ = decoder_num_hidden_layers a_ = decoder_intermediate_size a_ = mask_ratio a_ = norm_pix_loss
354
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
355
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 UpperCamelCase_ = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 UpperCamelCase_ = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class snake_case : def __init__( self) ->Optional[int]: a_ = WATERMARK_BITS a_ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images a_ = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1).float().numpy() a_ = [self.encoder.encode(__UpperCAmelCase , "dwtDct") for image in images] a_ = torch.from_numpy(np.array(__UpperCAmelCase)).permute(0 , 3 , 1 , 2) a_ = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0) return images
303
0
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->List[Any]: """simple docstring""" a_ = OmegaConf.load(UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(UpperCAmelCase ) ) ) return config def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) ->List[str]: """simple docstring""" if conf_path is None: a_ = "./model_checkpoints/vqgan_only.yaml" a_ = load_config(UpperCAmelCase , display=UpperCAmelCase ) a_ = VQModel(**config.model.params ) if ckpt_path is None: a_ = "./model_checkpoints/vqgan_only.pt" a_ = torch.load(UpperCAmelCase , map_location=UpperCAmelCase ) if ".ckpt" in ckpt_path: a_ = sd["state_dict"] model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) model.to(UpperCAmelCase ) del sd return model def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ , a_ , a_ = model.encode(UpperCAmelCase ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) a_ = model.decode(UpperCAmelCase ) return xrec def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ , a_ = string.rsplit("." , 1 ) if reload: a_ = importlib.import_module(UpperCAmelCase ) importlib.reload(UpperCAmelCase ) return getattr(importlib.import_module(UpperCAmelCase , package=UpperCAmelCase ) , cls ) def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params" , {} ) ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=True ) ->Optional[int]: """simple docstring""" a_ = instantiate_from_config(UpperCAmelCase ) if sd is not None: model.load_state_dict(UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" if ckpt: a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = pl_sd["global_step"] print(F'''loaded model from global step {global_step}.''' ) else: a_ = {"state_dict": None} a_ = None a_ = load_model_from_config(config.model , pl_sd["state_dict"] , gpu=UpperCAmelCase , eval_mode=UpperCAmelCase )["model"] return model, global_step
356
"""simple docstring""" import math UpperCamelCase_ = 10 UpperCamelCase_ = 7 UpperCamelCase_ = BALLS_PER_COLOUR * NUM_COLOURS def UpperCamelCase ( UpperCAmelCase = 20 ) ->str: """simple docstring""" a_ = math.comb(UpperCAmelCase , UpperCAmelCase ) a_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCAmelCase ) a_ = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
303
0
"""simple docstring""" from __future__ import annotations UpperCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[list[list[int]], list[list[int]]]: """simple docstring""" a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the reference grid a_ = 1 a_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCAmelCase ) ) ] # the action grid a_ = init[0] a_ = init[1] a_ = 0 a_ = g + heuristic[x][y] # cost from starting cell to destination cell a_ = [[f, g, x, y]] a_ = False # flag that is set when search is complete a_ = False # flag set if we can't find expand while not found and not resign: if len(UpperCAmelCase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a_ = cell.pop() a_ = next_cell[2] a_ = next_cell[3] a_ = next_cell[1] if x == goal[0] and y == goal[1]: a_ = True else: for i in range(len(UpperCAmelCase ) ): # to try out different valid actions a_ = x + DIRECTIONS[i][0] a_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a_ = g + cost a_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a_ = 1 a_ = i a_ = [] a_ = goal[0] a_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a_ = x - DIRECTIONS[action[x][y]][0] a_ = y - DIRECTIONS[action[x][y]][1] a_ = xa a_ = ya invpath.append([x, y] ) a_ = [] for i in range(len(UpperCAmelCase ) ): path.append(invpath[len(UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase_ = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase_ = 1 # the cost map which pushes the path closer to the goal UpperCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase_ = 99 UpperCamelCase_ , UpperCamelCase_ = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
357
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['memory_attention', 'encoder_attn'], ['attention', 'attn'], ['/', '.'], ['.LayerNorm.gamma', '_layer_norm.weight'], ['.LayerNorm.beta', '_layer_norm.bias'], ['r.layer_', 'r.layers.'], ['output_proj', 'out_proj'], ['ffn.dense_1.', 'fc2.'], ['ffn.dense.', 'fc1.'], ['ffn_layer_norm', 'final_layer_norm'], ['kernel', 'weight'], ['encoder_layer_norm.', 'encoder.layer_norm.'], ['decoder_layer_norm.', 'decoder.layer_norm.'], ['embeddings.weights', 'shared.weight'], ] def UpperCamelCase ( UpperCAmelCase ) ->Optional[Any]: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) return k def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->PegasusForConditionalGeneration: """simple docstring""" a_ = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase ) a_ = PegasusConfig(**UpperCAmelCase ) a_ = PegasusForConditionalGeneration(UpperCAmelCase ) a_ = torch_model.model.state_dict() a_ = {} for k, v in tf_weights.items(): a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in sd: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: a_ = v.T a_ = torch.tensor(UpperCAmelCase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected a_ = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] ) a_ = mapping["shared.weight"] a_ = mapping["shared.weight"] a_ = {k: torch.zeros_like(UpperCAmelCase ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping} mapping.update(**UpperCAmelCase ) a_ , a_ = torch_model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) a_ = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def UpperCamelCase ( UpperCAmelCase="./ckpt/aeslc/model.ckpt-32000" ) ->Dict: """simple docstring""" a_ = tf.train.list_variables(UpperCAmelCase ) a_ = {} a_ = ["Adafactor", "global_step"] for name, shape in tqdm(UpperCAmelCase , desc="converting tf checkpoint to dict" ): a_ = any(pat in name for pat in ignore_name ) if skip_key: continue a_ = tf.train.load_variable(UpperCAmelCase , UpperCAmelCase ) a_ = array return tf_weights def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = Path(UpperCAmelCase ).parent.name a_ = task_specific_params[F'''summarization_{dataset}''']["max_position_embeddings"] a_ = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=UpperCAmelCase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase ) # convert model a_ = get_tf_weights_as_numpy(UpperCAmelCase ) a_ = task_specific_params[F'''summarization_{dataset}'''] if dataset == "large": a_ = task_specific_params a_ = convert_pegasus(UpperCAmelCase , UpperCAmelCase ) torch_model.save_pretrained(UpperCAmelCase ) a_ = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight" ) sd.pop("model.encoder.embed_positions.weight" ) torch.save(UpperCAmelCase , Path(UpperCAmelCase ) / "pytorch_model.bin" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('save_dir', default=None, type=str, help='Path to the output PyTorch model.') UpperCamelCase_ = parser.parse_args() if args.save_dir is None: UpperCamelCase_ = Path(args.tf_ckpt_path).parent.name UpperCamelCase_ = os.path.join('pegasus', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
303
0
"""simple docstring""" import math import qiskit def UpperCamelCase ( UpperCAmelCase = 1 , UpperCAmelCase = 1 , UpperCAmelCase = 1 ) ->qiskit.result.counts.Counts: """simple docstring""" if ( isinstance(UpperCAmelCase , UpperCAmelCase ) or isinstance(UpperCAmelCase , UpperCAmelCase ) or isinstance(UpperCAmelCase , UpperCAmelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(UpperCAmelCase ) != input_a) or (math.floor(UpperCAmelCase ) != input_a) or (math.floor(UpperCAmelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers a_ = qiskit.QuantumRegister(4 , "qr" ) a_ = qiskit.ClassicalRegister(2 , "cr" ) # list the entries a_ = [input_a, input_a, carry_in] a_ = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(UpperCAmelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(UpperCAmelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(UpperCAmelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , UpperCAmelCase ) # measure the last two qbits a_ = qiskit.Aer.get_backend("aer_simulator" ) a_ = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1_000 ) return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
358
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=50 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Dict: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = use_labels a_ = scope def UpperCAmelCase__ ( self) ->Any: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.get_config() return config, input_ids, input_mask, token_labels def UpperCAmelCase__ ( self) ->Optional[Any]: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self) ->List[str]: ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->str: a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase) a_ = model(__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->Union[str, Any]: a_ = True a_ = BertGenerationEncoder(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ) ->List[str]: a_ = True a_ = True a_ = BertGenerationDecoder(config=__UpperCAmelCase).to(__UpperCAmelCase).eval() # first forward pass a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] a_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , *__UpperCAmelCase , ) ->Tuple: a_ = BertGenerationDecoder(__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self) ->str: a_ , a_ , a_ , a_ = self.prepare_config_and_inputs() a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[str] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () a_ : Optional[int] = (BertGenerationDecoder,) if is_torch_available() else () a_ : List[Any] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = BertGenerationEncoderTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->Optional[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: a_ , a_ , a_ , a_ = self.model_tester.prepare_config_and_inputs() a_ = "bert" self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # This regression test was failing with PyTorch < 1.3 ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def UpperCAmelCase__ ( self) ->List[Any]: a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") self.assertIsNotNone(__UpperCAmelCase) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->int: a_ = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 10_24]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4)) @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") a_ = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]]) with torch.no_grad(): a_ = model(__UpperCAmelCase)[0] a_ = torch.Size([1, 8, 5_03_58]) self.assertEqual(output.shape , __UpperCAmelCase) a_ = torch.tensor( [[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4))
303
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) a_ = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above a_ = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above a_ = tf_top_k_top_p_filtering(__UpperCAmelCase , top_k=10 , top_p=0.6 , min_tokens_to_keep=4) a_ = output[output != -float("inf")] a_ = tf.cast( tf.where(tf.not_equal(__UpperCAmelCase , tf.constant(-float("inf") , dtype=tf.floataa))) , dtype=tf.intaa , ) tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-12) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @require_tf class snake_case ( unittest.TestCase , SCREAMING_SNAKE_CASE_ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): a_ : Any = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def UpperCAmelCase__ ( self) ->List[Any]: # TF-only test: tf.saved_model export a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 2 a_ = 2 class snake_case ( tf.Module ): def __init__( self , __UpperCAmelCase) ->Optional[int]: super(__UpperCAmelCase , self).__init__() a_ = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids"), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask"), ) , jit_compile=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = self.model.generate( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , max_new_tokens=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , ) return {"sequences": outputs["sequences"]} a_ = [[2, 0], [1_02, 1_03]] a_ = [[1, 0], [1, 1]] a_ = DummyModel(model=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={"serving_default": dummy_model.serving}) a_ = tf.saved_model.load(__UpperCAmelCase).signatures["serving_default"] for batch_size in range(1 , len(__UpperCAmelCase) + 1): a_ = { "input_ids": tf.constant(dummy_input_ids[:batch_size]), "attention_mask": tf.constant(dummy_attention_masks[:batch_size]), } a_ = serving_func(**__UpperCAmelCase)["sequences"] a_ = test_model.generate(**__UpperCAmelCase , max_new_tokens=__UpperCAmelCase) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Optional[int]: # TF-only test: tf.saved_model export a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 1 a_ = 2 class snake_case ( tf.Module ): def __init__( self , __UpperCAmelCase) ->int: super(__UpperCAmelCase , self).__init__() a_ = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids"), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask"), ) , jit_compile=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = self.model.generate( input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , max_new_tokens=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , ) return {"sequences": outputs["sequences"]} a_ = [[2], [1_02, 1_03]] a_ = [[1], [1, 1]] a_ = DummyModel(model=__UpperCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={"serving_default": dummy_model.serving}) a_ = tf.saved_model.load(__UpperCAmelCase).signatures["serving_default"] for input_row in range(len(__UpperCAmelCase)): a_ = { "input_ids": tf.constant([dummy_input_ids[input_row]]), "attention_mask": tf.constant([dummy_attention_masks[input_row]]), } a_ = serving_func(**__UpperCAmelCase)["sequences"] a_ = test_model.generate(**__UpperCAmelCase , max_new_tokens=__UpperCAmelCase) tf.debugging.assert_equal(__UpperCAmelCase , __UpperCAmelCase) @slow @require_tensorflow_text def UpperCAmelCase__ ( self) ->List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=__UpperCAmelCase) class snake_case ( tf.keras.layers.Layer ): def __init__( self) ->str: super().__init__() a_ = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__UpperCAmelCase , "spiece.model") , "rb").read()) a_ = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5") def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: a_ = self.tokenizer.tokenize(__UpperCAmelCase) a_ , a_ = text.pad_model_inputs( __UpperCAmelCase , max_seq_length=64 , pad_value=self.model.config.pad_token_id) a_ = self.model.generate(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase) return self.tokenizer.detokenize(__UpperCAmelCase) a_ = CompleteSentenceTransformer() a_ = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs") a_ = complete_model(__UpperCAmelCase) a_ = tf.keras.Model(__UpperCAmelCase , __UpperCAmelCase) keras_model.save(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: # Has PT equivalent: this test relies on random sampling a_ = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } a_ = 14 a_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = "Hello, my dog is cute and" a_ = tokenizer(__UpperCAmelCase , return_tensors="tf") a_ = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2") a_ = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0"): tf.random.set_seed(0) a_ = model.generate(**__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) a_ = [6_38, 1_98] with tf.device(":/CPU:0"): tf.random.set_seed(0) a_ = model.generate(**__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) self.assertTrue(expectation == len(generated_tokens[0])) def UpperCAmelCase__ ( self) ->Union[str, Any]: # Has PT equivalent: ample use of framework-specific code a_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = "Hugging Face is a technology company based in New York and Paris." a_ = bart_tokenizer(__UpperCAmelCase , return_tensors="tf").input_ids a_ = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = bart_model.generate(__UpperCAmelCase).numpy() class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->List[Any]: return super().call(__UpperCAmelCase , **__UpperCAmelCase) a_ = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart") a_ = bart_model.generate(__UpperCAmelCase , foo="bar").numpy() self.assertTrue(np.array_equal(__UpperCAmelCase , __UpperCAmelCase)) class snake_case ( bart_model.model.encoder.__class__ ): def UpperCAmelCase__ ( self , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: return super().call(__UpperCAmelCase , **__UpperCAmelCase) a_ = FakeEncoder(bart_model.config , bart_model.model.shared) a_ = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) a_ = bart_model.generate(__UpperCAmelCase).numpy() with self.assertRaises(__UpperCAmelCase): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__UpperCAmelCase , foo="bar")
359
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) ->List[Any]: """simple docstring""" a_ = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" if split_mlp_wi: a_ = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a_ = (wi_a, wi_a) else: a_ = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCamelCase ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = traverse_util.flatten_dict(variables["target"] ) a_ = {"/".join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a_ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , UpperCAmelCase ) a_ = collections.OrderedDict() # Shared embeddings. a_ = old["token_embedder/embedding"] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old[ "encoder/relpos_bias/rel_embedding" ].T a_ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "self_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (Cross Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 2 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old["decoder/decoder_norm/scale"] a_ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a_ = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) a_ = state_dict["shared.weight"] return state_dict def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = checkpoints.load_tax_checkpoint(UpperCAmelCase ) a_ = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase ) a_ = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) ->int: """simple docstring""" a_ = TaConfig.from_json_file(UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a_ = TaEncoderModel(UpperCAmelCase ) else: a_ = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
360
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0 , UpperCAmelCase = 0 ) ->int: """simple docstring""" a_ = right or len(UpperCAmelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(UpperCAmelCase , UpperCAmelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" import os import numpy import onnx def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = a.name a_ = b.name a_ = "" a_ = "" a_ = a == b a_ = name_a a_ = name_b return res def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase , UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase , UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = list(model.graph.initializer ) a_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i a_ = inits[i].name a_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = os.path.dirname(UpperCAmelCase ) a_ = os.path.basename(UpperCAmelCase ) a_ = onnx.load(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) a_ = list(model.graph.initializer ) a_ = set() a_ = {} a_ = [] a_ = 0 for i in range(len(UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase ) dup_set.add(UpperCAmelCase ) a_ = inits[j].data_type a_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , UpperCAmelCase ) total_reduced_size += mem_size a_ = inits[i].name a_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase ) else: a_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_024 / 1_024 / 1_024 , "GB" ) a_ = sorted(UpperCAmelCase ) _remove_dup_initializers_from_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) a_ = "optimized_" + model_file_name a_ = os.path.join(UpperCAmelCase , UpperCAmelCase ) onnx.save(UpperCAmelCase , UpperCAmelCase ) return new_model
