code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
set_seed(770)
A_ = {
'''c_attn''': '''att_proj''',
'''c_proj''': '''out_proj''',
'''c_fc''': '''in_proj''',
'''transformer.''': '''''',
'''h.''': '''layers.''',
'''ln_1''': '''layernorm_1''',
'''ln_2''': '''layernorm_2''',
'''ln_f''': '''layernorm_final''',
'''wpe''': '''position_embeds_layer''',
'''wte''': '''input_embeds_layer''',
}
A_ = {
'''text_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text.pt''',
},
'''coarse_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse.pt''',
},
'''fine_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine.pt''',
},
'''text''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text_2.pt''',
},
'''coarse''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse_2.pt''',
},
'''fine''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine_2.pt''',
},
}
A_ = os.path.dirname(os.path.abspath(__file__))
A_ = os.path.join(os.path.expanduser('''~'''), '''.cache''')
A_ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''')
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[int]=False ) ->Optional[int]:
A__ : Union[str, Any] = model_type
if use_small:
key += "_small"
return os.path.join(_lowerCAmelCase, REMOTE_MODEL_PATHS[key]["""file_name"""] )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Dict ) ->List[str]:
os.makedirs(_lowerCAmelCase, exist_ok=_lowerCAmelCase )
hf_hub_download(repo_id=_lowerCAmelCase, filename=_lowerCAmelCase, local_dir=_lowerCAmelCase )
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : Any="text" ) ->int:
if model_type == "text":
A__ : Tuple = BarkSemanticModel
A__ : Tuple = BarkSemanticConfig
A__ : Optional[int] = BarkSemanticGenerationConfig
elif model_type == "coarse":
A__ : List[Any] = BarkCoarseModel
A__ : Dict = BarkCoarseConfig
A__ : Dict = BarkCoarseGenerationConfig
elif model_type == "fine":
A__ : List[str] = BarkFineModel
A__ : Optional[Any] = BarkFineConfig
A__ : Optional[Any] = BarkFineGenerationConfig
else:
raise NotImplementedError()
A__ : Optional[int] = f'{model_type}_small' if use_small else model_type
A__ : int = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(_lowerCAmelCase ):
logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' )
_download(model_info["""repo_id"""], model_info["""file_name"""] )
A__ : Any = torch.load(_lowerCAmelCase, map_location=_lowerCAmelCase )
# this is a hack
A__ : Dict = checkpoint["""model_args"""]
if "input_vocab_size" not in model_args:
A__ : Tuple = model_args["""vocab_size"""]
A__ : str = model_args["""vocab_size"""]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
A__ : List[str] = model_args.pop("""n_head""" )
A__ : Dict = model_args.pop("""n_embd""" )
A__ : Union[str, Any] = model_args.pop("""n_layer""" )
A__ : List[Any] = ConfigClass(**checkpoint["""model_args"""] )
A__ : int = ModelClass(config=_lowerCAmelCase )
A__ : List[str] = GenerationConfigClass()
A__ : List[str] = model_generation_config
A__ : Dict = checkpoint["""model"""]
# fixup checkpoint
A__ : Optional[Any] = """_orig_mod."""
for k, v in list(state_dict.items() ):
if k.startswith(_lowerCAmelCase ):
# replace part of the key with corresponding layer name in HF implementation
A__ : Dict = k[len(_lowerCAmelCase ) :]
for old_layer_name in new_layer_name_dict:
A__ : Optional[int] = new_k.replace(_lowerCAmelCase, new_layer_name_dict[old_layer_name] )
A__ : int = state_dict.pop(_lowerCAmelCase )
A__ : List[Any] = set(state_dict.keys() ) - set(model.state_dict().keys() )
A__ : List[Any] = {k for k in extra_keys if not k.endswith(""".attn.bias""" )}
A__ : List[str] = set(model.state_dict().keys() ) - set(state_dict.keys() )
A__ : List[str] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )}
if len(_lowerCAmelCase ) != 0:
raise ValueError(f'extra keys found: {extra_keys}' )
if len(_lowerCAmelCase ) != 0:
raise ValueError(f'missing keys: {missing_keys}' )
model.load_state_dict(_lowerCAmelCase, strict=_lowerCAmelCase )
A__ : Optional[int] = model.num_parameters(exclude_embeddings=_lowerCAmelCase )
A__ : Union[str, Any] = checkpoint["""best_val_loss"""].item()
logger.info(f'model loaded: {round(n_params/1e6, 1 )}M params, {round(_lowerCAmelCase, 3 )} loss' )
model.eval()
model.to(_lowerCAmelCase )
del checkpoint, state_dict
return model
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : Any="text" ) ->Union[str, Any]:
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
A__ : Optional[Any] = """cpu""" # do conversion on cpu
A__ : Optional[int] = _get_ckpt_path(_lowerCAmelCase, use_small=_lowerCAmelCase )
A__ : Any = _load_model(_lowerCAmelCase, _lowerCAmelCase, model_type=_lowerCAmelCase, use_small=_lowerCAmelCase )
# load bark initial model
A__ : List[str] = _bark_load_model(_lowerCAmelCase, """cpu""", model_type=_lowerCAmelCase, use_small=_lowerCAmelCase )
if model_type == "text":
A__ : str = bark_model["""model"""]
if model.num_parameters(exclude_embeddings=_lowerCAmelCase ) != bark_model.get_num_params():
raise ValueError("""initial and new models don\'t have the same number of parameters""" )
# check if same output as the bark model
A__ : str = 5
A__ : List[str] = 1_0
if model_type in ["text", "coarse"]:
A__ : Any = torch.randint(2_5_6, (batch_size, sequence_length), dtype=torch.int )
A__ : Tuple = bark_model(_lowerCAmelCase )[0]
A__ : Dict = model(_lowerCAmelCase )
# take last logits
A__ : Dict = output_new_model_total.logits[:, [-1], :]
else:
A__ : Union[str, Any] = 3
A__ : Union[str, Any] = 8
A__ : int = torch.randint(2_5_6, (batch_size, sequence_length, n_codes_total), dtype=torch.int )
A__ : Optional[int] = model(_lowerCAmelCase, _lowerCAmelCase )
A__ : Optional[Any] = bark_model(_lowerCAmelCase, _lowerCAmelCase )
A__ : Optional[int] = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("""initial and new outputs don\'t have the same shape""" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("""initial and new outputs are not equal""" )
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[Any], ) ->Tuple:
A__ : str = os.path.join(_lowerCAmelCase, _lowerCAmelCase )
A__ : int = BarkSemanticConfig.from_pretrained(os.path.join(_lowerCAmelCase, """config.json""" ) )
A__ : Optional[Any] = BarkCoarseConfig.from_pretrained(os.path.join(_lowerCAmelCase, """config.json""" ) )
A__ : Tuple = BarkFineConfig.from_pretrained(os.path.join(_lowerCAmelCase, """config.json""" ) )
A__ : Optional[int] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" )
A__ : str = BarkSemanticModel.from_pretrained(_lowerCAmelCase )
A__ : int = BarkCoarseModel.from_pretrained(_lowerCAmelCase )
A__ : Union[str, Any] = BarkFineModel.from_pretrained(_lowerCAmelCase )
A__ : Tuple = EncodecModel.from_pretrained("""facebook/encodec_24khz""" )
A__ : Dict = BarkConfig.from_sub_model_configs(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
A__ : List[str] = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config )
A__ : List[Any] = BarkModel(_lowerCAmelCase )
A__ : List[str] = semantic
A__ : Any = coarseAcoustic
A__ : Optional[Any] = fineAcoustic
A__ : Optional[Any] = codec
A__ : Optional[Any] = bark_generation_config
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
bark.save_pretrained(_lowerCAmelCase, repo_id=_lowerCAmelCase, push_to_hub=_lowerCAmelCase )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''')
A_ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 354
|
"""simple docstring"""
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ):
'''simple docstring'''
if k in (0.04, 0.06):
A__ : Optional[int] = k
A__ : int = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : List[Any] ):
'''simple docstring'''
return str(self.k )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : List[str] = cva.imread(snake_case , 0 )
A__ , A__ : Union[str, Any] = img.shape
A__ : list[list[int]] = []
A__ : Optional[Any] = img.copy()
A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB )
A__ , A__ : List[Any] = np.gradient(snake_case )
A__ : List[Any] = dx**2
A__ : Any = dy**2
A__ : Dict = dx * dy
A__ : Any = 0.04
A__ : Optional[Any] = self.window_size // 2
for y in range(snake_case , h - offset ):
for x in range(snake_case , w - offset ):
A__ : List[str] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Tuple = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : int = (wxx * wyy) - (wxy**2)
A__ : Any = wxx + wyy
A__ : List[str] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A_ = HarrisCorner(0.04, 3)
A_ , A_ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 296
| 0
|
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowerCAmelCase__ )
class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ):
snake_case_ = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} )
snake_case_ = Features({'audio': Audio()} )
snake_case_ = Features({'transcription': Value('string' )} )
snake_case_ = "audio"
snake_case_ = "transcription"
def _UpperCamelCase ( self : Any , snake_case : Any ):
'''simple docstring'''
if self.audio_column not in features:
raise ValueError(F'Column {self.audio_column} is not present in features.' )
if not isinstance(features[self.audio_column] , _SCREAMING_SNAKE_CASE ):
raise ValueError(F'Column {self.audio_column} is not an Audio type.' )
A__ : int = copy.deepcopy(self )
A__ : Any = self.input_schema.copy()
A__ : Optional[Any] = features[self.audio_column]
A__ : List[str] = input_schema
return task_template
@property
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 355
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ = logging.get_logger(__name__)
A_ = Dict[str, Any]
A_ = List[Prediction]
@add_end_docstrings(UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : Dict = {}
if "threshold" in kwargs:
A__ : int = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ):
'''simple docstring'''
return super().__call__(*snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = load_image(snake_case )
A__ : int = torch.IntTensor([[image.height, image.width]] )
A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
A__ : List[str] = target_size
return inputs
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : str = model_inputs.pop("""target_size""" )
A__ : Dict = self.model(**snake_case )
A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
A__ : str = model_inputs["""bbox"""]
return model_outputs
def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ):
'''simple docstring'''
A__ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ : Tuple = target_size[0].tolist()
def unnormalize(snake_case : Optional[int] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
A__ : Tuple = ["""score""", """label""", """box"""]
A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case )
A__ : str = raw_annotations[0]
A__ : str = raw_annotation["""scores"""]
A__ : List[Any] = raw_annotation["""labels"""]
A__ : int = raw_annotation["""boxes"""]
A__ : str = scores.tolist()
A__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
A__ : int = [self._get_bounding_box(snake_case ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ : str = ["""score""", """label""", """box"""]
A__ : Dict = [
dict(zip(snake_case , snake_case ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
A__ , A__ , A__ , A__ : Any = box.int().tolist()
A__ : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 296
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( snake_case_ ):
snake_case_ = 'timesformer'
def __init__( self : Optional[Any] , snake_case : Tuple=224 , snake_case : str=16 , snake_case : int=3 , snake_case : List[Any]=8 , snake_case : Union[str, Any]=768 , snake_case : List[str]=12 , snake_case : List[Any]=12 , snake_case : Dict=3072 , snake_case : int="gelu" , snake_case : str=0.0 , snake_case : Any=0.0 , snake_case : Optional[Any]=0.02 , snake_case : Dict=1e-6 , snake_case : Tuple=True , snake_case : Dict="divided_space_time" , snake_case : Optional[int]=0 , **snake_case : Optional[Any] , ):
'''simple docstring'''
super().__init__(**snake_case )
A__ : List[str] = image_size
A__ : Tuple = patch_size
A__ : List[str] = num_channels
A__ : Dict = num_frames
A__ : Tuple = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : Optional[Any] = num_attention_heads
A__ : str = intermediate_size
A__ : Dict = hidden_act
A__ : List[str] = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = initializer_range
A__ : Any = layer_norm_eps
A__ : Tuple = qkv_bias
A__ : str = attention_type
A__ : Optional[Any] = drop_path_rate
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'table-transformer'
snake_case_ = ['past_key_values']
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(snake_case , snake_case ):
A__ : Optional[int] = backbone_config.get("""model_type""" )
A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
A__ : List[str] = config_class.from_dict(snake_case )
# set timm attributes to None
A__ , A__ , A__ : str = None, None, None
A__ : Tuple = use_timm_backbone
A__ : str = backbone_config
A__ : str = num_channels
A__ : List[Any] = num_queries
A__ : Optional[Any] = d_model
A__ : Tuple = encoder_ffn_dim
A__ : Union[str, Any] = encoder_layers
A__ : List[Any] = encoder_attention_heads
A__ : Optional[int] = decoder_ffn_dim
A__ : Any = decoder_layers
A__ : int = decoder_attention_heads
A__ : Any = dropout
A__ : Dict = attention_dropout
A__ : Dict = activation_dropout
A__ : Tuple = activation_function
A__ : List[str] = init_std
A__ : List[str] = init_xavier_std
A__ : Any = encoder_layerdrop
A__ : Optional[Any] = decoder_layerdrop
A__ : Union[str, Any] = encoder_layers
A__ : Dict = auxiliary_loss
A__ : List[Any] = position_embedding_type
A__ : Optional[Any] = backbone
A__ : str = use_pretrained_backbone
A__ : Union[str, Any] = dilation
# Hungarian matcher
A__ : Tuple = class_cost
A__ : Optional[Any] = bbox_cost
A__ : Dict = giou_cost
# Loss coefficients
A__ : Any = mask_loss_coefficient
A__ : str = dice_loss_coefficient
A__ : str = bbox_loss_coefficient
A__ : Union[str, Any] = giou_loss_coefficient
A__ : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return self.d_model
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = version.parse('1.11' )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return 1e-5
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return 12
| 296
| 0
|
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->Optional[Any]:
A__ : Optional[int] = {}
A__ : List[str] = job['''started_at''']
A__ : Optional[int] = job['''completed_at''']
A__ : List[Any] = date_parser.parse(UpperCAmelCase__ )
A__ : int = date_parser.parse(UpperCAmelCase__ )
A__ : Dict = round((end_datetime - start_datetime).total_seconds() / 60.0 )
A__ : List[str] = start
A__ : List[str] = end
A__ : List[str] = duration_in_min
return job_info
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any]=None ) ->Union[str, Any]:
A__ : Dict = None
if token is not None:
A__ : Dict = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f'Bearer {token}'}
A__ : Any = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
A__ : Tuple = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json()
A__ : Optional[int] = {}
try:
job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} )
A__ : Tuple = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(UpperCAmelCase__ ):
A__ : List[Any] = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json()
job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase__ ) for job in result["""jobs"""]} )
return job_time
except Exception:
print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
A_ = parser.parse_args()
A_ = get_job_time(args.workflow_run_id)
A_ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F'{k}: {v["duration"]}')
| 357
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'Salesforce/blip-image-captioning-base'
snake_case_ = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case_ = 'image_captioner'
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ['image']
snake_case_ = ['text']
def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def _UpperCamelCase ( self : int , snake_case : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def _UpperCamelCase ( self : int , snake_case : List[Any] ):
'''simple docstring'''
return self.model.generate(**snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 296
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Optional[Any]:
if isinstance(A__, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(A__, (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(A__ ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
snake_case_ = ['pixel_values']