303
0
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): a_ : Dict = """pixel_values""" a_ : Optional[int] = False a_ : str = TimmBackboneConfig def __init__( self , __UpperCAmelCase , **__UpperCAmelCase) ->List[Any]: requires_backends(self , "timm") super().__init__(__UpperCAmelCase) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(F'''backbone {config.backbone} is not supported by timm.''') if hasattr(__UpperCAmelCase , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(__UpperCAmelCase , "use_pretrained_backbone" , __UpperCAmelCase) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(__UpperCAmelCase , "out_indices" , __UpperCAmelCase) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(__UpperCAmelCase) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(__UpperCAmelCase) @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Union[str, Any]: requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , __UpperCAmelCase) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , ) return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: pass def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->Union[BackboneOutput, Tuple[Tensor, ...]]: a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(__UpperCAmelCase , **__UpperCAmelCase) a_ = None a_ = tuple(__UpperCAmelCase) a_ = tuple(__UpperCAmelCase) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase)
362
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase = "▁" , __UpperCAmelCase = True , __UpperCAmelCase = "<unk>" , __UpperCAmelCase = "</s>" , __UpperCAmelCase = "<pad>" , ) ->str: a_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } a_ = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): a_ = token_dict["token"] a_ = Tokenizer(Unigram()) a_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}") , " "), normalizers.Lowercase(), ]) a_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase), pre_tokenizers.Digits(individual_digits=__UpperCAmelCase), pre_tokenizers.Punctuation(), ]) a_ = decoders.Metaspace(replacement=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase) a_ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) a_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->Optional[Any]: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [files] self._tokenizer.train(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = 80_00 , __UpperCAmelCase = True , ) ->int: a_ = trainers.UnigramTrainer( vocab_size=__UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCAmelCase , ) self._tokenizer.train_from_iterator(__UpperCAmelCase , trainer=__UpperCAmelCase) self.add_unk_id() def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = json.loads(self._tokenizer.to_str()) a_ = self.special_tokens["unk"]["id"] a_ = Tokenizer.from_str(json.dumps(__UpperCAmelCase))
303
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : int = LayoutLMTokenizer a_ : List[str] = LayoutLMTokenizerFast a_ : Any = True a_ : List[str] = True def UpperCAmelCase__ ( self) ->Dict: super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->List[str]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def UpperCAmelCase__ ( self) ->List[str]: a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9]) def UpperCAmelCase__ ( self) ->Optional[Any]: pass
363
"""simple docstring""" from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = hf_hub_url(repo_id=UpperCAmelCase , path=UpperCAmelCase , revision=UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(UpperCAmelCase )}'''
303
0
"""simple docstring""" import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCamelCase_ = get_logger(__name__) class snake_case : a_ : Union[str, Any] = """dummy_data""" a_ : Optional[int] = """datasets""" a_ : Optional[Any] = False def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ) ->Union[str, Any]: a_ = 0 a_ = dataset_name a_ = cache_dir a_ = use_local_dummy_data a_ = config # download_callbacks take a single url as input a_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a_ = str(__UpperCAmelCase) # to be downloaded a_ = None a_ = None @property def UpperCAmelCase__ ( self) ->Union[str, Any]: if self._dummy_file is None: a_ = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__ ( self) ->Any: if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join("dummy" , self.version_name) @property def UpperCAmelCase__ ( self) ->Any: return os.path.join(self.dummy_data_folder , "dummy_data.zip") def UpperCAmelCase__ ( self) ->Dict: a_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a_ = cached_path( __UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase) return os.path.join(__UpperCAmelCase , self.dummy_file_name) @property def UpperCAmelCase__ ( self) ->List[str]: return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def UpperCAmelCase__ ( self) ->Any: if self._bucket_url is None: a_ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/")) return self._bucket_url @property def UpperCAmelCase__ ( self) ->int: # return full path if its a dir if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/").split("/")[:-1]) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase) ->Any: if self.load_existing_dummy_data: # dummy data is downloaded and tested a_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a_ = self.dummy_file_name # special case when data_url is a dict if isinstance(__UpperCAmelCase , __UpperCAmelCase): return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase) elif isinstance(__UpperCAmelCase , (list, tuple)): return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase) else: return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase) ->List[Any]: return self.download_and_extract(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: return self.download_and_extract(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: return path def UpperCAmelCase__ ( self) ->List[Any]: return {} def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: a_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__UpperCAmelCase , __UpperCAmelCase): for single_url in single_urls: download_callback(__UpperCAmelCase) else: a_ = single_urls download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase).name)) for x in single_urls] else: a_ = single_urls a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase).name)) a_ = value # make sure that values are unique if all(isinstance(__UpperCAmelCase , __UpperCAmelCase) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique a_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a_ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __UpperCAmelCase)) for url in data_url) a_ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url) if data_url and (is_tf_records or is_pubmed_records): a_ = [data_url[0]] * len(__UpperCAmelCase) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split("/")[-1])) dummy_data_list.append(__UpperCAmelCase) return dummy_data_list def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[int]: for download_callback in self.download_callbacks: download_callback(__UpperCAmelCase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a_ = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split("/")[-1])) if os.path.exists(__UpperCAmelCase) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__ ( self) ->Optional[Any]: pass def UpperCAmelCase__ ( self) ->int: pass def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: def _iter_archive_members(__UpperCAmelCase): # this preserves the order of the members inside the ZIP archive a_ = Path(self.dummy_file).parent a_ = path.relative_to(__UpperCAmelCase) with ZipFile(self.local_path_to_dummy_data) as zip_file: a_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(__UpperCAmelCase) a_ = Path(__UpperCAmelCase) a_ = _iter_archive_members(__UpperCAmelCase) if self.use_local_dummy_data else path.rglob("*") for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__")): yield file_path.relative_to(__UpperCAmelCase).as_posix(), file_path.open("rb") def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [paths] for path in paths: if os.path.isfile(__UpperCAmelCase): if os.path.basename(__UpperCAmelCase).startswith((".", "__")): return yield path else: for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase): if os.path.basename(__UpperCAmelCase).startswith((".", "__")): continue dirnames.sort() for filename in sorted(__UpperCAmelCase): if filename.startswith((".", "__")): continue yield os.path.join(__UpperCAmelCase , __UpperCAmelCase)
364
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """audio-spectrogram-transformer""" def __init__( self , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=16 , __UpperCAmelCase=True , __UpperCAmelCase=10 , __UpperCAmelCase=10 , __UpperCAmelCase=10_24 , __UpperCAmelCase=1_28 , **__UpperCAmelCase , ) ->str: super().__init__(**__UpperCAmelCase) a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = patch_size a_ = qkv_bias a_ = frequency_stride a_ = time_stride a_ = max_length a_ = num_mel_bins
303
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class snake_case : def __init__( self , __UpperCAmelCase = "cpu" , __UpperCAmelCase = "openai/clip-vit-large-patch14") ->None: a_ = device a_ = CLIPTokenizerFast.from_pretrained(__UpperCAmelCase) a_ = [0.48_145_466, 0.4_578_275, 0.40_821_073] a_ = [0.26_862_954, 0.26_130_258, 0.27_577_711] a_ = torchvision.transforms.Normalize(self.image_mean , self.image_std) a_ = torchvision.transforms.Resize(2_24) a_ = torchvision.transforms.CenterCrop(2_24) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: a_ = self.resize(__UpperCAmelCase) a_ = self.center_crop(__UpperCAmelCase) a_ = self.normalize(__UpperCAmelCase) return images def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase) ->Dict: a_ = self.tokenizer(text=__UpperCAmelCase , **__UpperCAmelCase) a_ = self.preprocess_img(__UpperCAmelCase) a_ = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class snake_case ( nn.Module ): def __init__( self , __UpperCAmelCase=10 , __UpperCAmelCase=0.01 , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="image" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , ) ->None: super().__init__() a_ = None a_ = device if device else get_device() if vqgan: a_ = vqgan else: a_ = load_vqgan(self.device , conf_path=__UpperCAmelCase , ckpt_path=__UpperCAmelCase) self.vqgan.eval() if clip: a_ = clip else: a_ = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") self.clip.to(self.device) a_ = ProcessorGradientFlow(device=self.device) a_ = iterations a_ = lr a_ = log a_ = make_grid a_ = return_val a_ = quantize a_ = self.vqgan.decoder.z_shape def UpperCAmelCase__ ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=5 , __UpperCAmelCase=True) ->Tuple: a_ = [] if output_path is None: a_ = "./animation.gif" if input_path is None: a_ = self.save_path a_ = sorted(glob(input_path + "/*")) if not len(__UpperCAmelCase): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)") if len(__UpperCAmelCase) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)") a_ = total_duration / len(__UpperCAmelCase) a_ = [frame_duration] * len(__UpperCAmelCase) if extend_frames: a_ = 1.5 a_ = 3 for file_name in paths: if file_name.endswith(".png"): images.append(imageio.imread(__UpperCAmelCase)) imageio.mimsave(__UpperCAmelCase , __UpperCAmelCase , duration=__UpperCAmelCase) print(F'''gif saved to {output_path}''') def UpperCAmelCase__ ( self , __UpperCAmelCase=None , __UpperCAmelCase=None) ->Any: if not (path or img): raise ValueError("Input either path or tensor") if img is not None: raise NotImplementedError a_ = preprocess(Image.open(__UpperCAmelCase) , target_image_size=2_56).to(self.device) a_ = preprocess_vqgan(__UpperCAmelCase) a_ , *a_ = self.vqgan.encode(__UpperCAmelCase) return z def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]: a_ = self.latent.detach().requires_grad_() a_ = base_latent + transform_vector if self.quantize: a_ , *a_ = self.vqgan.quantize(__UpperCAmelCase) else: a_ = trans_latent return self.vqgan.decode(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None) ->Dict: a_ = self.clip_preprocessor(text=__UpperCAmelCase , images=__UpperCAmelCase , return_tensors="pt" , padding=__UpperCAmelCase) a_ = self.clip(**__UpperCAmelCase) a_ = clip_outputs.logits_per_image if weights is not None: a_ = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Tuple: a_ = self._get_clip_similarity(pos_prompts["prompts"] , __UpperCAmelCase , weights=(1 / pos_prompts["weights"])) if neg_prompts: a_ = self._get_clip_similarity(neg_prompts["prompts"] , __UpperCAmelCase , weights=neg_prompts["weights"]) else: a_ = torch.tensor([1] , device=self.device) a_ = -torch.log(__UpperCAmelCase) + torch.log(__UpperCAmelCase) return loss def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: a_ = torch.randn_like(self.latent , requires_grad=__UpperCAmelCase , device=self.device) a_ = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() a_ = self._add_vector(__UpperCAmelCase) a_ = loop_post_process(__UpperCAmelCase) a_ = self._get_CLIP_loss(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) print("CLIP loss" , __UpperCAmelCase) if self.log: wandb.log({"CLIP Loss": clip_loss}) clip_loss.backward(retain_graph=__UpperCAmelCase) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: wandb.init(reinit=__UpperCAmelCase , project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update({"lr": self.lr, "iterations": self.iterations}) if image_path: a_ = Image.open(__UpperCAmelCase) a_ = image.resize((2_56, 2_56)) wandb.log("Original Image" , wandb.Image(__UpperCAmelCase)) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Any: if not prompts: return [] a_ = [] a_ = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [prompt.strip() for prompt in prompts.split("|")] for prompt in prompts: if isinstance(__UpperCAmelCase , (tuple, list)): a_ = prompt[0] a_ = float(prompt[1]) elif ":" in prompt: a_ , a_ = prompt.split(":") a_ = float(__UpperCAmelCase) else: a_ = prompt a_ = 1.0 processed_prompts.append(__UpperCAmelCase) weights.append(__UpperCAmelCase) return { "prompts": processed_prompts, "weights": torch.tensor(__UpperCAmelCase , device=self.device), } def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , ) ->Optional[Any]: if image_path: a_ = self._get_latent(__UpperCAmelCase) else: a_ = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) assert pos_prompts, "You must provide at least one positive prompt." a_ = self.process_prompts(__UpperCAmelCase) a_ = self.process_prompts(__UpperCAmelCase) if save_final and save_path is None: a_ = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"])) if not os.path.exists(__UpperCAmelCase): os.makedirs(__UpperCAmelCase) else: a_ = save_path + "_" + get_timestamp() os.makedirs(__UpperCAmelCase) a_ = save_path a_ = self.vqgan.decode(self.latent)[0] if show_intermediate: print("Original Image") show_pil(custom_to_pil(__UpperCAmelCase)) a_ = loop_post_process(__UpperCAmelCase) for iter, transformed_img in enumerate(self._optimize_CLIP(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)): if show_intermediate: show_pil(__UpperCAmelCase) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''')) if self.log: wandb.log({"Image": wandb.Image(__UpperCAmelCase)}) if show_final: show_pil(__UpperCAmelCase) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png'''))
365
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = """deformable_detr""" a_ : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=3_00 , __UpperCAmelCase=10_24 , __UpperCAmelCase=6 , __UpperCAmelCase=10_24 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=10_24 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=2_56 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=3_00 , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.25 , __UpperCAmelCase=False , **__UpperCAmelCase , ) ->List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") a_ = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = backbone_config.get("model_type") a_ = CONFIG_MAPPING[backbone_model_type] a_ = config_class.from_dict(__UpperCAmelCase) a_ = use_timm_backbone a_ = backbone_config a_ = num_channels a_ = num_queries a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = init_xavier_std a_ = encoder_layerdrop a_ = auxiliary_loss a_ = position_embedding_type a_ = backbone a_ = use_pretrained_backbone a_ = dilation # deformable attributes a_ = num_feature_levels a_ = encoder_n_points a_ = decoder_n_points a_ = two_stage a_ = two_stage_num_proposals a_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher a_ = class_cost a_ = bbox_cost a_ = giou_cost # Loss coefficients a_ = mask_loss_coefficient a_ = dice_loss_coefficient a_ = bbox_loss_coefficient a_ = giou_loss_coefficient a_ = eos_coefficient a_ = focal_alpha a_ = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase) @property def UpperCAmelCase__ ( self) ->int: return self.encoder_attention_heads @property def UpperCAmelCase__ ( self) ->int: return self.d_model def UpperCAmelCase__ ( self) ->Tuple: a_ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: a_ = self.backbone_config.to_dict() a_ = self.__class__.model_type return output
366
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Optional[int]: super().__init__() if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( speech_model=__UpperCAmelCase , speech_processor=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , ) def UpperCAmelCase__ ( self , __UpperCAmelCase = "auto") ->int: if slice_size == "auto": a_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: self.enable_attention_slicing(__UpperCAmelCase) @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase=1_60_00 , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 5_12 , __UpperCAmelCase = 50 , __UpperCAmelCase = 7.5 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , **__UpperCAmelCase , ) ->int: a_ = self.speech_processor.feature_extractor( __UpperCAmelCase , return_tensors="pt" , sampling_rate=__UpperCAmelCase).input_features.to(self.device) a_ = self.speech_model.generate(__UpperCAmelCase , max_length=48_00_00) a_ = self.speech_processor.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , normalize=__UpperCAmelCase)[ 0 ] if isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = len(__UpperCAmelCase) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase)}''') if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__UpperCAmelCase)}.''') # get prompt text embeddings a_ = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) a_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: a_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F''' {self.tokenizer.model_max_length} tokens: {removed_text}''') a_ = text_input_ids[:, : self.tokenizer.model_max_length] a_ = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method a_ , a_ , a_ = text_embeddings.shape a_ = text_embeddings.repeat(1 , __UpperCAmelCase , 1) a_ = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. a_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: a_ = 42 if negative_prompt is None: a_ = [""] * batch_size elif type(__UpperCAmelCase) is not type(__UpperCAmelCase): raise TypeError( F'''`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase)} !=''' F''' {type(__UpperCAmelCase)}.''') elif isinstance(__UpperCAmelCase , __UpperCAmelCase): a_ = [negative_prompt] elif batch_size != len(__UpperCAmelCase): raise ValueError( F'''`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase)}, but `prompt`:''' F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`.") else: a_ = negative_prompt a_ = text_input_ids.shape[-1] a_ = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) a_ = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method a_ = uncond_embeddings.shape[1] a_ = uncond_embeddings.repeat(1 , __UpperCAmelCase , 1) a_ = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a_ = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. a_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) a_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps a_ = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="cpu" , dtype=__UpperCAmelCase).to( self.device) else: a_ = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''') a_ = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand a_ = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler a_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a_ = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) a_ = {} if accepts_eta: a_ = eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase)): # expand the latents if we are doing classifier free guidance a_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents a_ = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase) # predict the noise residual a_ = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase).sample # perform guidance if do_classifier_free_guidance: a_ , a_ = noise_pred.chunk(2) a_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 a_ = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a_ = 1 / 0.18_215 * latents a_ = self.vae.decode(__UpperCAmelCase).sample a_ = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 a_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": a_ = self.numpy_to_pil(__UpperCAmelCase) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase)
367
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case ( SCREAMING_SNAKE_CASE_ ): def UpperCAmelCase__ ( self) ->Any: a_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__UpperCAmelCase , "embed_dim")) self.parent.assertTrue(hasattr(__UpperCAmelCase , "num_heads")) class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=64 , __UpperCAmelCase=3 , __UpperCAmelCase=[16, 48, 96] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ) ->Optional[int]: a_ = parent a_ = batch_size a_ = image_size a_ = patch_sizes a_ = patch_stride a_ = patch_padding a_ = is_training a_ = use_labels a_ = num_labels a_ = num_channels a_ = embed_dim a_ = num_heads a_ = stride_kv a_ = depth a_ = cls_token a_ = attention_drop_rate a_ = initializer_range a_ = layer_norm_eps def UpperCAmelCase__ ( self) ->Any: a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a_ = None if self.use_labels: # create a random int32 tensor of given shape a_ = ids_tensor([self.batch_size] , self.num_labels) a_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self) ->Union[str, Any]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = TFCvtModel(config=__UpperCAmelCase) a_ = model(__UpperCAmelCase , training=__UpperCAmelCase) a_ = (self.image_size, self.image_size) a_ , a_ = image_size[0], image_size[1] for i in range(len(self.depth)): a_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) a_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->str: a_ = self.num_labels a_ = TFCvtForImageClassification(__UpperCAmelCase) a_ = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self) ->Tuple: a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Union[str, Any] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () a_ : List[Any] = ( {"""feature-extraction""": TFCvtModel, """image-classification""": TFCvtForImageClassification} if is_tf_available() else {} ) a_ : Any = False a_ : Dict = False a_ : Optional[int] = False a_ : List[Any] = False a_ : List[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = TFCvtModelTester(self) a_ = TFCvtConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[str]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions") def UpperCAmelCase__ ( self) ->Dict: pass @unittest.skip(reason="Cvt does not use inputs_embeds") def UpperCAmelCase__ ( self) ->List[str]: pass @unittest.skip(reason="Cvt does not support input and output embeddings") def UpperCAmelCase__ ( self) ->Optional[Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def UpperCAmelCase__ ( self) ->Dict: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def UpperCAmelCase__ ( self) ->List[str]: super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8") def UpperCAmelCase__ ( self) ->Dict: a_ = tf.keras.mixed_precision.Policy("mixed_float16") tf.keras.mixed_precision.set_global_policy(__UpperCAmelCase) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32") def UpperCAmelCase__ ( self) ->Optional[int]: a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(__UpperCAmelCase) a_ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase): a_ = model_class(__UpperCAmelCase) a_ = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase)) a_ = outputs.hidden_states a_ = len(self.model_tester.depth) self.assertEqual(len(__UpperCAmelCase) , __UpperCAmelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->str: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFCvtModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self) ->int: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def UpperCAmelCase__ ( self) ->Any: a_ = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=__UpperCAmelCase , return_tensors="tf") # forward pass a_ = model(**__UpperCAmelCase) # verify the logits a_ = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __UpperCAmelCase) a_ = tf.constant([0.9_285, 0.9_015, -0.3_150]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __UpperCAmelCase , atol=1E-4))
303
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Union[str, Any] = """roberta""" def __init__( self , __UpperCAmelCase=5_02_65 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->int: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
368
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Dict = """Speech2TextFeatureExtractor""" a_ : str = """Speech2TextTokenizer""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[str]: super().__init__(__UpperCAmelCase , __UpperCAmelCase) a_ = self.feature_extractor a_ = False def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase) ->Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") a_ = kwargs.pop("raw_speech") else: a_ = kwargs.pop("audio" , __UpperCAmelCase) a_ = kwargs.pop("sampling_rate" , __UpperCAmelCase) a_ = kwargs.pop("text" , __UpperCAmelCase) if len(__UpperCAmelCase) > 0: a_ = args[0] a_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: a_ = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase) if text is not None: a_ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase) if text is None: return inputs elif audio is None: return encodings else: a_ = encodings["input_ids"] return inputs def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->str: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase) def UpperCAmelCase__ ( self , *__UpperCAmelCase , **__UpperCAmelCase) ->int: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase) @contextmanager def UpperCAmelCase__ ( self) ->Tuple: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call.") a_ = True a_ = self.tokenizer yield a_ = self.feature_extractor a_ = False
303
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) # TODO: upload to AWS UpperCamelCase_ = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): a_ : List[Any] = """retribert""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=8 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=1_28 , __UpperCAmelCase=0 , **__UpperCAmelCase , ) ->int: super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = share_encoders a_ = projection_dim
369
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCamelCase_ = None UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase_ = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } UpperCamelCase_ = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } UpperCamelCase_ = '▁' class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : Tuple = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : Optional[Any] = AlbertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) ->str: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a_ = ( AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase , normalized=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token ) super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) a_ = do_lower_case a_ = remove_space a_ = keep_accents a_ = vocab_file a_ = False if not self.vocab_file else True def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[int]: a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(__UpperCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return a_ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase): copyfile(self.vocab_file , __UpperCAmelCase) return (out_vocab_file,)
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) if k.startswith("encoder" ): a_ = k.replace(".attn" , ".self_attn" ) a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "encoder_attn_layer_norm" ) a_ = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: a_ = sd.pop(UpperCAmelCase ) a_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd a_ = v UpperCamelCase_ = ['START'] @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = model["model"] a_ = BlenderbotConfig.from_json_file(UpperCAmelCase ) a_ = BlenderbotForConditionalGeneration(UpperCAmelCase ) a_ = m.model.state_dict().keys() a_ = [] a_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase ) m.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) m.half() m.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase = get_tests_dir('''fixtures''') class A ( unittest.TestCase ): def _A (self ): # A mock response for an HTTP head request to emulate server down __lowercase= mock.Mock() __lowercase= 5_0_0 __lowercase= {} __lowercase= HTTPError __lowercase= {} # Download this model to make sure it's in the cache. __lowercase= ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase ) as mock_head: __lowercase= ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _A (self ): # This test is for deprecated behavior and can be removed in v5 __lowercase= ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _A (self ): with self.assertRaises(lowerCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __lowercase= AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) __lowercase= AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(lowerCAmelCase ) @is_staging_test class A ( unittest.TestCase ): @classmethod def _A (cls ): __lowercase= TOKEN HfFolder.save_token(lowerCAmelCase ) @classmethod def _A (cls ): try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _A (self ): __lowercase= ViTImageProcessor.from_pretrained(lowerCAmelCase ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) __lowercase= ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(lowerCAmelCase , lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCAmelCase , repo_id='test-image-processor' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) __lowercase= ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(lowerCAmelCase , lowerCAmelCase ) ) def _A (self ): __lowercase= ViTImageProcessor.from_pretrained(lowerCAmelCase ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) __lowercase= ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(lowerCAmelCase , lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCAmelCase , repo_id='valid_org/test-image-processor-org' , push_to_hub=lowerCAmelCase , use_auth_token=self._token ) __lowercase= ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase , getattr(lowerCAmelCase , lowerCAmelCase ) ) def _A (self ): CustomImageProcessor.register_for_auto_class() __lowercase= CustomImageProcessor.from_pretrained(lowerCAmelCase ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) __lowercase= AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=lowerCAmelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
304
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class A ( A_ ): def __init__(self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=3.6 ): __lowercase= tokenizer __lowercase= tokenizer.bos_token_id __lowercase= dataset __lowercase= seq_length __lowercase= seq_length * chars_per_token * num_of_sequences def __iter__(self ): __lowercase= iter(self.dataset ) __lowercase= True while more_examples: __lowercase, __lowercase= [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCAmelCase )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __lowercase= False break __lowercase= tokenizer(lowerCAmelCase , truncation=lowerCAmelCase )['input_ids'] __lowercase= [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowerCAmelCase ) , self.seq_length ): __lowercase= all_token_ids[i : i + self.seq_length] if len(lowerCAmelCase ) == self.seq_length: yield torch.tensor(lowerCAmelCase ) def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= {'streaming': True} __lowercase= load_dataset(args.dataset_name , split='train' , **lowercase__ ) __lowercase= ConstantLengthDataset(lowercase__ , lowercase__ , seq_length=args.seq_length ) __lowercase= DataLoader(lowercase__ , batch_size=args.batch_size ) return eval_dataloader def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' model.eval() __lowercase= [] for step, batch in enumerate(lowercase__ ): with torch.no_grad(): __lowercase= model(lowercase__ , labels=lowercase__ ) __lowercase= outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(lowercase__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __lowercase= torch.mean(torch.cat(lowercase__ ) ) try: __lowercase= torch.exp(lowercase__ ) except OverflowError: __lowercase= float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase = Accelerator() # Parse configuration lowerCAmelCase = HfArgumentParser(EvaluationArguments) lowerCAmelCase = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase = logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase ,lowerCAmelCase = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') lowerCAmelCase ,lowerCAmelCase = evaluate(args) logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
304
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
1
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class A ( A_ ): UpperCamelCase_ : str =field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : ClassVar[Features] =Features({'''text''': Value('''string''' )} ) UpperCamelCase_ : ClassVar[Features] =Features({} ) UpperCamelCase_ : str ="text" @property def _A (self ): return {self.text_column: "text"}
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class A ( A_ ): UpperCamelCase_ : str ='''speech_to_text''' UpperCamelCase_ : List[Any] =['''past_key_values'''] UpperCamelCase_ : Any ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=1_0_0_0_0 , lowerCAmelCase=1_2 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=4 , lowerCAmelCase=6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=4 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=2_5_6 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=6_0_0_0 , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=2 , lowerCAmelCase=(5, 5) , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=8_0 , lowerCAmelCase=1 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True __lowercase= max_source_positions __lowercase= max_target_positions __lowercase= num_conv_layers __lowercase= list(lowerCAmelCase ) __lowercase= conv_channels __lowercase= input_feat_per_channel __lowercase= input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
304
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
1
import re import string import numpy as np import datasets lowerCAmelCase = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' lowerCAmelCase = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' lowerCAmelCase = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): def _A (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: __lowercase= np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in predictions] ) __lowercase= np.array([re.sub(lowerCAmelCase , '' , lowerCAmelCase ) for x in references] ) else: __lowercase= np.asarray(lowerCAmelCase ) __lowercase= np.asarray(lowerCAmelCase ) if ignore_case: __lowercase= np.char.lower(lowerCAmelCase ) __lowercase= np.char.lower(lowerCAmelCase ) if ignore_punctuation: __lowercase= string.punctuation.maketrans('' , '' , string.punctuation ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) if ignore_numbers: __lowercase= string.digits.maketrans('' , '' , string.digits ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= np.char.translate(lowerCAmelCase , table=lowerCAmelCase ) __lowercase= predictions == references return {"exact_match": np.mean(lowerCAmelCase ) * 1_0_0}
304
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class A ( A_ ): def _A (self ): __lowercase= SMALL_MODEL_IDENTIFIER __lowercase= 'pt' __lowercase= 'tf' def _A (self , lowerCAmelCase ): __lowercase= AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase ) def _A (self , lowerCAmelCase ): __lowercase= TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase ) model_tf.save_pretrained(lowerCAmelCase ) def _A (self ): __lowercase= 'mock_framework' # Framework provided - return whatever the user provides __lowercase= FeaturesManager.determine_framework(self.test_model , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __lowercase= FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __lowercase= FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def _A (self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase ) __lowercase= FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase ) __lowercase= FeaturesManager.determine_framework(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase ): __lowercase= FeaturesManager.determine_framework(lowerCAmelCase ) def _A (self ): __lowercase= MagicMock(return_value=lowerCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase ): __lowercase= FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __lowercase= MagicMock(return_value=lowerCAmelCase ) with patch('transformers.onnx.features.is_torch_available' , lowerCAmelCase ): __lowercase= FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch __lowercase= MagicMock(return_value=lowerCAmelCase ) __lowercase= MagicMock(return_value=lowerCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , lowerCAmelCase ): __lowercase= FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase , self.framework_pt ) # Both not in environment -> raise error __lowercase= MagicMock(return_value=lowerCAmelCase ) __lowercase= MagicMock(return_value=lowerCAmelCase ) with patch('transformers.onnx.features.is_tf_available' , lowerCAmelCase ), patch( 'transformers.onnx.features.is_torch_available' , lowerCAmelCase ): with self.assertRaises(lowerCAmelCase ): __lowercase= FeaturesManager.determine_framework(self.test_model )
304
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
1
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=1_8 , lowerCAmelCase=3_0 , lowerCAmelCase=4_0_0 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=False , ): __lowercase= size if size is not None else {'height': 2_0, 'width': 2_0} __lowercase= crop_size if crop_size is not None else {'height': 1_8, 'width': 1_8} __lowercase= parent __lowercase= batch_size __lowercase= num_channels __lowercase= image_size __lowercase= min_resolution __lowercase= max_resolution __lowercase= do_resize __lowercase= size __lowercase= do_center_crop __lowercase= crop_size __lowercase= do_normalize __lowercase= image_mean __lowercase= image_std __lowercase= do_reduce_labels def _A (self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __lowercase= Image.open(dataset[0]['file'] ) __lowercase= Image.open(dataset[1]['file'] ) return image, map def _lowerCamelCase( ) -> Dict: '''simple docstring''' __lowercase= load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __lowercase= Image.open(ds[0]['file'] ) __lowercase= Image.open(ds[1]['file'] ) __lowercase= Image.open(ds[2]['file'] ) __lowercase= Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =BeitImageProcessor if is_vision_available() else None def _A (self ): __lowercase= BeitImageProcessingTester(self ) @property def _A (self ): return self.image_processor_tester.prepare_image_processor_dict() def _A (self ): __lowercase= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) def _A (self ): __lowercase= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_0, 'width': 2_0} ) self.assertEqual(image_processor.crop_size , {'height': 1_8, 'width': 1_8} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) __lowercase= self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=lowerCAmelCase ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) self.assertEqual(image_processor.crop_size , {'height': 8_4, 'width': 8_4} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) def _A (self ): pass def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase= image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase= image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) __lowercase= [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __lowercase= image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched __lowercase= image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test not batched input (PIL images) __lowercase, __lowercase= prepare_semantic_single_inputs() __lowercase= image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) # Test batched input (PIL images) __lowercase, __lowercase= prepare_semantic_batch_inputs() __lowercase= image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 ) def _A (self ): # Initialize image_processing __lowercase= self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __lowercase, __lowercase= prepare_semantic_single_inputs() __lowercase= image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 1_5_0 ) __lowercase= True __lowercase= image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 2_5_5 )