def __init__( self : List[Any] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , **snake_case : List[str] , ):
'''simple docstring'''
super().__init__(**lowercase__ )
A__ : str = size if size is not None else {"""shortest_edge""": 224}
A__ : Union[str, Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
A__ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
A__ : Optional[Any] = get_size_dict(lowercase__ , param_name="""crop_size""" )
A__ : str = do_resize
A__ : int = size
A__ : List[str] = do_center_crop
A__ : Tuple = crop_size
A__ : List[Any] = resample
A__ : Any = do_rescale
A__ : Dict = rescale_factor
A__ : Union[str, Any] = do_normalize
A__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
A__ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCamelCase ( self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BILINEAR , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ):
'''simple docstring'''
A__ : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ )
if "shortest_edge" in size:
A__ : Any = get_resize_output_image_size(lowercase__ , size["""shortest_edge"""] , default_to_square=lowercase__ )
elif "height" in size and "width" in size:
A__ : Optional[int] = (size["""height"""], size["""width"""])
else:
raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _UpperCamelCase ( self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : str = get_size_dict(lowercase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(lowercase__ , size=(size["""height"""], size["""width"""]) , data_format=lowercase__ , **lowercase__ )
def _UpperCamelCase ( self : List[str] , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ):
'''simple docstring'''
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _UpperCamelCase ( self : int , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : int , ):
'''simple docstring'''
return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ )
def _UpperCamelCase ( self : Tuple , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
A__ : List[str] = to_numpy_array(lowercase__ )
if do_resize:
A__ : str = self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ )
if do_center_crop:
A__ : Any = self.center_crop(lowercase__ , size=lowercase__ )
if do_rescale:
A__ : int = self.rescale(image=lowercase__ , scale=lowercase__ )
if do_normalize:
A__ : Optional[Any] = self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ )
A__ : List[Any] = to_channel_dimension_format(lowercase__ , lowercase__ )
return image
def _UpperCamelCase ( self : Optional[Any] , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : ChannelDimension = ChannelDimension.FIRST , **snake_case : Optional[int] , ):
'''simple docstring'''
A__ : Tuple = do_resize if do_resize is not None else self.do_resize
A__ : Dict = resample if resample is not None else self.resample
A__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale
A__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
A__ : int = image_mean if image_mean is not None else self.image_mean
A__ : str = image_std if image_std is not None else self.image_std
A__ : Union[str, Any] = size if size is not None else self.size
A__ : Dict = get_size_dict(lowercase__ , default_to_square=lowercase__ )
A__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
A__ : Any = get_size_dict(lowercase__ , param_name="""crop_size""" )
if not valid_images(lowercase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
A__ : Optional[int] = make_batched(lowercase__ )
A__ : Dict = [
[
self._preprocess_image(
image=lowercase__ , do_resize=lowercase__ , size=lowercase__ , resample=lowercase__ , do_center_crop=lowercase__ , crop_size=lowercase__ , do_rescale=lowercase__ , rescale_factor=lowercase__ , do_normalize=lowercase__ , image_mean=lowercase__ , image_std=lowercase__ , data_format=lowercase__ , )
for img in video
]
for video in videos
]
A__ : Dict = {"""pixel_values""": videos}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 358
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = nn.Linear(3 , 4 )
A__ : Union[str, Any] = nn.BatchNormad(4 )
A__ : Union[str, Any] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[str] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , model.state_dict() )
A__ : List[str] = os.path.join(snake_case , """index.json""" )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
A__ : List[str] = os.path.join(snake_case , F'{key}.dat' )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on the fact weights are properly loaded
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
A__ : str = torch.randn(2 , 3 , dtype=snake_case )
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} )
A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" )
self.assertTrue(os.path.isfile(snake_case ) )
self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} )
A__ : str = load_offloaded_weight(snake_case , index["""weight"""] )
self.assertTrue(torch.equal(snake_case , snake_case ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = ModelForTest()
A__ : Union[str, Any] = model.state_dict()
A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k}
A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
# Duplicates are removed
A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} )
A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
| 296
| 0
|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
A_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ):
snake_case_ = ['pixel_values']
def __init__( self : List[Any] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = True , **snake_case : Dict , ):
'''simple docstring'''
super().__init__(**snake_case )
A__ : Union[str, Any] = size if size is not None else {'shortest_edge': 224}
A__ : Optional[int] = get_size_dict(snake_case , default_to_square=snake_case )
A__ : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
A__ : List[str] = get_size_dict(snake_case , default_to_square=snake_case , param_name="""crop_size""" )
A__ : Union[str, Any] = do_resize
A__ : Tuple = size
A__ : Dict = resample
A__ : List[Any] = do_center_crop
A__ : Tuple = crop_size
A__ : Optional[int] = do_rescale
A__ : int = rescale_factor
A__ : Dict = do_normalize
A__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A__ : Any = image_std if image_std is not None else OPENAI_CLIP_STD
A__ : List[str] = do_convert_rgb
def _UpperCamelCase ( self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : str = get_size_dict(snake_case , default_to_square=snake_case )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A__ : List[str] = get_resize_output_image_size(snake_case , size=size["""shortest_edge"""] , default_to_square=snake_case )
return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : Dict = get_size_dict(snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(snake_case , size=(size["""height"""], size["""width"""]) , data_format=snake_case , **snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[int] , ):
'''simple docstring'''
return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ):
'''simple docstring'''
return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case )
def _UpperCamelCase ( self : Optional[Any] , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize
A__ : Optional[Any] = size if size is not None else self.size
A__ : List[str] = get_size_dict(snake_case , param_name="""size""" , default_to_square=snake_case )
A__ : Dict = resample if resample is not None else self.resample
A__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ : Dict = crop_size if crop_size is not None else self.crop_size
A__ : str = get_size_dict(snake_case , param_name="""crop_size""" , default_to_square=snake_case )
A__ : Dict = do_rescale if do_rescale is not None else self.do_rescale
A__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ : Any = do_normalize if do_normalize is not None else self.do_normalize
A__ : Tuple = image_mean if image_mean is not None else self.image_mean
A__ : Optional[int] = image_std if image_std is not None else self.image_std
A__ : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A__ : List[Any] = make_list_of_images(snake_case )
if not valid_images(snake_case ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A__ : Tuple = [convert_to_rgb(snake_case ) for image in images]
# All transformations expect numpy arrays.
A__ : Dict = [to_numpy_array(snake_case ) for image in images]
if do_resize:
A__ : Dict = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images]
if do_center_crop:
A__ : List[Any] = [self.center_crop(image=snake_case , size=snake_case ) for image in images]
if do_rescale:
A__ : Optional[int] = [self.rescale(image=snake_case , scale=snake_case ) for image in images]
if do_normalize:
A__ : int = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images]
A__ : List[Any] = [to_channel_dimension_format(snake_case , snake_case ) for image in images]
A__ : Optional[Any] = {'pixel_values': images}
return BatchFeature(data=snake_case , tensor_type=snake_case )
| 359
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : int = parent
A__ : Union[str, Any] = batch_size
A__ : Optional[int] = seq_length
A__ : List[Any] = is_training
A__ : List[str] = use_input_mask
A__ : Optional[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : Union[str, Any] = vocab_size
A__ : List[Any] = hidden_size
A__ : Any = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Optional[int] = intermediate_size
A__ : Any = hidden_act
A__ : Tuple = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[str] = initializer_range
A__ : Any = num_labels
A__ : Any = num_choices
A__ : int = scope
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : int = None
A__ : int = None
A__ : List[str] = None
if self.use_labels:
A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case )
A__ : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : List[str] = BioGptForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ):
'''simple docstring'''
A__ : Union[str, Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
# create attention mask
A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
A__ : Any = self.seq_length // 2
A__ : str = 0
# first forward pass
A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1
A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
A__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , )
# get two different outputs
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""]
# select random slice
A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
A__ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ):
'''simple docstring'''
A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval()
A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
# first forward pass
A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ , A__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[
"""last_hidden_state"""
]
# select random slice
A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM(snake_case )
model.to(snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
A__ : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = BioGptModel(snake_case )
A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : int = BioGptForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : str = config_and_inputs
A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = BioGptModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : str = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = """left"""
# Define PAD Token = EOS Token = 50256
A__ : Optional[int] = tokenizer.eos_token
A__ : Dict = model.config.eos_token_id
# use different length sentences to test batching
A__ : Union[str, Any] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case )
A__ : str = inputs["""input_ids"""].to(snake_case )
A__ : Dict = model.generate(
input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , )
A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Any = model.generate(input_ids=snake_case )
A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings )
A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case )
A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case )
A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case )
A__ : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] = 3
A__ : List[Any] = input_dict["""input_ids"""]
A__ : Dict = input_ids.ne(1 ).to(snake_case )
A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Any = 3
A__ : List[Any] = """multi_label_classification"""
A__ : Dict = input_dict["""input_ids"""]
A__ : Tuple = input_ids.ne(1 ).to(snake_case )
A__ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ : Tuple = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] )
A__ : Dict = model(snake_case )[0]
A__ : Tuple = 4_2384
A__ : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
torch.manual_seed(0 )
A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case )
A__ : Optional[int] = model.generate(
**snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , )
A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case )
A__ : List[str] = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : int ):
'''simple docstring'''
debug_launcher(test_script.main )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
debug_launcher(test_ops.main )
| 360
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model'''}
A_ = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
A_ = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
A_ = 0
A_ = 1
A_ = 2
A_ = 3
A_ = 4
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 'left'
def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
A__ : str = 3
A__ : str = do_lower_case
A__ : Optional[Any] = remove_space
A__ : List[Any] = keep_accents
A__ : Union[str, Any] = vocab_file
A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ):
'''simple docstring'''
A__ : int = self.__dict__.copy()
A__ : int = None
return state
def __setstate__( self : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
A__ : Optional[int] = {}
A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ):
'''simple docstring'''
if self.remove_space:
A__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
A__ : Dict = inputs
A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
A__ : Any = unicodedata.normalize("""NFKD""" , snake_case )
A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] )
if self.do_lower_case:
A__ : Any = outputs.lower()
return outputs
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.preprocess_text(snake_case )
A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case )
A__ : Optional[int] = []
for piece in pieces:
if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
A__ : int = cur_pieces[1:]
else:
A__ : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case )
else:
new_pieces.append(snake_case )
return new_pieces
def _UpperCamelCase ( self : List[str] , snake_case : Tuple ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : Any ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip()
return out_string
def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case )
A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ : Any = []
A__ : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
A__ : str = []
sub_texts.append(snake_case )
else:
current_sub_text.append(snake_case )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
A__ : Dict = """""".join(snake_case )
A__ : int = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ : Tuple = self.clean_up_tokenization(snake_case )
return clean_text
else:
return text
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Tuple = [self.sep_token_id]
A__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is not None:
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1]
return ([0] * len(snake_case )) + [1, 1]
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Any = [self.sep_token_id]
A__ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : List[Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , """wb""" ) as fi:
A__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 296
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : Union[str, Any] , snake_case : List[str]=13 , snake_case : Dict=7 , snake_case : Union[str, Any]=True , snake_case : Union[str, Any]=True , snake_case : int=True , snake_case : Tuple=True , snake_case : List[Any]=99 , snake_case : Union[str, Any]=32 , snake_case : Dict=2 , snake_case : List[str]=4 , snake_case : Union[str, Any]=37 , snake_case : List[Any]="gelu" , snake_case : str=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Tuple=512 , snake_case : Optional[int]=16 , snake_case : Any=2 , snake_case : Optional[int]=0.02 , snake_case : int=3 , snake_case : str=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : Any = parent
A__ : List[Any] = 13
A__ : Any = 7
A__ : Optional[int] = True
A__ : int = True
A__ : Union[str, Any] = True
A__ : int = True
A__ : List[str] = 99
A__ : Any = 32
A__ : Dict = 2
A__ : Union[str, Any] = 4