304
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowercase= model_type_to_module_name(lowercase__ ) __lowercase= importlib.import_module(F'.{module_name}' , 'transformers.models' ) try: return getattr(lowercase__ , lowercase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowercase__ , '__name__' , lowercase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowercase= importlib.import_module('transformers' ) if hasattr(lowercase__ , lowercase__ ): return getattr(lowercase__ , lowercase__ ) return None def _lowerCamelCase( lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , **lowercase__ , ) -> List[str]: '''simple docstring''' __lowercase= get_file_from_repo( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(lowercase__ , encoding='utf-8' ) as reader: return json.load(lowercase__ ) class A : def __init__(self ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase ) def _A (cls , lowerCAmelCase , **lowerCAmelCase ): __lowercase= kwargs.pop('config' , lowerCAmelCase ) __lowercase= kwargs.pop('trust_remote_code' , lowerCAmelCase ) __lowercase= True __lowercase, __lowercase= FeatureExtractionMixin.get_feature_extractor_dict(lowerCAmelCase , **lowerCAmelCase ) __lowercase= config_dict.get('feature_extractor_type' , lowerCAmelCase ) __lowercase= None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): __lowercase= config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCAmelCase , lowerCAmelCase ): __lowercase= AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # It could be in `config.feature_extractor_type`` __lowercase= getattr(lowerCAmelCase , 'feature_extractor_type' , lowerCAmelCase ) if hasattr(lowerCAmelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: __lowercase= config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: __lowercase= feature_extractor_class_from_name(lowerCAmelCase ) __lowercase= feature_extractor_auto_map is not None __lowercase= feature_extractor_class is not None or type(lowerCAmelCase ) in FEATURE_EXTRACTOR_MAPPING __lowercase= resolve_trust_remote_code( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if has_remote_code and trust_remote_code: __lowercase= get_class_from_dynamic_module( lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) __lowercase= kwargs.pop('code_revision' , lowerCAmelCase ) if os.path.isdir(lowerCAmelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCAmelCase ) in FEATURE_EXTRACTOR_MAPPING: __lowercase= FEATURE_EXTRACTOR_MAPPING[type(lowerCAmelCase )] return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase ) raise ValueError( f'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' f'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def _A (lowerCAmelCase , lowerCAmelCase ): FEATURE_EXTRACTOR_MAPPING.register(lowerCAmelCase , lowerCAmelCase )
304
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
1
import os def _lowerCamelCase( ) -> List[Any]: '''simple docstring''' __lowercase= os.path.join(os.path.dirname(lowercase__ ) , 'num.txt' ) with open(lowercase__ ) as file_hand: return str(sum(int(lowercase__ ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' __lowercase= [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =StableDiffusionLatentUpscalePipeline UpperCamelCase_ : Union[str, Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase_ : Any =PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase_ : List[str] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Any =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : Dict =frozenset([] ) UpperCamelCase_ : List[Any] =True @property def _A (self ): __lowercase= 1 __lowercase= 4 __lowercase= (1_6, 1_6) __lowercase= floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowerCAmelCase , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowerCAmelCase , only_cross_attention=lowerCAmelCase , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) __lowercase= AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) __lowercase= EulerDiscreteScheduler(prediction_type='sample' ) __lowercase= CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) __lowercase= CLIPTextModel(lowerCAmelCase ) __lowercase= CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowercase= { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _A (self , lowerCAmelCase , lowerCAmelCase=0 ): if str(lowerCAmelCase ).startswith('mps' ): __lowercase= torch.manual_seed(lowerCAmelCase ) else: __lowercase= torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) __lowercase= { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _A (self ): __lowercase= 'cpu' __lowercase= self.get_dummy_components() __lowercase= self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= pipe(**lowerCAmelCase ).images __lowercase= image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) __lowercase= np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) __lowercase= np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase , 1E-3 ) def _A (self ): super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def _A (self ): super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def _A (self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _A (self ): super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def _A (self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def _A (self ): super().test_save_load_local(expected_max_difference=3E-3 ) def _A (self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _A (self ): __lowercase= [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] __lowercase= self.get_dummy_components() __lowercase= self.pipeline_class(**lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= self.get_dummy_inputs(lowerCAmelCase ) __lowercase= 2 __lowercase= [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __lowercase= getattr(lowerCAmelCase , scheduler_enum.name ) __lowercase= scheduler_cls.from_config(pipe.scheduler.config ) __lowercase= pipe(**lowerCAmelCase )[0] outputs.append(lowerCAmelCase ) assert check_same_shape(lowerCAmelCase ) @require_torch_gpu @slow class A ( unittest.TestCase ): def _A (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= torch.manual_seed(3_3 ) __lowercase= StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) __lowercase= StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __lowercase= 'a photo of an astronaut high resolution, unreal engine, ultra realistic' __lowercase= pipe(lowerCAmelCase , generator=lowerCAmelCase , output_type='latent' ).images __lowercase= upscaler( prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=lowerCAmelCase , output_type='np' , ).images[0] __lowercase= load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def _A (self ): __lowercase= torch.manual_seed(3_3 ) __lowercase= StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) __lowercase= 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) __lowercase= upscaler( prompt=lowerCAmelCase , image=lowerCAmelCase , num_inference_steps=2_0 , guidance_scale=0 , generator=lowerCAmelCase , output_type='np' , ).images[0] __lowercase= load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase, __lowercase= 1, 1 __lowercase= [] for i in range(1 , n + 1 ): __lowercase= prev_numerator + 2 * prev_denominator __lowercase= prev_numerator + prev_denominator if len(str(lowercase__ ) ) > len(str(lowercase__ ) ): result.append(lowercase__ ) __lowercase= numerator __lowercase= denominator return len(lowercase__ ) if __name__ == "__main__": print(F'{solution() = }')
304
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A ( A_ ): def __init__(self , *lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase=None , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) __lowercase= eval_examples __lowercase= post_process_function def _A (self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase = "eval" ): __lowercase= self.eval_dataset if eval_dataset is None else eval_dataset __lowercase= self.get_eval_dataloader(lowerCAmelCase ) __lowercase= self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase= time.time() try: __lowercase= eval_loop( lowerCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) else: __lowercase= output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __lowercase= self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase ) return metrics def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , lowerCAmelCase = "test" ): __lowercase= self.get_test_dataloader(lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __lowercase= self.compute_metrics __lowercase= None __lowercase= self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __lowercase= time.time() try: __lowercase= eval_loop( lowerCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase , metric_key_prefix=lowerCAmelCase , ) finally: __lowercase= compute_metrics __lowercase= self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( lowerCAmelCase , lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __lowercase= self.post_process_function(lowerCAmelCase , lowerCAmelCase , output.predictions , 'predict' ) __lowercase= self.compute_metrics(lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): __lowercase= metrics.pop(lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase )
304
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase = 5 lowerCAmelCase = 1_0 @require_sentencepiece @require_tokenizers class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Optional[Any] =SpeechaTextTokenizer UpperCamelCase_ : Optional[Any] =False UpperCamelCase_ : Optional[Any] =True def _A (self ): super().setUp() __lowercase= sp.SentencePieceProcessor() spm_model.Load(lowerCAmelCase ) __lowercase= ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCAmelCase ) )] __lowercase= dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) __lowercase= Path(self.tmpdirname ) save_json(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase= SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A (self ): __lowercase= '<pad>' __lowercase= 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(lowerCAmelCase ) , 1_0_0_1 ) def _A (self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_1 ) def _A (self ): __lowercase= SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase= tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [2_8_9, 5_0, 1_4, 1_7_4, 3_8_6] , ) __lowercase= tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase= tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [1_2, 2_5, 8_8, 5_9, 2_8, 2_3, 1_1, 4, 6_0_6, 3_5_1, 3_5_1, 3_5_1, 7, 1_6, 7_0, 5_0, 7_6, 8_4, 1_0, 4, 8] ) __lowercase= tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _A (self ): # fmt: off __lowercase= {'input_ids': [[3_7_9_1, 7_9_7, 3_1, 1_1, 6_4, 7_9_7, 3_1, 2_4_2_9, 4_3_3, 1_2, 1_1_7_6, 1_2, 2_0, 7_8_6, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 3_2_3_8, 7_9_7, 3_1, 1_1, 3_5, 9_3, 9_1_5, 1_4_2, 2_4_1_3, 2_4_0, 3_7, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_7, 6_1_0, 4_0, 6_2, 4_5_5, 6_5_7, 1_0_4_2, 1_2_3, 7_8_0, 1_7_7, 3_7, 3_0_9, 2_4_1, 1_2_9_8, 5_1_4, 2_0, 2_9_2, 2_7_3_7, 1_1_4, 2_4_6_9, 2_4_1, 8_5, 6_4, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 4, 5_0_9, 4_0_6, 4_2_3, 3_7, 6_0_1, 4, 7_7_7, 3_0_2, 5_4_8, 5_2_8, 4_2_3, 2_8_4, 4, 3_3_8_8, 5_1_1, 4_5_9, 4, 3_5_5_5, 4_0, 3_2_1, 3_0_2, 7_0_5, 4, 3_3_8_8, 5_1_1, 5_8_3, 3_2_6, 5, 5, 5, 6_2, 3_3_1_0, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 3_2, 3_1, 8_5_3, 4_1_8, 6_4, 5_8_3, 5_1_1, 1_6_0_5, 6_2, 3_5, 9_3, 5_6_0, 1_7_7, 2_6_8_0, 2_1_7, 1_5_0_8, 1_5_2_1, 6_4, 5_8_3, 5_1_1, 5_1_9, 6_2, 2_0, 1_5_1_5, 7_6_4, 2_0, 1_4_9, 2_6_1, 5_6_2_5, 7_9_7_2, 2_0, 5_5_4_0, 5_6_7, 1_2_7_6, 9_3, 3_9_2_5, 1_6_7_5, 1_1, 1_5, 8_0_2, 7_9_7_2, 5_7_6, 2_1_7, 1_5_0_8, 1_1, 3_5, 9_3, 1_2_5_3, 2_4_4_1, 1_5, 2_8_9, 6_5_2, 3_1, 4_1_6, 3_2_1, 3_8_4_2, 1_1_5, 4_0, 9_1_1, 8, 4_7_6, 6_1_9, 4, 3_8_0, 1_4_2, 4_2_3, 3_3_5, 2_4_0, 3_5, 9_3, 2_6_4, 8, 1_1, 3_3_5, 5_6_9, 4_2_0, 1_6_3, 5, 2], [2_6_0, 5_4_8, 5_2_8, 4_2_3, 2_0, 4_5_1, 2_0, 2_6_8_1, 1_1_5_3, 3_4_3_4, 2_0, 5_5_4_0, 3_7, 5_6_7, 1_2_6, 1_2_5_3, 2_4_4_1, 3_3_7_6, 4_4_9, 2_1_0, 4_3_1, 1_5_6_3, 1_7_7, 7_6_7, 5_5_4_0, 1_1, 1_2_0_3, 4_7_2, 1_1, 2_9_5_3, 6_8_5, 2_8_5, 3_6_4, 7_0_6, 1_1_5_3, 2_0, 6_7_9_9, 2_0, 2_8_6_9, 2_0, 4_4_6_4, 1_2_6, 4_0, 2_4_2_9, 2_0, 1_0_4_0, 8_6_6, 2_6_6_4, 4_1_8, 2_0, 3_1_8, 2_0, 1_7_2_6, 1_8_6, 2_0, 2_6_5, 5_2_2, 3_5, 9_3, 2_1_9_1, 4_6_3_4, 2_0, 1_0_4_0, 1_2, 6_7_9_9, 1_5, 2_2_8, 2_3_5_6, 1_4_2, 3_1, 1_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_7_5, 2_6_6_6, 6_8_4, 1_5_8_2, 1_1_7_6, 1_2, 6_2_7, 1_4_9, 6_1_9, 2_0, 4_9_0_2, 5_6_3, 1_1, 2_0, 1_4_9, 2_6_1, 3_4_2_0, 2_3_5_6, 1_7_4, 1_4_2, 4_7_1_4, 1_3_1, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A ( unittest.TestCase ): UpperCamelCase_ : Optional[Any] ='''valhalla/s2t_mustc_multilinguial_medium''' UpperCamelCase_ : List[str] ='''C\'est trop cool''' UpperCamelCase_ : Optional[int] ='''Esto es genial''' @classmethod def _A (cls ): __lowercase= SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _A (self ): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 1_1 ) def _A (self ): self.assertEqual(self.tokenizer.vocab_size , 1_0_0_0_0 ) def _A (self ): self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids ) __lowercase= [ES_CODE, 4, 1_6_0_1, 4_7, 7_6_4_7, 2] __lowercase= self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) __lowercase= self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase ) def _A (self ): __lowercase= 'fr' __lowercase= self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , lowerCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _A (self ): __lowercase= 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase= 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
304
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
1
from __future__ import annotations lowerCAmelCase = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0] lowerCAmelCase = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1] def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= [] __lowercase= len(lowercase__ ) for i in range(lowercase__ ): __lowercase= -1 for j in range(i + 1 , lowercase__ ): if arr[i] < arr[j]: __lowercase= arr[j] break result.append(lowercase__ ) return result def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= [] for i, outer in enumerate(lowercase__ ): __lowercase= -1 for inner in arr[i + 1 :]: if outer < inner: __lowercase= inner break result.append(lowercase__ ) return result def _lowerCamelCase( lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= len(lowercase__ ) __lowercase= [] __lowercase= [-1] * arr_size for index in reversed(range(lowercase__ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowercase= stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
304
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
1
from __future__ import annotations def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[str]: '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(lowercase__ ): print(F'{i}\t\t{d}' ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Dict: '''simple docstring''' for j in range(lowercase__ ): __lowercase, __lowercase, __lowercase= (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> list[float]: '''simple docstring''' __lowercase= [float('inf' )] * vertex_count __lowercase= 0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase__ ): __lowercase, __lowercase, __lowercase= (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: __lowercase= distance[u] + w __lowercase= check_negative_cycle(lowercase__ , lowercase__ , lowercase__ ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = int(input('''Enter number of vertices: ''').strip()) lowerCAmelCase = int(input('''Enter number of edges: ''').strip()) lowerCAmelCase = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) lowerCAmelCase = {'''src''': src, '''dst''': dest, '''weight''': weight} lowerCAmelCase = int(input('''\nEnter shortest path source:''').strip()) lowerCAmelCase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
304
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class A ( unittest.TestCase ): def _A (self ): __lowercase= tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __lowercase= tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __lowercase= tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above __lowercase= tf_top_k_top_p_filtering(lowerCAmelCase , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) __lowercase= output[output != -float('inf' )] __lowercase= tf.cast( tf.where(tf.not_equal(lowerCAmelCase , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-12 ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @require_tf class A ( unittest.TestCase , A_ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): UpperCamelCase_ : List[Any] ={ '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def _A (self ): # TF-only test: tf.saved_model export __lowercase= TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowercase= 2 __lowercase= 2 class A ( tf.Module ): def __init__(self , lowerCAmelCase ): super(lowerCAmelCase , self ).__init__() __lowercase= model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=lowerCAmelCase , ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.model.generate( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , max_new_tokens=lowerCAmelCase , return_dict_in_generate=lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __lowercase= [[2, 0], [1_0_2, 1_0_3]] __lowercase= [[1, 0], [1, 1]] __lowercase= DummyModel(model=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={'serving_default': dummy_model.serving} ) __lowercase= tf.saved_model.load(lowerCAmelCase ).signatures['serving_default'] for batch_size in range(1 , len(lowerCAmelCase ) + 1 ): __lowercase= { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } __lowercase= serving_func(**lowerCAmelCase )['sequences'] __lowercase= test_model.generate(**lowerCAmelCase , max_new_tokens=lowerCAmelCase ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @slow def _A (self ): # TF-only test: tf.saved_model export __lowercase= TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowercase= 1 __lowercase= 2 class A ( tf.Module ): def __init__(self , lowerCAmelCase ): super(lowerCAmelCase , self ).__init__() __lowercase= model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=lowerCAmelCase , ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.model.generate( input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase , max_new_tokens=lowerCAmelCase , return_dict_in_generate=lowerCAmelCase , ) return {"sequences": outputs["sequences"]} __lowercase= [[2], [1_0_2, 1_0_3]] __lowercase= [[1], [1, 1]] __lowercase= DummyModel(model=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={'serving_default': dummy_model.serving} ) __lowercase= tf.saved_model.load(lowerCAmelCase ).signatures['serving_default'] for input_row in range(len(lowerCAmelCase ) ): __lowercase= { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } __lowercase= serving_func(**lowerCAmelCase )['sequences'] __lowercase= test_model.generate(**lowerCAmelCase , max_new_tokens=lowerCAmelCase ) tf.debugging.assert_equal(lowerCAmelCase , lowerCAmelCase ) @slow @require_tensorflow_text def _A (self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=lowerCAmelCase ) class A ( tf.keras.layers.Layer ): def __init__(self ): super().__init__() __lowercase= text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(lowerCAmelCase , 'spiece.model' ) , 'rb' ).read() ) __lowercase= TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def _A (self , lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ): __lowercase= self.tokenizer.tokenize(lowerCAmelCase ) __lowercase, __lowercase= text.pad_model_inputs( lowerCAmelCase , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) __lowercase= self.model.generate(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase ) return self.tokenizer.detokenize(lowerCAmelCase ) __lowercase= CompleteSentenceTransformer() __lowercase= tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) __lowercase= complete_model(lowerCAmelCase ) __lowercase= tf.keras.Model(lowerCAmelCase , lowerCAmelCase ) keras_model.save(lowerCAmelCase ) def _A (self ): # Has PT equivalent: this test relies on random sampling __lowercase= { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 1_0, 'temperature': 0.7, } __lowercase= 1_4 __lowercase= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowercase= 'Hello, my dog is cute and' __lowercase= tokenizer(lowerCAmelCase , return_tensors='tf' ) __lowercase= TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __lowercase= 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __lowercase= model.generate(**lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __lowercase= [6_3_8, 1_9_8] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __lowercase= model.generate(**lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _A (self ): # Has PT equivalent: ample use of framework-specific code __lowercase= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowercase= 'Hugging Face is a technology company based in New York and Paris.' __lowercase= bart_tokenizer(lowerCAmelCase , return_tensors='tf' ).input_ids __lowercase= TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowercase= bart_model.generate(lowerCAmelCase ).numpy() class A ( A_ ): def _A (self , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ): return super().call(lowerCAmelCase , **lowerCAmelCase ) __lowercase= FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) __lowercase= bart_model.generate(lowerCAmelCase , foo='bar' ).numpy() self.assertTrue(np.array_equal(lowerCAmelCase , lowerCAmelCase ) ) class A ( bart_model.model.encoder.__class__ ): def _A (self , lowerCAmelCase , **lowerCAmelCase ): return super().call(lowerCAmelCase , **lowerCAmelCase ) __lowercase= FakeEncoder(bart_model.config , bart_model.model.shared ) __lowercase= fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __lowercase= bart_model.generate(lowerCAmelCase ).numpy() with self.assertRaises(lowerCAmelCase ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(lowerCAmelCase , foo='bar' )
304
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
1
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _lowerCamelCase( lowercase__ , lowercase__="shi-labs/oneformer_demo" ) -> int: '''simple docstring''' with open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) as f: __lowercase= json.load(lowercase__ ) __lowercase= {} __lowercase= [] __lowercase= [] for key, info in class_info.items(): __lowercase= info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(lowercase__ ) ) __lowercase= thing_ids __lowercase= class_names return metadata class A ( unittest.TestCase ): def __init__(self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=3_0 , lowerCAmelCase=4_0_0 , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=1_0 , lowerCAmelCase=False , lowerCAmelCase=2_5_5 , lowerCAmelCase="shi-labs/oneformer_demo" , lowerCAmelCase="ade20k_panoptic.json" , lowerCAmelCase=1_0 , ): __lowercase= parent __lowercase= batch_size __lowercase= num_channels __lowercase= min_resolution __lowercase= max_resolution __lowercase= do_resize __lowercase= {'shortest_edge': 3_2, 'longest_edge': 1_3_3_3} if size is None else size __lowercase= do_normalize __lowercase= image_mean __lowercase= image_std __lowercase= class_info_file __lowercase= prepare_metadata(lowerCAmelCase , lowerCAmelCase ) __lowercase= num_text __lowercase= repo_path # for the post_process_functions __lowercase= 2 __lowercase= 1_0 __lowercase= 1_0 __lowercase= 3 __lowercase= 4 __lowercase= num_labels __lowercase= do_reduce_labels __lowercase= ignore_index def _A (self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _A (self , lowerCAmelCase , lowerCAmelCase=False ): if not batched: __lowercase= image_inputs[0] if isinstance(lowerCAmelCase , Image.Image ): __lowercase, __lowercase= image.size else: __lowercase, __lowercase= image.shape[1], image.shape[2] if w < h: __lowercase= int(self.size['shortest_edge'] * h / w ) __lowercase= self.size['shortest_edge'] elif w > h: __lowercase= self.size['shortest_edge'] __lowercase= int(self.size['shortest_edge'] * w / h ) else: __lowercase= self.size['shortest_edge'] __lowercase= self.size['shortest_edge'] else: __lowercase= [] for image in image_inputs: __lowercase, __lowercase= self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase= max(lowerCAmelCase , key=lambda lowerCAmelCase : item[0] )[0] __lowercase= max(lowerCAmelCase , key=lambda lowerCAmelCase : item[1] )[1] return expected_height, expected_width def _A (self ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string UpperCamelCase_ : Dict =image_processing_class def _A (self ): __lowercase= OneFormerImageProcessorTester(self ) @property def _A (self ): return self.image_processing_tester.prepare_image_processor_dict() def _A (self ): __lowercase= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'ignore_index' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'class_info_file' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'num_text' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'repo_path' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'metadata' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_reduce_labels' ) ) def _A (self ): pass def _A (self ): # Initialize image_processor __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase= prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input __lowercase= image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) __lowercase= image_processor( lowerCAmelCase , ['semantic'] * len(lowerCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A (self ): # Initialize image_processor __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase= prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input __lowercase= image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) __lowercase= image_processor( lowerCAmelCase , ['semantic'] * len(lowerCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A (self ): # Initialize image_processor __lowercase= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase= prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input __lowercase= image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase, __lowercase= self.image_processing_tester.get_expected_values(lowerCAmelCase , batched=lowerCAmelCase ) __lowercase= image_processor( lowerCAmelCase , ['semantic'] * len(lowerCAmelCase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _A (self , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase="np" ): __lowercase= self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowercase= self.image_processing_tester.num_labels __lowercase= None __lowercase= None __lowercase= prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCAmelCase ) if with_segmentation_maps: __lowercase= num_labels if is_instance_map: __lowercase= list(range(lowerCAmelCase ) ) * 2 __lowercase= dict(enumerate(lowerCAmelCase ) ) __lowercase= [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowercase= [Image.fromarray(lowerCAmelCase ) for annotation in annotations] __lowercase= image_processor( lowerCAmelCase , ['semantic'] * len(lowerCAmelCase ) , lowerCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=lowerCAmelCase , pad_and_return_pixel_mask=lowerCAmelCase , ) return inputs def _A (self ): pass def _A (self ): def common(lowerCAmelCase=False , lowerCAmelCase=None ): __lowercase= self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCAmelCase , is_instance_map=lowerCAmelCase , segmentation_type=lowerCAmelCase ) __lowercase= inputs['mask_labels'] __lowercase= inputs['class_labels'] __lowercase= inputs['pixel_values'] __lowercase= inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCAmelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCAmelCase ) common(is_instance_map=lowerCAmelCase , segmentation_type='pil' ) common(is_instance_map=lowerCAmelCase , segmentation_type='pil' ) def _A (self ): __lowercase= np.zeros((2_0, 5_0) ) __lowercase= 1 __lowercase= 1 __lowercase= 1 __lowercase= binary_mask_to_rle(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 4 ) self.assertEqual(rle[0] , 2_1 ) self.assertEqual(rle[1] , 4_5 ) def _A (self ): __lowercase= self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowercase= self.image_processing_tester.get_fake_oneformer_outputs() __lowercase= fature_extractor.post_process_semantic_segmentation(lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowercase= [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowercase= fature_extractor.post_process_semantic_segmentation(lowerCAmelCase , target_sizes=lowerCAmelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _A (self ): __lowercase= self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowercase= self.image_processing_tester.get_fake_oneformer_outputs() __lowercase= image_processor.post_process_instance_segmentation(lowerCAmelCase , threshold=0 ) self.assertTrue(len(lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _A (self ): __lowercase= self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=7_7 , task_seq_length=7_7 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) __lowercase= self.image_processing_tester.get_fake_oneformer_outputs() __lowercase= image_processor.post_process_panoptic_segmentation(lowerCAmelCase , threshold=0 ) self.assertTrue(len(lowerCAmelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , lowerCAmelCase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
304
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
1
from __future__ import annotations def _lowerCamelCase( lowercase__ ) -> list[int]: # This function is recursive '''simple docstring''' __lowercase= len(lowercase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __lowercase= array[0] __lowercase= False __lowercase= 1 __lowercase= [] while not is_found and i < array_length: if array[i] < pivot: __lowercase= True __lowercase= [element for element in array[i:] if element >= array[i]] __lowercase= longest_subsequence(lowercase__ ) if len(lowercase__ ) > len(lowercase__ ): __lowercase= temp_array else: i += 1 __lowercase= [element for element in array[1:] if element >= pivot] __lowercase= [pivot, *longest_subsequence(lowercase__ )] if len(lowercase__ ) > len(lowercase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
1
import string def _lowerCamelCase( lowercase__ ) -> None: '''simple docstring''' for key in range(len(string.ascii_uppercase ) ): __lowercase= '' for symbol in message: if symbol in string.ascii_uppercase: __lowercase= string.ascii_uppercase.find(lowercase__ ) __lowercase= num - key if num < 0: __lowercase= num + len(string.ascii_uppercase ) __lowercase= translated + string.ascii_uppercase[num] else: __lowercase= translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= input('Encrypted message: ' ) __lowercase= message.upper() decrypt(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
304
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp lowerCAmelCase = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } lowerCAmelCase = { '''RUCAIBox/mvp''': 1_0_2_4, } class A ( A_ ): UpperCamelCase_ : Union[str, Any] =VOCAB_FILES_NAMES UpperCamelCase_ : Tuple =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : List[str] =['''input_ids''', '''attention_mask'''] UpperCamelCase_ : Optional[int] =MvpTokenizer def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase ) != add_prefix_space: __lowercase= getattr(lowerCAmelCase , pre_tok_state.pop('type' ) ) __lowercase= add_prefix_space __lowercase= pre_tok_class(**lowerCAmelCase ) __lowercase= add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowercase= 'post_processor' __lowercase= getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) if tokenizer_component_instance: __lowercase= json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowercase= tuple(state['sep'] ) if "cls" in state: __lowercase= tuple(state['cls'] ) __lowercase= False if state.get('add_prefix_space' , lowerCAmelCase ) != add_prefix_space: __lowercase= add_prefix_space __lowercase= True if state.get('trim_offsets' , lowerCAmelCase ) != trim_offsets: __lowercase= trim_offsets __lowercase= True if changes_to_apply: __lowercase= getattr(lowerCAmelCase , state.pop('type' ) ) __lowercase= component_class(**lowerCAmelCase ) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase ) @property def _A (self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _A (self , lowerCAmelCase ): __lowercase= AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else value __lowercase= value def _A (self , *lowerCAmelCase , **lowerCAmelCase ): __lowercase= kwargs.get('is_split_into_words' , lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def _A (self , *lowerCAmelCase , **lowerCAmelCase ): __lowercase= kwargs.get('is_split_into_words' , lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase=None ): __lowercase= [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _A (self , lowerCAmelCase , lowerCAmelCase = None ): __lowercase= [self.sep_token_id] __lowercase= [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
304
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
1
import math def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase( lowercase__ = 0.1 ) -> int: '''simple docstring''' __lowercase= 3 __lowercase= 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
304
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
1
import os from typing import Dict, List, Tuple, TypeVar, Union lowerCAmelCase = TypeVar('''T''') lowerCAmelCase = Union[List[T], Tuple[T, ...]] lowerCAmelCase = Union[T, List[T], Dict[str, T]] lowerCAmelCase = Union[str, bytes, os.PathLike]
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A ( unittest.TestCase ): def _A (self ): __lowercase= 'hf-internal-testing/tiny-random-t5' __lowercase= AutoTokenizer.from_pretrained(lowerCAmelCase ) __lowercase= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) __lowercase= tokenizer('This is me' , return_tensors='pt' ) __lowercase= model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowercase= model.generate(**lowerCAmelCase ) __lowercase= model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) __lowercase= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowercase= model_reloaded.generate(**lowerCAmelCase ) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase ) ) def _A (self ): __lowercase= 'hf-internal-testing/tiny-random-t5' __lowercase= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ) __lowercase= model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCAmelCase ): model.save_pretrained(lowerCAmelCase ) __lowercase= model.reverse_bettertransformer() model.save_pretrained(lowerCAmelCase )
304
from __future__ import annotations from collections.abc import Callable def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = 1_0_0 , ) -> float: '''simple docstring''' __lowercase= x_start __lowercase= fnc(lowercase__ ) __lowercase= 0.0 for _ in range(lowercase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase= (x_end - x_start) / steps + xa __lowercase= fnc(lowercase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase= xa __lowercase= fxa return area if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' return x**3 + x**2 print('''f(x) = x^3 + x^2''') print('''The area between the curve, x = -5, x = 5 and the x axis is:''') lowerCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 1_0
304
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Any ='''transfo-xl''' UpperCamelCase_ : int =['''mems'''] UpperCamelCase_ : Optional[int] ={ '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__(self , lowerCAmelCase=2_6_7_7_3_5 , lowerCAmelCase=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=1_0_2_4 , lowerCAmelCase=1_6 , lowerCAmelCase=6_4 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=4 , lowerCAmelCase=False , lowerCAmelCase=1_8 , lowerCAmelCase=1_6_0_0 , lowerCAmelCase=1_0_0_0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=0 , lowerCAmelCase=-1 , lowerCAmelCase=True , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase="normal" , lowerCAmelCase=0.01 , lowerCAmelCase=0.01 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-5 , lowerCAmelCase=0 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= [] self.cutoffs.extend(lowerCAmelCase ) if proj_share_all_but_first: __lowercase= [False] + [True] * len(self.cutoffs ) else: __lowercase= [False] + [False] * len(self.cutoffs ) __lowercase= d_model __lowercase= d_embed __lowercase= d_head __lowercase= d_inner __lowercase= div_val __lowercase= pre_lnorm __lowercase= n_layer __lowercase= n_head __lowercase= mem_len __lowercase= same_length __lowercase= attn_type __lowercase= clamp_len __lowercase= sample_softmax __lowercase= adaptive __lowercase= dropout __lowercase= dropatt __lowercase= untie_r __lowercase= init __lowercase= init_range __lowercase= proj_init_std __lowercase= init_std __lowercase= layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase , **lowerCAmelCase ) @property def _A (self ): # Message copied from Transformer-XL documentation logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def _A (self , lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
304
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase( lowercase__=None , lowercase__=None ) -> Optional[Any]: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase__ ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''The csv file to plot.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) UpperCamelCase_ : Optional[List[str]] =list_field( default=A_ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' try: int(lowercase__ ) return True except ValueError: return False def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' try: float(lowercase__ ) return True except ValueError: return False class A : def __init__(self , lowerCAmelCase ): __lowercase= args __lowercase= defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: __lowercase= csv.DictReader(lowerCAmelCase ) for row in reader: __lowercase= row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None __lowercase= int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None __lowercase= float(row['result'] ) def _A (self ): __lowercase, __lowercase= plt.subplots() __lowercase= 'Time usage' if self.args.is_time else 'Memory usage' __lowercase= title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase= sorted(set(self.result_dict[model_name]['bsz'] ) ) __lowercase= sorted(set(self.result_dict[model_name]['seq_len'] ) ) __lowercase= self.result_dict[model_name]['result'] ((__lowercase), (__lowercase))= ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase= ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase= np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=lowerCAmelCase , ) else: __lowercase= np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase), (__lowercase))= ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) __lowercase= np.asarray(lowerCAmelCase , lowerCAmelCase )[: len(lowerCAmelCase )] plt.scatter( lowerCAmelCase , lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCAmelCase , lowerCAmelCase , '--' ) title_str += f' {label_model_name} vs.' __lowercase= title_str[:-4] __lowercase= 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCAmelCase ) plt.xlabel(lowerCAmelCase ) plt.ylabel(lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase( ) -> Tuple: '''simple docstring''' __lowercase= HfArgumentParser(lowercase__ ) __lowercase= parser.parse_args_into_dataclasses()[0] __lowercase= Plot(args=lowercase__ ) plot.plot() if __name__ == "__main__": main()