A__ : List[Any] = 37
A__ : Optional[int] = """gelu"""
A__ : Dict = 0.1
A__ : int = 0.1
A__ : Dict = 512
A__ : int = 16
A__ : int = 2
A__ : Any = 0.02
A__ : int = 3
A__ : str = 4
A__ : Optional[Any] = None
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict = None
if self.use_input_mask:
A__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Dict = None
if self.use_token_type_ids:
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : List[Any] = None
A__ : Any = None
A__ : str = None
if self.use_labels:
A__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[Any] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : List[Any] , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = TFRoFormerModel(config=UpperCAmelCase__ )
A__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
A__ : str = [input_ids, input_mask]
A__ : Any = model(UpperCAmelCase__ )
A__ : str = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Any = True
A__ : Dict = TFRoFormerForCausalLM(config=UpperCAmelCase__ )
A__ : List[str] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
A__ : List[str] = model(UpperCAmelCase__ )["""logits"""]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : Tuple , snake_case : Tuple , snake_case : Any , snake_case : List[str] ):
'''simple docstring'''
A__ : Optional[int] = TFRoFormerForMaskedLM(config=UpperCAmelCase__ )
A__ : str = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
A__ : List[str] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : List[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : Tuple , snake_case : Tuple , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : int = self.num_labels
A__ : Tuple = TFRoFormerForSequenceClassification(config=UpperCAmelCase__ )
A__ : Any = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
A__ : Optional[int] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Any , snake_case : int , snake_case : int , snake_case : Optional[int] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[int] = self.num_choices
A__ : List[Any] = TFRoFormerForMultipleChoice(config=UpperCAmelCase__ )
A__ : str = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
A__ : int = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
A__ : str = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) )
A__ : int = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
A__ : Optional[int] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Any , snake_case : List[str] ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Any = TFRoFormerForTokenClassification(config=UpperCAmelCase__ )
A__ : Any = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
A__ : List[str] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Any , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Dict , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : List[Any] = TFRoFormerForQuestionAnswering(config=UpperCAmelCase__ )
A__ : Optional[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
A__ : Optional[int] = model(UpperCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Optional[int] = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( __lowercase , __lowercase , unittest.TestCase ):
snake_case_ = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
'''feature-extraction''': TFRoFormerModel,
'''fill-mask''': TFRoFormerForMaskedLM,
'''question-answering''': TFRoFormerForQuestionAnswering,
'''text-classification''': TFRoFormerForSequenceClassification,
'''text-generation''': TFRoFormerForCausalLM,
'''token-classification''': TFRoFormerForTokenClassification,
'''zero-shot''': TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Tuple , snake_case : str , snake_case : Optional[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
return True
return False
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Optional[int] = TFRoFormerModelTester(self )
A__ : int = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*UpperCAmelCase__ )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ )
@slow
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : List[Any] = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" )
self.assertIsNotNone(UpperCAmelCase__ )
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
A__ : int = tf.constant([[0, 1, 2, 3, 4, 5]] )
A__ : int = model(UpperCAmelCase__ )[0]
# TODO Replace vocab size
A__ : Dict = 5_0000
A__ : Optional[int] = [1, 6, vocab_size]
self.assertEqual(output.shape , UpperCAmelCase__ )
print(output[:, :3, :3] )
# TODO Replace values below with what was printed above.
A__ : Any = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4 )
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
snake_case_ = 1E-4
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : List[Any] = tf.constant([[4, 10]] )
A__ : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 )
A__ : List[str] = emba(input_ids.shape )
A__ : Optional[Any] = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] )
tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , atol=self.tolerance )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
] )
A__ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 )
emba([2, 16, 512] )
A__ : Optional[int] = emba.weight[:3, :5]
tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , atol=self.tolerance )
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
snake_case_ = 1E-4
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : List[str] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
A__ : Dict = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100
A__ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 )
A__ : Optional[Any] = embed_positions([2, 16, 768] )[None, None, :, :]
A__ , A__ : Optional[int] = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
A__ : int = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
] )
A__ : Any = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
] )
tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase__ , atol=self.tolerance )
tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase__ , atol=self.tolerance )
| 361
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
| 0
|
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : Optional[int] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(__lowerCAmelCase, __lowerCAmelCase )
def _lowerCAmelCase ( UpperCAmelCase__ : Dict ) ->Optional[Any]:
A__ : Any = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
A__ : Optional[int] = s_dict.pop(__lowerCAmelCase )
elif "subsample" in key:
A__ : Dict = s_dict.pop(__lowerCAmelCase )
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[Any]:
A__ : int = emb.weight.shape
A__ : List[str] = nn.Linear(__lowerCAmelCase, __lowerCAmelCase, bias=__lowerCAmelCase )
A__ : int = emb.weight.data
return lin_layer
def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any] ) ->Optional[int]:
A__ : int = torch.load(__lowerCAmelCase, map_location="""cpu""" )
A__ : List[Any] = mam_aaa["""args"""]
A__ : Optional[int] = mam_aaa["""model"""]
A__ : Dict = state_dict["""decoder.output_projection.weight"""]
remove_ignore_keys_(__lowerCAmelCase )
rename_keys(__lowerCAmelCase )
A__ : Dict = state_dict["""decoder.embed_tokens.weight"""].shape[0]
A__ : List[str] = args.share_decoder_input_output_embed
A__ : Optional[int] = [int(__lowerCAmelCase ) for i in args.conv_kernel_sizes.split(""",""" )]
A__ : str = SpeechaTextConfig(
vocab_size=__lowerCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""relu""", num_conv_layers=len(__lowerCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=__lowerCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=__lowerCAmelCase, num_beams=5, max_length=2_0_0, use_cache=__lowerCAmelCase, decoder_start_token_id=2, early_stopping=__lowerCAmelCase, )
A__ : Optional[Any] = SpeechaTextForConditionalGeneration(__lowerCAmelCase )
A__ : Optional[Any] = model.model.load_state_dict(__lowerCAmelCase, strict=__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0 and not set(__lowerCAmelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"""Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"""
f' but all the following weights are missing {missing}' )
if tie_embeds:
A__ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
A__ : int = lm_head_weights
model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''')
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
A_ = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 362
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''src/diffusers'''
A_ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any:
return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]:
A__ : Any = object_name.split(""".""" )