304
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
1
from ... import PretrainedConfig lowerCAmelCase = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase_ : List[str] ='''nezha''' def __init__(self , lowerCAmelCase=2_1_1_2_8 , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=6_4 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= max_relative_position __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout __lowercase= use_cache
304
from typing import Any import numpy as np def _lowerCamelCase( lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ , matrix.conjugate().T ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= v.conjugate().T __lowercase= v_star.dot(lowercase__ ) assert isinstance(lowercase__ , np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def _lowerCamelCase( ) -> None: '''simple docstring''' __lowercase= np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) __lowercase= np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' print(rayleigh_quotient(lowercase__ , lowercase__ ) ) __lowercase= np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F'{a} is not hermitian.' assert rayleigh_quotient(lowercase__ , lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
304
1
import re def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' __lowercase= split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' try: __lowercase= split_input(lowercase__ ) if upper: __lowercase= ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __lowercase= ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return to_simple_case(lowercase__ ) def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' try: __lowercase= to_simple_case(lowercase__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' return to_complex_case(lowercase__ , lowercase__ , '_' ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' return to_complex_case(lowercase__ , lowercase__ , '-' ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase = logging.get_logger(__name__) class A ( A_ ): UpperCamelCase_ : Dict =['''audio_values''', '''audio_mask'''] def __init__(self , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1 , lowerCAmelCase=[1_6, 1_6] , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_4_1_0_0 , lowerCAmelCase=8_6 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=0.0 , **lowerCAmelCase , ): super().__init__( feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase , ) __lowercase= spectrogram_length __lowercase= num_channels __lowercase= patch_size __lowercase= feature_size // self.patch_size[1] __lowercase= n_fft __lowercase= sampling_rate // hop_length_to_sampling_rate __lowercase= sampling_rate __lowercase= padding_value __lowercase= mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=lowerCAmelCase , norm='slaney' , mel_scale='slaney' , ).T def _A (self , lowerCAmelCase ): __lowercase= spectrogram( lowerCAmelCase , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) __lowercase= log_spec[:, :-1] __lowercase= log_spec - 20.0 __lowercase= np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = False , lowerCAmelCase = False , **lowerCAmelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowercase= isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __lowercase= is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase= [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowercase= np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase= raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase= [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase= [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase ): __lowercase= [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase= max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase= [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase= np.array(lowerCAmelCase ).astype(np.floataa ) # convert into correct format for padding __lowercase= max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase= np.ones([len(lowerCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase= padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase ) ): __lowercase= audio_features[i] __lowercase= feature # return as BatchFeature if return_attention_mask: __lowercase= {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: __lowercase= {'audio_values': padded_audio_features} __lowercase= BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) return encoded_inputs
304
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A : UpperCamelCase_ : int =BlenderbotSmallConfig UpperCamelCase_ : List[str] ={} UpperCamelCase_ : str ='''gelu''' def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=9_9 , lowerCAmelCase=3_2 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase=3_7 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=2_0 , lowerCAmelCase=2 , lowerCAmelCase=1 , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_labels __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= eos_token_id __lowercase= pad_token_id __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase= tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase= tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase= prepare_blenderbot_small_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return config, inputs_dict def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= TFBlenderbotSmallModel(config=lowerCAmelCase ).get_decoder() __lowercase= inputs_dict['input_ids'] __lowercase= input_ids[:1, :] __lowercase= inputs_dict['attention_mask'][:1, :] __lowercase= inputs_dict['head_mask'] __lowercase= 1 # first forward pass __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , head_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) __lowercase, __lowercase= outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase= ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase= tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase= tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase= tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase= int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase= output_from_no_past[:, -3:, random_slice_idx] __lowercase= output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-3 ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , ) -> int: '''simple docstring''' if attention_mask is None: __lowercase= tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase= tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase= tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase= tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase= tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Dict =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) UpperCamelCase_ : Optional[int] =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : Tuple =( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : str =True UpperCamelCase_ : int =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= TFBlenderbotSmallModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase ) @require_tokenizers @require_tf class A ( unittest.TestCase ): UpperCamelCase_ : Tuple =[ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] UpperCamelCase_ : str ='''facebook/blenderbot_small-90M''' @cached_property def _A (self ): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def _A (self ): __lowercase= TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _A (self ): __lowercase= self.tokenizer(self.src_text , return_tensors='tf' ) __lowercase= self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCAmelCase , ) __lowercase= self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= gather(lowercase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' __lowercase= [state.process_index] __lowercase= gather_object(lowercase__ ) assert len(lowercase__ ) == state.num_processes, F'{gathered_obj}, {len(lowercase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' __lowercase= create_tensor(lowercase__ ) __lowercase= broadcast(lowercase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' if state.is_main_process: __lowercase= torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase= torch.arange(state.num_processes ).to(state.device ) __lowercase= pad_across_processes(lowercase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _lowerCamelCase( lowercase__ ) -> Any: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'sum' ) __lowercase= torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' if state.num_processes != 2: return __lowercase= create_tensor(lowercase__ ) __lowercase= reduce(lowercase__ , 'mean' ) __lowercase= torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase__ , lowercase__ ), F'{reduced_tensor} != {truth_tensor}' def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' main() def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= PartialState() state.print(F'State: {state}' ) state.print('testing gather' ) test_gather(lowercase__ ) state.print('testing gather_object' ) test_gather_object(lowercase__ ) state.print('testing broadcast' ) test_broadcast(lowercase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowercase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowercase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowercase__ ) if __name__ == "__main__": main()
304
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class A ( A_ ): UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor class A ( A_ , A_ ): UpperCamelCase_ : Dict =1 @register_to_config def __init__(self , lowerCAmelCase = 2_0_0_0 , lowerCAmelCase = 0.15 , lowerCAmelCase = 0.01 , lowerCAmelCase = 13_48.0 , lowerCAmelCase = 1E-5 , lowerCAmelCase = 1 , ): # standard deviation of the initial noise distribution __lowercase= sigma_max # setable values __lowercase= None self.set_sigmas(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps __lowercase= torch.linspace(1 , lowerCAmelCase , lowerCAmelCase , device=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None ): __lowercase= sigma_min if sigma_min is not None else self.config.sigma_min __lowercase= sigma_max if sigma_max is not None else self.config.sigma_max __lowercase= sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase , lowerCAmelCase ) __lowercase= sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __lowercase= torch.exp(torch.linspace(math.log(lowerCAmelCase ) , math.log(lowerCAmelCase ) , lowerCAmelCase ) ) __lowercase= torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def _A (self , lowerCAmelCase , lowerCAmelCase ): return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __lowercase= timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __lowercase= (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __lowercase= timesteps.to(self.discrete_sigmas.device ) __lowercase= self.discrete_sigmas[timesteps].to(sample.device ) __lowercase= self.get_adjacent_sigma(lowerCAmelCase , lowerCAmelCase ).to(sample.device ) __lowercase= torch.zeros_like(lowerCAmelCase ) __lowercase= (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __lowercase= diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __lowercase= diffusion.unsqueeze(-1 ) __lowercase= drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __lowercase= randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase , device=sample.device , dtype=sample.dtype ) __lowercase= sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __lowercase= prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase , prev_sample_mean=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = True , ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __lowercase= randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __lowercase= torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __lowercase= (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __lowercase= step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __lowercase= step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __lowercase= step_size.unsqueeze(-1 ) __lowercase= sample + step_size * model_output __lowercase= prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= timesteps.to(original_samples.device ) __lowercase= self.discrete_sigmas.to(original_samples.device )[timesteps] __lowercase= ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase ) * sigmas[:, None, None, None] ) __lowercase= noise + original_samples return noisy_samples def __len__(self ): return self.config.num_train_timesteps
304
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A ( unittest.TestCase ): @property def _A (self ): torch.manual_seed(0 ) __lowercase= UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _A (self ): __lowercase= self.dummy_uncond_unet __lowercase= KarrasVeScheduler() __lowercase= KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2 , generator=lowerCAmelCase , output_type='numpy' , return_dict=lowerCAmelCase )[0] __lowercase= image[0, -3:, -3:, -1] __lowercase= image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase= np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A ( unittest.TestCase ): def _A (self ): __lowercase= 'google/ncsnpp-celebahq-256' __lowercase= UNetaDModel.from_pretrained(lowerCAmelCase ) __lowercase= KarrasVeScheduler() __lowercase= KarrasVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe(num_inference_steps=2_0 , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase= np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
304
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase = False class A ( unittest.TestCase ): pass @nightly @require_torch_gpu class A ( unittest.TestCase ): def _A (self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) __lowercase= VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= generator.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt='first prompt' , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _A (self ): __lowercase= VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) __lowercase= 'cyberpunk 2077' __lowercase= load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowercase= torch.manual_seed(0 ) __lowercase= pipe.dual_guided( prompt=lowerCAmelCase , image=lowerCAmelCase , text_to_image_strength=0.75 , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= 'A painting of a squirrel eating a burger ' __lowercase= torch.manual_seed(0 ) __lowercase= pipe.text_to_image( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowercase= pipe.image_variation(lowerCAmelCase , generator=lowerCAmelCase , output_type='numpy' ).images __lowercase= image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase= np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
304
1
lowerCAmelCase = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class A ( A_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase_ : str =field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCamelCase_ : ClassVar[Features] =Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) UpperCamelCase_ : ClassVar[Features] =Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) UpperCamelCase_ : str ="question" UpperCamelCase_ : str ="context" UpperCamelCase_ : str ="answers" @property def _A (self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
304
import math from datetime import datetime, timedelta def _lowerCamelCase( lowercase__ ) -> datetime: '''simple docstring''' __lowercase= year % 1_9 __lowercase= year % 4 __lowercase= year % 7 __lowercase= math.floor(year / 1_0_0 ) __lowercase= math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) __lowercase= leap_day_inhibits / 4 __lowercase= ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 __lowercase= (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowercase= (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon __lowercase= ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(lowercase__ , 4 , 1_8 ) else: return datetime(lowercase__ , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F'Easter in {year} {tense} {gauss_easter(year)}')
304
1
def _lowerCamelCase( lowercase__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowercase__ , lowercase__ ): raise TypeError('Input value must be a \'int\' type' ) return bin(lowercase__ ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
304
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''blenderbot-small''' UpperCamelCase_ : Optional[Any] =['''past_key_values'''] UpperCamelCase_ : Optional[int] ={'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__(self , lowerCAmelCase=5_0_2_6_5 , lowerCAmelCase=5_1_2 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=8 , lowerCAmelCase=2_0_4_8 , lowerCAmelCase=1_6 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="gelu" , lowerCAmelCase=5_1_2 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1 , lowerCAmelCase=False , lowerCAmelCase=0 , lowerCAmelCase=1 , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ): __lowercase= vocab_size __lowercase= max_position_embeddings __lowercase= d_model __lowercase= encoder_ffn_dim __lowercase= encoder_layers __lowercase= encoder_attention_heads __lowercase= decoder_ffn_dim __lowercase= decoder_layers __lowercase= decoder_attention_heads __lowercase= dropout __lowercase= attention_dropout __lowercase= activation_dropout __lowercase= activation_function __lowercase= init_std __lowercase= encoder_layerdrop __lowercase= decoder_layerdrop __lowercase= use_cache __lowercase= encoder_layers __lowercase= scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) class A ( A_ ): @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase= {0: 'batch'} __lowercase= {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase= {0: 'batch', 1: 'decoder_sequence'} __lowercase= {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} else: __lowercase= OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def _A (self ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super().outputs else: __lowercase= super(lowerCAmelCase , self ).outputs if self.use_past: __lowercase, __lowercase= self.num_layers for i in range(lowerCAmelCase ): __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} __lowercase= {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs __lowercase= seq_length if not self.use_past else 1 __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) __lowercase= {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowercase= dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape __lowercase= common_inputs['decoder_input_ids'].shape[1] __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= decoder_seq_length + 3 __lowercase= ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase= torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) __lowercase= [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase, __lowercase= self.num_layers __lowercase= min(lowerCAmelCase , lowerCAmelCase ) __lowercase= max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers __lowercase= 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. __lowercase= encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowercase, __lowercase= common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowercase= seqlen + 2 __lowercase, __lowercase= self.num_layers __lowercase, __lowercase= self.num_attention_heads __lowercase= ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase= common_inputs['attention_mask'].dtype __lowercase= torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) __lowercase= [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase= tokenizer.num_special_tokens_to_add(lowerCAmelCase ) __lowercase= compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase= [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase= dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __lowercase= self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": __lowercase= self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: __lowercase= self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: __lowercase= super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: __lowercase= super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
304
1
lowerCAmelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) lowerCAmelCase = frozenset([]) lowerCAmelCase = frozenset(['''image''']) lowerCAmelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase = frozenset(['''image''']) lowerCAmelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCAmelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) lowerCAmelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) lowerCAmelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) lowerCAmelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase = frozenset(['''image''', '''mask_image''']) lowerCAmelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) lowerCAmelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) lowerCAmelCase = frozenset(['''class_labels''']) lowerCAmelCase = frozenset(['''class_labels''']) lowerCAmelCase = frozenset(['''batch_size''']) lowerCAmelCase = frozenset([]) lowerCAmelCase = frozenset(['''batch_size''']) lowerCAmelCase = frozenset([]) lowerCAmelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) lowerCAmelCase = frozenset(['''prompt''', '''negative_prompt''']) lowerCAmelCase = frozenset(['''input_tokens''']) lowerCAmelCase = frozenset(['''input_tokens'''])
304
from math import factorial, radians def _lowerCamelCase( lowercase__ , lowercase__ = 1_8 , lowercase__ = 1_0 ) -> float: '''simple docstring''' __lowercase= angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __lowercase= radians(lowercase__ ) __lowercase= angle_in_radians __lowercase= 3 __lowercase= -1 for _ in range(lowercase__ ): result += (b * (angle_in_radians**a)) / factorial(lowercase__ ) __lowercase= -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowercase__ , lowercase__ ) if __name__ == "__main__": __import__('''doctest''').testmod()
304
1
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' return EnvironmentCommand() class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser('env' ) download_parser.set_defaults(func=lowerCAmelCase ) def _A (self ): __lowercase= huggingface_hub.__version__ __lowercase= 'not installed' __lowercase= 'NA' if is_torch_available(): import torch __lowercase= torch.__version__ __lowercase= torch.cuda.is_available() __lowercase= 'not installed' if is_transformers_available(): import transformers __lowercase= transformers.__version__ __lowercase= 'not installed' if is_accelerate_available(): import accelerate __lowercase= accelerate.__version__ __lowercase= 'not installed' if is_xformers_available(): import xformers __lowercase= xformers.__version__ __lowercase= { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(lowerCAmelCase ) ) return info @staticmethod def _A (lowerCAmelCase ): return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
304
lowerCAmelCase = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] lowerCAmelCase = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] lowerCAmelCase = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
304
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A_ )} , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A : UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCamelCase_ : float =field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCamelCase_ : float =field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) UpperCamelCase_ : int =field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCamelCase_ : int =field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = None , ) -> Dict: '''simple docstring''' def _dataset(lowercase__ , lowercase__=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , ref_path=lowercase__ , ) return LineByLineTextDataset(tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase__ , file_path=lowercase__ , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowercase__ , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase__ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCamelCase( ) -> List[str]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , lowercase__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase= AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase= AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase= CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: __lowercase= AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase= AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: __lowercase= AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) __lowercase= AutoModelWithLMHead.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: __lowercase= tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase= min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase= ( get_dataset(lowercase__ , tokenizer=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase= ( get_dataset(lowercase__ , tokenizer=lowercase__ , evaluate=lowercase__ , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase= DataCollatorForPermutationLanguageModeling( tokenizer=lowercase__ , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase= DataCollatorForWholeWordMask( tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) else: __lowercase= DataCollatorForLanguageModeling( tokenizer=lowercase__ , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase= Trainer( model=lowercase__ , args=lowercase__ , data_collator=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , prediction_loss_only=lowercase__ , ) # Training if training_args.do_train: __lowercase= ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase__ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= math.exp(eval_output['eval_loss'] ) __lowercase= {'perplexity': perplexity} __lowercase= os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , lowercase__ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(lowercase__ ) return results def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
304
from __future__ import annotations import numpy as np def _lowerCamelCase( lowercase__ ) -> str: '''simple docstring''' return np.maximum(0 , lowercase__ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
304
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def _lowerCamelCase( ) -> str: '''simple docstring''' __lowercase= _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowercase= get_sagemaker_input() else: __lowercase= get_cluster_input() return config def _lowerCamelCase( lowercase__=None ) -> List[str]: '''simple docstring''' if subparsers is not None: __lowercase= subparsers.add_parser('config' , description=lowercase__ ) else: __lowercase= argparse.ArgumentParser('Accelerate config command' , description=lowercase__ ) parser.add_argument( '--config_file' , default=lowercase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _lowerCamelCase( lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= get_user_input() if args.config_file is not None: __lowercase= args.config_file else: if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) __lowercase= default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(lowercase__ ) else: config.to_yaml_file(lowercase__ ) print(F'accelerate configuration saved at {config_file}' ) def _lowerCamelCase( ) -> Union[str, Any]: '''simple docstring''' __lowercase= config_command_parser() __lowercase= parser.parse_args() config_command(lowercase__ ) if __name__ == "__main__": main()
304
def _lowerCamelCase( lowercase__ = 1_0_0_0 ) -> int: '''simple docstring''' __lowercase= 2**power __lowercase= str(lowercase__ ) __lowercase= list(lowercase__ ) __lowercase= 0 for i in list_num: sum_of_num += int(lowercase__ ) return sum_of_num if __name__ == "__main__": lowerCAmelCase = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) lowerCAmelCase = solution(power) print('''Sum of the digits is: ''', result)
304
1
lowerCAmelCase = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
304
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , ) -> int: '''simple docstring''' __lowercase= {} if train_file is not None: __lowercase= [train_file] if eval_file is not None: __lowercase= [eval_file] if test_file is not None: __lowercase= [test_file] __lowercase= datasets.load_dataset('csv' , data_files=lowercase__ ) __lowercase= list(ds[list(files.keys() )[0]].features.keys() ) __lowercase= features_name.pop(lowercase__ ) __lowercase= list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowercase= {label: i for i, label in enumerate(lowercase__ )} __lowercase= tokenizer.model_input_names __lowercase= {} if len(lowercase__ ) == 1: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' ) , batched=lowercase__ , ) elif len(lowercase__ ) == 2: for k in files.keys(): __lowercase= ds[k].map( lambda lowercase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowercase__ , max_length=lowercase__ , padding='max_length' , ) , batched=lowercase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowercase= {k: v for k, v in ex.items() if k in input_names} __lowercase= labelaid[ex[label_name]] yield (d, label) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowercase= train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowercase= val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowercase= ( tf.data.Dataset.from_generator( lowercase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowercase= test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid lowerCAmelCase = logging.getLogger(__name__) @dataclass class A : UpperCamelCase_ : int =field(metadata={'''help''': '''Which column contains the label'''} ) UpperCamelCase_ : str =field(default=A_ , metadata={'''help''': '''The path of the training file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the development file'''} ) UpperCamelCase_ : Optional[str] =field(default=A_ , metadata={'''help''': '''The path of the test file'''} ) UpperCamelCase_ : int =field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool =field( default=A_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class A : UpperCamelCase_ : str =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool =field(default=A_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] =field( default=A_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowercase, __lowercase, __lowercase= parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowercase, __lowercase, __lowercase, __lowercase= get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowercase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowercase= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowercase__ ) , labelaid=lowercase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowercase= TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowercase__ ) -> Dict: __lowercase= np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowercase= TFTrainer( model=lowercase__ , args=lowercase__ , train_dataset=lowercase__ , eval_dataset=lowercase__ , compute_metrics=lowercase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowercase= trainer.evaluate() __lowercase= os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(lowercase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(lowercase__ ) return results if __name__ == "__main__": main()
304
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__=False , lowercase__=False ) -> List[str]: '''simple docstring''' __lowercase= 'backbone.' if is_semantic else '' __lowercase= [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', 'beit.embeddings.cls_token'), (F'{prefix}patch_embed.proj.weight', 'beit.embeddings.patch_embeddings.projection.weight'), (F'{prefix}patch_embed.proj.bias', 'beit.embeddings.patch_embeddings.projection.bias'), (F'{prefix}pos_embed', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=False , lowercase__=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): __lowercase= 'backbone.' if is_semantic else '' # queries, keys and values __lowercase= state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) __lowercase= state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) __lowercase= state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) __lowercase= in_proj_weight[ : config.hidden_size, : ] __lowercase= q_bias __lowercase= in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase= in_proj_weight[ -config.hidden_size :, : ] __lowercase= v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase= state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) __lowercase= state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) __lowercase= gamma_a __lowercase= gamma_a def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= dct.pop(lowercase__ ) __lowercase= val def _lowerCamelCase( ) -> Optional[Any]: '''simple docstring''' __lowercase= 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=False ) -> str: '''simple docstring''' __lowercase= False if 'rvlcdip' in checkpoint_url else True __lowercase= BeitConfig(use_absolute_position_embeddings=lowercase__ , use_mask_token=lowercase__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase= 1_0_2_4 __lowercase= 4_0_9_6 __lowercase= 2_4 __lowercase= 1_6 # labels if "rvlcdip" in checkpoint_url: __lowercase= 1_6 __lowercase= 'huggingface/label-files' __lowercase= 'rvlcdip-id2label.json' __lowercase= json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(lowercase__ ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase= torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['model'] __lowercase= create_rename_keys(lowercase__ , has_lm_head=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , has_lm_head=lowercase__ ) # load HuggingFace model __lowercase= BeitForMaskedImageModeling(lowercase__ ) if has_lm_head else BeitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # Check outputs on an image __lowercase= BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowercase__ ) __lowercase= prepare_img() __lowercase= image_processor(images=lowercase__ , return_tensors='pt' ) __lowercase= encoding['pixel_values'] __lowercase= model(lowercase__ ) __lowercase= outputs.logits # verify logits __lowercase= [1, 1_6] if 'rvlcdip' in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(lowercase__ ), "Shape of logits not as expected" Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: if has_lm_head: __lowercase= 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: __lowercase= 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(lowercase__ , lowercase__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowercase__ , ) model.push_to_hub( repo_path_or_name=Path(lowercase__ , lowercase__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowercase__ , ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCAmelCase = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
304
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( A_ ): def _A (self ): __lowercase= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'embed_dim' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase , 'num_heads' ) ) class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=6_4 , lowerCAmelCase=3 , lowerCAmelCase=[1_6, 4_8, 9_6] , lowerCAmelCase=[1, 3, 6] , lowerCAmelCase=[1, 2, 1_0] , lowerCAmelCase=[7, 3, 3] , lowerCAmelCase=[4, 2, 2] , lowerCAmelCase=[2, 1, 1] , lowerCAmelCase=[2, 2, 2] , lowerCAmelCase=[False, False, True] , lowerCAmelCase=[0.0, 0.0, 0.0] , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=2 , ): __lowercase= parent __lowercase= batch_size __lowercase= image_size __lowercase= patch_sizes __lowercase= patch_stride __lowercase= patch_padding __lowercase= is_training __lowercase= use_labels __lowercase= num_labels __lowercase= num_channels __lowercase= embed_dim __lowercase= num_heads __lowercase= stride_kv __lowercase= depth __lowercase= cls_token __lowercase= attention_drop_rate __lowercase= initializer_range __lowercase= layer_norm_eps def _A (self ): __lowercase= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.num_labels ) __lowercase= self.get_config() return config, pixel_values, labels def _A (self ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= CvtModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= (self.image_size, self.image_size) __lowercase, __lowercase= image_size[0], image_size[1] for i in range(len(self.depth ) ): __lowercase= floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __lowercase= floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= self.num_labels __lowercase= CvtForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() __lowercase, __lowercase, __lowercase= config_and_inputs __lowercase= {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A ( A_ , A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =(CvtModel, CvtForImageClassification) if is_torch_available() else () UpperCamelCase_ : List[str] =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : str =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Any =False UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Tuple =False def _A (self ): __lowercase= CvtModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=3_7 ) def _A (self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A (self ): return @unittest.skip(reason='Cvt does not output attentions' ) def _A (self ): pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def _A (self ): pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def _A (self ): pass def _A (self ): __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= model_class(lowerCAmelCase ) __lowercase= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase= [*signature.parameters.keys()] __lowercase= ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def _A (self ): def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): __lowercase= model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): __lowercase= model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) __lowercase= outputs.hidden_states __lowercase= len(self.model_tester.depth ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __lowercase, __lowercase= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase= True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _A (self ): pass @slow def _A (self ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= CvtModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def _lowerCamelCase( ) -> Optional[int]: '''simple docstring''' __lowercase= Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def _A (self ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _A (self ): __lowercase= CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCAmelCase ) __lowercase= self.default_image_processor __lowercase= prepare_img() __lowercase= image_processor(images=lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): __lowercase= model(**lowerCAmelCase ) # verify the logits __lowercase= torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) __lowercase= torch.tensor([0.92_85, 0.90_15, -0.31_50] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
304
1
def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' __lowercase= [0] * len(lowercase__ ) __lowercase= [] __lowercase= [1] * len(lowercase__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase__ ) ): if indegree[i] == 0: queue.append(lowercase__ ) while queue: __lowercase= queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __lowercase= long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowercase__ ) print(max(lowercase__ ) ) # Adjacency list of Graph lowerCAmelCase = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
304