A__ : int = 0
# First let's find the module where our object lives.
A__ : str = parts[i]
while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ):
i += 1
if i < len(UpperCAmelCase__ ):
A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] )
if i >= len(UpperCAmelCase__ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
A__ : Optional[Any] = """"""
A__ : Any = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
A__ : List[Any] = line_index
while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : List[Any] = lines[start_index:line_index]
return "".join(UpperCAmelCase__ )
A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
A_ = re.compile(r'''<FILL\s+[^>]*>''')
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]:
A__ : Dict = code.split("""\n""" )
A__ : List[Any] = 0
while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCAmelCase__ ):
return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0
if has_indent:
A__ : Union[str, Any] = f'class Bla:\n{code}'
A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ )
A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ )
A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
A__ : Dict = []
A__ : List[str] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCAmelCase__ ):
A__ : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
A__ , A__ , A__ : Dict = search.groups()
A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ )
A__ : int = get_indent(UpperCAmelCase__ )
A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2
A__ : Tuple = theoretical_indent
A__ : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
A__ : Tuple = True
while line_index < len(UpperCAmelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
break
A__ : Optional[int] = lines[line_index]
A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : Dict = lines[start_index:line_index]
A__ : Tuple = """""".join(UpperCAmelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None]
A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCAmelCase__ ) > 0:
A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" )
A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
A__ , A__ , A__ : Union[str, Any] = pattern.groups()
A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if option.strip() == "all-casing":
A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ )
A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
A__ : Tuple = start_index + 1
if overwrite and len(UpperCAmelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(UpperCAmelCase__ )
return diffs
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any:
A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ )
A__ : str = []
for filename in all_files:
A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(UpperCAmelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 296
| 0
|
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
A_ = {
'sample_size': 32,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 2,
'num_class_embeds': 1000,
'block_out_channels': [32, 64],
'attention_head_dim': 8,
'down_block_types': [
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'scale_shift',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
A_ = {
'sample_size': 64,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 3,
'num_class_embeds': 1000,
'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4],
'attention_head_dim': 64,
'down_block_types': [
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'AttnUpBlock2D',
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'scale_shift',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
A_ = {
'sample_size': 256,
'in_channels': 3,
'out_channels': 3,
'layers_per_block': 2,
'num_class_embeds': None,
'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
'attention_head_dim': 64,
'down_block_types': [
'ResnetDownsampleBlock2D',
'ResnetDownsampleBlock2D',
'ResnetDownsampleBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
'AttnDownBlock2D',
],
'up_block_types': [
'AttnUpBlock2D',
'AttnUpBlock2D',
'AttnUpBlock2D',
'ResnetUpsampleBlock2D',
'ResnetUpsampleBlock2D',
'ResnetUpsampleBlock2D',
],
'resnet_time_scale_shift': 'default',
'upsample_type': 'resnet',
'downsample_type': 'resnet',
}
A_ = {
'num_train_timesteps': 40,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
A_ = {
'num_train_timesteps': 201,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
A_ = {
'num_train_timesteps': 151,
'sigma_min': 0.002,
'sigma_max': 80.0,
}
def _lowerCAmelCase ( UpperCAmelCase__ : Any ) ->Tuple:
if isinstance(lowercase__, lowercase__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("""boolean value expected""" )
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : str, UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : str=False ) ->Optional[int]:
A__ : List[str] = checkpoint[f'{old_prefix}.in_layers.0.weight']
A__ : Optional[int] = checkpoint[f'{old_prefix}.in_layers.0.bias']
A__ : List[Any] = checkpoint[f'{old_prefix}.in_layers.2.weight']
A__ : str = checkpoint[f'{old_prefix}.in_layers.2.bias']
A__ : Union[str, Any] = checkpoint[f'{old_prefix}.emb_layers.1.weight']
A__ : str = checkpoint[f'{old_prefix}.emb_layers.1.bias']
A__ : Optional[int] = checkpoint[f'{old_prefix}.out_layers.0.weight']
A__ : Dict = checkpoint[f'{old_prefix}.out_layers.0.bias']
A__ : List[str] = checkpoint[f'{old_prefix}.out_layers.3.weight']
A__ : Union[str, Any] = checkpoint[f'{old_prefix}.out_layers.3.bias']
if has_skip:
A__ : Dict = checkpoint[f'{old_prefix}.skip_connection.weight']
A__ : Union[str, Any] = checkpoint[f'{old_prefix}.skip_connection.bias']
return new_checkpoint
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ) ->Any:
A__ , A__ , A__ : Union[str, Any] = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3, dim=0 )
A__ , A__ , A__ : Optional[Any] = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3, dim=0 )
A__ : List[Any] = checkpoint[f'{old_prefix}.norm.weight']
A__ : Tuple = checkpoint[f'{old_prefix}.norm.bias']
A__ : List[str] = weight_q.squeeze(-1 ).squeeze(-1 )
A__ : str = bias_q.squeeze(-1 ).squeeze(-1 )
A__ : Tuple = weight_k.squeeze(-1 ).squeeze(-1 )
A__ : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 )
A__ : Tuple = weight_v.squeeze(-1 ).squeeze(-1 )
A__ : Dict = bias_v.squeeze(-1 ).squeeze(-1 )
A__ : List[Any] = (
checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 )
)
A__ : Union[str, Any] = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str] ) ->Optional[int]:
A__ : Optional[int] = torch.load(lowercase__, map_location="""cpu""" )
A__ : Any = {}
A__ : Tuple = checkpoint["""time_embed.0.weight"""]
A__ : Optional[Any] = checkpoint["""time_embed.0.bias"""]
A__ : Tuple = checkpoint["""time_embed.2.weight"""]
A__ : Optional[int] = checkpoint["""time_embed.2.bias"""]
if unet_config["num_class_embeds"] is not None:
A__ : List[Any] = checkpoint["""label_emb.weight"""]
A__ : Tuple = checkpoint["""input_blocks.0.0.weight"""]
A__ : Dict = checkpoint["""input_blocks.0.0.bias"""]
A__ : List[str] = unet_config["""down_block_types"""]
A__ : Dict = unet_config["""layers_per_block"""]
A__ : Dict = unet_config["""attention_head_dim"""]
A__ : Union[str, Any] = unet_config["""block_out_channels"""]
A__ : int = 1
A__ : Optional[Any] = channels_list[0]
for i, layer_type in enumerate(lowercase__ ):
A__ : int = channels_list[i]
A__ : Optional[Any] = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(lowercase__ ):
A__ : int = f'down_blocks.{i}.resnets.{j}'
A__ : Optional[Any] = f'input_blocks.{current_layer}.0'
A__ : Optional[int] = True if j == 0 and downsample_block_has_skip else False
A__ : Optional[Any] = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__, has_skip=lowercase__ )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(lowercase__ ):
A__ : Tuple = f'down_blocks.{i}.resnets.{j}'
A__ : List[str] = f'input_blocks.{current_layer}.0'
A__ : Any = True if j == 0 and downsample_block_has_skip else False
A__ : Tuple = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__, has_skip=lowercase__ )
A__ : str = f'down_blocks.{i}.attentions.{j}'
A__ : str = f'input_blocks.{current_layer}.1'
A__ : Tuple = convert_attention(
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ )
current_layer += 1
if i != len(lowercase__ ) - 1:
A__ : str = f'down_blocks.{i}.downsamplers.0'
A__ : Tuple = f'input_blocks.{current_layer}.0'
A__ : str = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__ )
current_layer += 1
A__ : Tuple = current_channels
# hardcoded the mid-block for now
A__ : Optional[int] = """mid_block.resnets.0"""
A__ : Tuple = """middle_block.0"""
A__ : Dict = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__ )
A__ : Tuple = """mid_block.attentions.0"""
A__ : str = """middle_block.1"""
A__ : List[str] = convert_attention(lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ )
A__ : Any = """mid_block.resnets.1"""
A__ : int = """middle_block.2"""
A__ : Tuple = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__ )
A__ : Optional[Any] = 0
A__ : str = unet_config["""up_block_types"""]
for i, layer_type in enumerate(lowercase__ ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
A__ : Tuple = f'up_blocks.{i}.resnets.{j}'
A__ : str = f'output_blocks.{current_layer}.0'
A__ : Union[str, Any] = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__, has_skip=lowercase__ )
current_layer += 1
if i != len(lowercase__ ) - 1:
A__ : List[Any] = f'up_blocks.{i}.upsamplers.0'
A__ : Any = f'output_blocks.{current_layer-1}.1'
A__ : List[Any] = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__ )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
A__ : List[str] = f'up_blocks.{i}.resnets.{j}'
A__ : Union[str, Any] = f'output_blocks.{current_layer}.0'
A__ : Dict = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__, has_skip=lowercase__ )
A__ : Any = f'up_blocks.{i}.attentions.{j}'
A__ : str = f'output_blocks.{current_layer}.1'
A__ : Optional[Any] = convert_attention(
lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ )
current_layer += 1
if i != len(lowercase__ ) - 1:
A__ : int = f'up_blocks.{i}.upsamplers.0'
A__ : List[str] = f'output_blocks.{current_layer-1}.2'
A__ : Union[str, Any] = convert_resnet(lowercase__, lowercase__, lowercase__, lowercase__ )
A__ : Any = checkpoint["""out.0.weight"""]
A__ : Optional[Any] = checkpoint["""out.0.bias"""]
A__ : Any = checkpoint["""out.2.weight"""]
A__ : List[Any] = checkpoint["""out.2.bias"""]
return new_checkpoint
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''')
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.'''
)
parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''')
A_ = parser.parse_args()
A_ = strabool(args.class_cond)
A_ = os.path.basename(args.unet_path)
print(F'Checkpoint: {ckpt_name}')
# Get U-Net config
if "imagenet64" in ckpt_name:
A_ = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A_ = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
A_ = TEST_UNET_CONFIG
else:
raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.')
if not args.class_cond:
A_ = None
A_ = con_pt_to_diffuser(args.unet_path, unet_config)
A_ = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
A_ = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
A_ = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
A_ = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.')
A_ = CMStochasticIterativeScheduler(**scheduler_config)
A_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 363
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 296
| 0
|
"""simple docstring"""
import unittest
from transformers import AutoTokenizer, NystromformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
NystromformerModel,
)
from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , snake_case : List[str] , snake_case : List[str]=13 , snake_case : List[Any]=7 , snake_case : Any=True , snake_case : int=True , snake_case : Optional[Any]=True , snake_case : Tuple=True , snake_case : Optional[int]=99 , snake_case : str=32 , snake_case : Optional[int]=5 , snake_case : List[Any]=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : Dict=0.1 , snake_case : Optional[int]=0.1 , snake_case : Any=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Union[str, Any]=0.02 , snake_case : List[Any]=3 , snake_case : str=4 , snake_case : Optional[int]=None , ):
'''simple docstring'''
A__ : Optional[Any] = parent
A__ : Optional[int] = batch_size
A__ : List[Any] = seq_length
A__ : List[str] = is_training
A__ : Any = use_input_mask
A__ : Union[str, Any] = use_token_type_ids
A__ : Tuple = use_labels
A__ : Any = vocab_size
A__ : Tuple = hidden_size
A__ : int = num_hidden_layers
A__ : Union[str, Any] = num_attention_heads
A__ : int = intermediate_size
A__ : str = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Union[str, Any] = attention_probs_dropout_prob
A__ : Dict = max_position_embeddings
A__ : str = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : Dict = initializer_range
A__ : Dict = num_labels
A__ : List[str] = num_choices
A__ : List[str] = scope
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Optional[Any] = None
if self.use_input_mask:
A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : List[str] = None
if self.use_token_type_ids:
A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : List[str] = None
A__ : int = None
A__ : str = None
if self.use_labels:
A__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
A__ : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return NystromformerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Dict , snake_case : Any , snake_case : List[str] , snake_case : int , snake_case : List[Any] , snake_case : Tuple , snake_case : int , snake_case : List[str] ):
'''simple docstring'''
A__ : List[str] = NystromformerModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )
A__ : List[str] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE )
A__ : Optional[int] = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Any , snake_case : Dict , snake_case : Optional[Any] , snake_case : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Union[str, Any] = NystromformerForMaskedLM(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Tuple , snake_case : int , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : int , snake_case : Optional[Any] , snake_case : int ):
'''simple docstring'''
A__ : Tuple = NystromformerForQuestionAnswering(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : Union[str, Any] = model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Any , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Tuple , snake_case : int , snake_case : Dict , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : List[str] = NystromformerForSequenceClassification(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : int , snake_case : str , snake_case : Tuple , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : Tuple = NystromformerForTokenClassification(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Dict , snake_case : List[str] , snake_case : Any , snake_case : Optional[Any] , snake_case : int , snake_case : str , snake_case : int , snake_case : Tuple ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : int = NystromformerForMultipleChoice(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
A__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Optional[int] = model(
_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : int = self.prepare_config_and_inputs()
(
A__
) : List[Any] = config_and_inputs
A__ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
snake_case_ = (
(
NystromformerModel,
NystromformerForMaskedLM,
NystromformerForMultipleChoice,
NystromformerForQuestionAnswering,
NystromformerForSequenceClassification,
NystromformerForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (
{
'feature-extraction': NystromformerModel,
'fill-mask': NystromformerForMaskedLM,
'question-answering': NystromformerForQuestionAnswering,
'text-classification': NystromformerForSequenceClassification,
'token-classification': NystromformerForTokenClassification,
'zero-shot': NystromformerForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Tuple = NystromformerModelTester(self )
A__ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : Optional[Any] = type
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Any = NystromformerModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" )
A__ : Dict = torch.tensor([[0, 1, 2, 3, 4, 5]] )
with torch.no_grad():
A__ : str = model(_SCREAMING_SNAKE_CASE )[0]
A__ : str = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
A__ : str = torch.tensor(
[[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = "the [MASK] of Belgium is Brussels"
A__ : Union[str, Any] = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" )
A__ : List[str] = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" )