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase = logging.getLogger(__name__) class A ( A_ ): UpperCamelCase_ : str ='''token-classification''' def __init__(self , lowerCAmelCase ): if type(lowerCAmelCase ) == dict: __lowercase= Namespace(**lowerCAmelCase ) __lowercase= import_module('tasks' ) try: __lowercase= getattr(lowerCAmelCase , hparams.task_type ) __lowercase= token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) __lowercase= self.token_classification_task.get_labels(hparams.labels ) __lowercase= CrossEntropyLoss().ignore_index super().__init__(lowerCAmelCase , len(self.labels ) , self.mode ) def _A (self , **lowerCAmelCase ): return self.model(**lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": __lowercase= ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids __lowercase= self(**lowerCAmelCase ) __lowercase= outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _A (self ): __lowercase= self.hparams for mode in ["train", "dev", "test"]: __lowercase= self._feature_file(lowerCAmelCase ) if os.path.exists(lowerCAmelCase ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , lowerCAmelCase ) __lowercase= torch.load(lowerCAmelCase ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) __lowercase= self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase ) __lowercase= self.token_classification_task.convert_examples_to_features( lowerCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , lowerCAmelCase ) torch.save(lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): __lowercase= self._feature_file(lowerCAmelCase ) logger.info('Loading features from cached file %s' , lowerCAmelCase ) __lowercase= torch.load(lowerCAmelCase ) __lowercase= torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __lowercase= torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: __lowercase= torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: __lowercase= torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) __lowercase= torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , batch_size=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): """Compute validation""" "" __lowercase= {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": __lowercase= ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids __lowercase= self(**lowerCAmelCase ) __lowercase, __lowercase= outputs[:2] __lowercase= logits.detach().cpu().numpy() __lowercase= inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _A (self , lowerCAmelCase ): __lowercase= torch.stack([x['val_loss'] for x in outputs] ).mean() __lowercase= np.concatenate([x['pred'] for x in outputs] , axis=0 ) __lowercase= np.argmax(lowerCAmelCase , axis=2 ) __lowercase= np.concatenate([x['target'] for x in outputs] , axis=0 ) __lowercase= dict(enumerate(self.labels ) ) __lowercase= [[] for _ in range(out_label_ids.shape[0] )] __lowercase= [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) __lowercase= { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(lowerCAmelCase , lowerCAmelCase ), 'precision': precision_score(lowerCAmelCase , lowerCAmelCase ), 'recall': recall_score(lowerCAmelCase , lowerCAmelCase ), 'f1': fa_score(lowerCAmelCase , lowerCAmelCase ), } __lowercase= dict(results.items() ) __lowercase= results return ret, preds_list, out_label_list def _A (self , lowerCAmelCase ): # when stable __lowercase, __lowercase, __lowercase= self._eval_end(lowerCAmelCase ) __lowercase= ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _A (self , lowerCAmelCase ): # updating to test_epoch_end instead of deprecated test_end __lowercase, __lowercase, __lowercase= self._eval_end(lowerCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 __lowercase= ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _A (lowerCAmelCase , lowerCAmelCase ): # Add NER specific options BaseTransformer.add_model_specific_args(lowerCAmelCase , lowerCAmelCase ) parser.add_argument( '--task_type' , default='NER' , type=lowerCAmelCase , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=1_2_8 , type=lowerCAmelCase , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=lowerCAmelCase , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=lowerCAmelCase , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase = parser.parse_args() lowerCAmelCase = NERTransformer(args) lowerCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) lowerCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
304
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase = '''======= >>>>>>> ''' lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class A ( A_ ): @staticmethod def _A (lowerCAmelCase ): __lowercase= parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__(self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ): __lowercase= get_logger('datasets-cli/converting' ) __lowercase= tfds_path __lowercase= datasets_directory def _A (self ): if os.path.isdir(self._tfds_path ): __lowercase= os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __lowercase= os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) __lowercase= os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) __lowercase= [] __lowercase= [] __lowercase= {} if os.path.isdir(self._tfds_path ): __lowercase= os.listdir(lowerCAmelCase ) else: __lowercase= [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: __lowercase= f.readlines() __lowercase= [] __lowercase= False __lowercase= False __lowercase= [] for line in lines: __lowercase= line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __lowercase= 'import datasets\n' elif "import tensorflow" in out_line: # order is important here __lowercase= '' continue elif "from absl import logging" in out_line: __lowercase= 'from datasets import logging\n' elif "getLogger" in out_line: __lowercase= out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __lowercase= True __lowercase= list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __lowercase= re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __lowercase= re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) __lowercase= 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __lowercase= True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __lowercase= f_name.replace('.py' , '' ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) __lowercase= os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: __lowercase= os.path.basename(lowerCAmelCase ) __lowercase= imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
304
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _lowerCamelCase( lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= SwinConfig() __lowercase= swin_name.split('_' ) __lowercase= name_split[1] __lowercase= int(name_split[4] ) __lowercase= int(name_split[3][-1] ) if model_size == "tiny": __lowercase= 9_6 __lowercase= (2, 2, 6, 2) __lowercase= (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase= 9_6 __lowercase= (2, 2, 1_8, 2) __lowercase= (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase= 1_2_8 __lowercase= (2, 2, 1_8, 2) __lowercase= (4, 8, 1_6, 3_2) else: __lowercase= 1_9_2 __lowercase= (2, 2, 1_8, 2) __lowercase= (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: __lowercase= 2_1_8_4_1 else: __lowercase= 1_0_0_0 __lowercase= 'huggingface/label-files' __lowercase= 'imagenet-1k-id2label.json' __lowercase= json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) __lowercase= {int(lowercase__ ): v for k, v in idalabel.items()} __lowercase= idalabel __lowercase= {v: k for k, v in idalabel.items()} __lowercase= img_size __lowercase= num_classes __lowercase= embed_dim __lowercase= depths __lowercase= num_heads __lowercase= window_size return config def _lowerCamelCase( lowercase__ ) -> Optional[int]: '''simple docstring''' if "patch_embed.proj" in name: __lowercase= name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase= name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase= 'encoder.' + name if "attn.proj" in name: __lowercase= name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __lowercase= name.replace('attn' , 'attention.self' ) if "norm1" in name: __lowercase= name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __lowercase= name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __lowercase= name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __lowercase= name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": __lowercase= 'layernorm.weight' if name == "norm.bias": __lowercase= 'layernorm.bias' if "head" in name: __lowercase= name.replace('head' , 'classifier' ) else: __lowercase= 'swin.' + name return name def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowercase= orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: __lowercase= key.split('.' ) __lowercase= int(key_split[1] ) __lowercase= int(key_split[3] ) __lowercase= model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase= val[:dim, :] __lowercase= val[ dim : dim * 2, : ] __lowercase= val[-dim:, :] else: __lowercase= val[ :dim ] __lowercase= val[ dim : dim * 2 ] __lowercase= val[ -dim: ] else: __lowercase= val return orig_state_dict def _lowerCamelCase( lowercase__ , lowercase__ ) -> str: '''simple docstring''' __lowercase= timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() __lowercase= get_swin_config(lowercase__ ) __lowercase= SwinForImageClassification(lowercase__ ) model.eval() __lowercase= convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) __lowercase= 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase= AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) __lowercase= image_processor(images=lowercase__ , return_tensors='pt' ) __lowercase= timm_model(inputs['pixel_values'] ) __lowercase= model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(F'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
304
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCAmelCase = logging.getLogger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , ) -> int: '''simple docstring''' __lowercase= bnb_quantization_config.load_in_abit __lowercase= bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) __lowercase= [] # custom device map if isinstance(lowercase__ , lowercase__ ) and len(device_map.keys() ) > 1: __lowercase= [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: __lowercase= get_keys_to_not_convert(lowercase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase__ ) __lowercase= bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: __lowercase= [] __lowercase= bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase__ ) # compatibility with peft __lowercase= load_in_abit __lowercase= load_in_abit __lowercase= get_parameter_device(lowercase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) __lowercase= replace_with_bnb_layers(lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) # convert param to the right dtype __lowercase= bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: __lowercase= name.replace('.weight' , '' ).replace('.bias' , '' ) __lowercase= getattr(lowercase__ , lowercase__ , lowercase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase__ ): param.to(lowercase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): __lowercase= replace_with_bnb_layers( lowercase__ , lowercase__ , modules_to_not_convert=lowercase__ ) __lowercase= get_quantized_model_device_map( lowercase__ , lowercase__ , lowercase__ , max_memory=lowercase__ , no_split_module_classes=lowercase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): __lowercase= True __lowercase= any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowercase__ , lowercase__ , lowercase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase__ , offload_state_dict=lowercase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase__ , device_map=lowercase__ , offload_dir=lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None ) -> List[str]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): __lowercase= {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowercase__ , lowercase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) __lowercase= {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) __lowercase= {} __lowercase= special_dtypes __lowercase= no_split_module_classes __lowercase= bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": __lowercase= get_balanced_memory( lowercase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowercase__ , **lowercase__ , ) __lowercase= max_memory __lowercase= infer_auto_device_map(lowercase__ , **lowercase__ ) if isinstance(lowercase__ , lowercase__ ): # check if don't have any quantized module on the cpu __lowercase= bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules __lowercase= { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ) -> int: '''simple docstring''' if modules_to_not_convert is None: __lowercase= [] __lowercase, __lowercase= _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , ) -> Dict: '''simple docstring''' __lowercase= False for name, module in model.named_children(): if current_key_name is None: __lowercase= [] current_key_name.append(lowercase__ ) if isinstance(lowercase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` __lowercase= '.'.join(lowercase__ ) __lowercase= True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: __lowercase= False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: __lowercase= bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: __lowercase= bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) __lowercase= module.weight.data if module.bias is not None: __lowercase= module.bias.data bnb_module.requires_grad_(lowercase__ ) setattr(lowercase__ , lowercase__ , lowercase__ ) __lowercase= True if len(list(module.children() ) ) > 0: __lowercase, __lowercase= _replace_with_bnb_layers( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __lowercase= has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowerCamelCase( lowercase__ ) -> Union[str, Any]: '''simple docstring''' with init_empty_weights(): __lowercase= deepcopy(lowercase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` __lowercase= find_tied_parameters(lowercase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase__ , lowercase__ ): __lowercase= sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: __lowercase= sum(lowercase__ , [] ) __lowercase= len(lowercase__ ) > 0 # Check if it is a base model __lowercase= False if hasattr(lowercase__ , 'base_model_prefix' ): __lowercase= not hasattr(lowercase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head __lowercase= list(model.named_children() ) __lowercase= [list_modules[-1][0]] # add last module together with tied weights __lowercase= set(lowercase__ ) - set(lowercase__ ) __lowercase= list(set(lowercase__ ) ) + list(lowercase__ ) # remove ".weight" from the keys __lowercase= ['.weight', '.bias'] __lowercase= [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: __lowercase= name.replace(lowercase__ , '' ) filtered_module_names.append(lowercase__ ) return filtered_module_names def _lowerCamelCase( lowercase__ ) -> Optional[Any]: '''simple docstring''' for m in model.modules(): if isinstance(lowercase__ , bnb.nn.Linearabit ): return True return False def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return next(parameter.parameters() ).device def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowercase__ , lowercase__ , 0 , dtype=lowercase__ , value=lowercase__ ) __lowercase= param_name __lowercase= model if "." in tensor_name: __lowercase= tensor_name.split('.' ) for split in splits[:-1]: __lowercase= getattr(lowercase__ , lowercase__ ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) __lowercase= new_module __lowercase= splits[-1] # offload weights __lowercase= False offload_weight(module._parameters[tensor_name] , lowercase__ , lowercase__ , index=lowercase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowercase__ , index=lowercase__ , ) else: offload_weight(lowercase__ , lowercase__ , lowercase__ , index=lowercase__ ) offload_weight(lowercase__ , param_name.replace('weight' , 'SCB' ) , lowercase__ , index=lowercase__ ) set_module_tensor_to_device(lowercase__ , lowercase__ , 'meta' , dtype=lowercase__ , value=torch.empty(*param.size() ) )
304
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Optional[int]: '''simple docstring''' __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' __lowercase= Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' ) __lowercase= transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) __lowercase= transform(lowercase__ ).unsqueeze(0 ).to(lowercase__ ) return image def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' if "visual_encoder" in key: __lowercase= re.sub('visual_encoder*' , 'vision_model.encoder' , lowercase__ ) if "blocks" in key: __lowercase= re.sub(R'blocks' , 'layers' , lowercase__ ) if "attn" in key: __lowercase= re.sub(R'attn' , 'self_attn' , lowercase__ ) if "norm1" in key: __lowercase= re.sub(R'norm1' , 'layer_norm1' , lowercase__ ) if "norm2" in key: __lowercase= re.sub(R'norm2' , 'layer_norm2' , lowercase__ ) if "encoder.norm" in key: __lowercase= re.sub(R'encoder.norm' , 'post_layernorm' , lowercase__ ) if "encoder.patch_embed.proj" in key: __lowercase= re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , lowercase__ ) if "encoder.pos_embed" in key: __lowercase= re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , lowercase__ ) if "encoder.cls_token" in key: __lowercase= re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , lowercase__ ) if "self_attn" in key: __lowercase= re.sub(R'self_attn.proj' , 'self_attn.projection' , lowercase__ ) return key @torch.no_grad() def _lowerCamelCase( lowercase__ , lowercase__=None ) -> int: '''simple docstring''' if config_path is not None: __lowercase= BlipConfig.from_pretrained(lowercase__ ) else: __lowercase= BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) __lowercase= BlipForConditionalGeneration(lowercase__ ).eval() __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' __lowercase= blip_decoder(pretrained=lowercase__ , image_size=3_8_4 , vit='base' ) __lowercase= pt_model.eval() __lowercase= pt_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value hf_model.load_state_dict(lowercase__ ) __lowercase= 3_8_4 __lowercase= load_demo_image(image_size=lowercase__ , device='cpu' ) __lowercase= BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase= tokenizer(['a picture of'] ).input_ids __lowercase= hf_model.generate(lowercase__ , lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] __lowercase= hf_model.generate(lowercase__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(lowercase__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __lowercase= ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) __lowercase= blip_vqa(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) vqa_model.eval() __lowercase= vqa_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForQuestionAnswering(lowercase__ ) hf_vqa_model.load_state_dict(lowercase__ ) __lowercase= ['How many dogs are in this image?'] __lowercase= tokenizer(lowercase__ , return_tensors='pt' ).input_ids __lowercase= hf_vqa_model.generate(lowercase__ , lowercase__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) __lowercase= 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' __lowercase= blip_itm(pretrained=lowercase__ , image_size=lowercase__ , vit='base' ) itm_model.eval() __lowercase= itm_model.state_dict() for key in modified_state_dict.copy(): __lowercase= modified_state_dict.pop(lowercase__ ) __lowercase= rename_key(lowercase__ ) __lowercase= value __lowercase= BlipForImageTextRetrieval(lowercase__ ) __lowercase= ['A picture of a woman with a dog sitting in a beach'] __lowercase= tokenizer( lowercase__ , return_tensors='pt' , padding='max_length' , truncation=lowercase__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(lowercase__ ) hf_itm_model.eval() __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) __lowercase= hf_itm_model(lowercase__ , lowercase__ , use_itm_head=lowercase__ ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
304
1
def _lowerCamelCase( lowercase__ ) -> list: '''simple docstring''' if len(lowercase__ ) <= 1: return lst __lowercase= 1 while i < len(lowercase__ ): if lst[i - 1] <= lst[i]: i += 1 else: __lowercase, __lowercase= lst[i], lst[i - 1] i -= 1 if i == 0: __lowercase= 1 return lst if __name__ == "__main__": lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
304
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowerCAmelCase = (3, 9, -1_1, 0, 7, 5, 1, -1) lowerCAmelCase = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A : UpperCamelCase_ : int UpperCamelCase_ : Node | None class A : def __init__(self , lowerCAmelCase ): __lowercase= None for i in sorted(lowerCAmelCase , reverse=lowerCAmelCase ): __lowercase= Node(lowerCAmelCase , self.head ) def __iter__(self ): __lowercase= self.head while node: yield node.data __lowercase= node.next_node def __len__(self ): return sum(1 for _ in self ) def __str__(self ): return " -> ".join([str(lowerCAmelCase ) for node in self] ) def _lowerCamelCase( lowercase__ , lowercase__ ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
304
1