A__ : Dict = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
with torch.no_grad():
A__ : str = model(encoding.input_ids ).logits
A__ : Any = token_logits[:, 2, :].argmax(-1 )[0]
self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE ) , """capital""" )
| 364
|
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
A_ = object()
# For specifying empty leaf dict `{}`
A_ = object()
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict:
A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ):
A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )]
if matches and all(UpperCAmelCase__ ):
return True
return False
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict:
def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ):
for rule, replacement in rules:
if _match(UpperCAmelCase__, UpperCAmelCase__ ):
return replacement
return val
return replace
def _lowerCAmelCase ( ) ->Tuple:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )),
(("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any:
A__ : Union[str, Any] = _get_partition_rules()
A__ : int = _replacement_rules(UpperCAmelCase__ )
A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )}
A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCAmelCase__ ) )
| 296
| 0
|
"""simple docstring"""
import hashlib
import unittest
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
from transformers.pipelines import DepthEstimationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
else:
class __SCREAMING_SNAKE_CASE :
@staticmethod
def _UpperCamelCase ( *snake_case : List[Any] , **snake_case : Tuple ):
'''simple docstring'''
pass
def _lowerCAmelCase ( UpperCAmelCase__ : Image ) ->List[Any]:
A__ : Tuple = hashlib.mda(image.tobytes() )
return m.hexdigest()
@is_pipeline_test
@require_vision
@require_timm
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
snake_case_ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
def _UpperCamelCase ( self : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Union[str, Any] = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ )
return depth_estimator, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCamelCase ( self : Tuple , snake_case : Tuple , snake_case : str ):
'''simple docstring'''
A__ : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ )
import datasets
A__ : Union[str, Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" )
A__ : List[str] = depth_estimator(
[
Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ),
"""http://images.cocodataset.org/val2017/000000039769.jpg""",
# RGBA
dataset[0]["""file"""],
# LA
dataset[1]["""file"""],
# L
dataset[2]["""file"""],
] )
self.assertEqual(
[
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
{"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )},
] , lowerCamelCase_ , )
@require_tf
@unittest.skip("""Depth estimation is not implemented in TF""" )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
pass
@slow
@require_torch
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[int] = """Intel/dpt-large"""
A__ : str = pipeline("""depth-estimation""" , model=lowerCamelCase_ )
A__ : Dict = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" )
A__ : Dict = hashimage(outputs["""depth"""] )
# This seems flaky.
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 )
self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 )
@require_torch
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
| 365
|
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : Optional[Any] = batch_size
A__ : Dict = seq_length
A__ : str = is_training
A__ : Tuple = use_input_mask
A__ : Dict = use_token_type_ids
A__ : Dict = use_labels
A__ : int = vocab_size
A__ : List[str] = hidden_size
A__ : Union[str, Any] = num_hidden_layers
A__ : int = num_attention_heads
A__ : List[str] = intermediate_size
A__ : int = hidden_act
A__ : str = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : int = num_labels
A__ : Optional[int] = num_choices
A__ : Optional[int] = scope
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Any = None
if self.use_input_mask:
A__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] = None
if self.use_token_type_ids:
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : List[str] = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.get_config()
A__ : List[str] = 300
return config
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = self.prepare_config_and_inputs()
A__ : List[str] = True
A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : List[str] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
A__ : List[str] = model(snake_case , token_type_ids=snake_case )
A__ : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ):
'''simple docstring'''
A__ : Dict = True
A__ : Optional[Any] = MraModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Dict = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Optional[Any] = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Union[str, Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : str = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Dict = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = ()
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = MraModelTester(self )
A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[str] = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : str = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="""MRA does not output attentions""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Any = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : List[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , snake_case )
A__ : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Dict = 5_0265
A__ : List[str] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : List[Any] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Union[str, Any] = 5_0265
A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : Optional[int] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 296
| 0
|
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
A_ = datasets.utils.logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilderConfig ):
snake_case_ = None
snake_case_ = None
class __SCREAMING_SNAKE_CASE ( folder_based_builder.FolderBasedBuilder ):
snake_case_ = datasets.Audio()
snake_case_ = """audio"""
snake_case_ = AudioFolderConfig
snake_case_ = 42 # definition at the bottom of the script
snake_case_ = AudioClassification(audio_column='audio' , label_column='label' )
A_ = [
""".aiff""",
""".au""",
""".avr""",
""".caf""",
""".flac""",
""".htk""",
""".svx""",
""".mat4""",
""".mat5""",
""".mpc2k""",
""".ogg""",
""".paf""",
""".pvf""",
""".raw""",
""".rf64""",
""".sd2""",
""".sds""",
""".ircam""",
""".voc""",
""".w64""",
""".wav""",
""".nist""",
""".wavex""",
""".wve""",
""".xi""",
""".mp3""",
""".opus""",
]
A_ = AUDIO_EXTENSIONS
| 366
|
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
A_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
A_ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
A_ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ):
'''simple docstring'''
A__ : Optional[int] = mean_squared_error(
snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case )
return {"mse": mse}
| 296
| 0
|
"""simple docstring"""
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
def __init__( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = data
A__ : Union[str, Any] = None
A__ : Optional[int] = None
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Any: # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->List[Any]:
return 1 + max(depth_of_tree(tree.left ), depth_of_tree(tree.right ) ) if tree else 0
def _lowerCAmelCase ( UpperCAmelCase__ : Node ) ->List[Any]:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def _lowerCAmelCase ( ) ->Dict: # Main function for testing.
A__ : Union[str, Any] = Node(1 )
A__ : str = Node(2 )
A__ : List[Any] = Node(3 )
A__ : List[str] = Node(4 )
A__ : List[Any] = Node(5 )
A__ : List[Any] = Node(6 )
A__ : Tuple = Node(7 )
A__ : Optional[int] = Node(8 )
A__ : Any = Node(9 )
print(is_full_binary_tree(SCREAMING_SNAKE_CASE__ ) )
print(depth_of_tree(SCREAMING_SNAKE_CASE__ ) )
print("""Tree is: """ )
display(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 367
|
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ):
'''simple docstring'''
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" , snake_case , )
super().__init__(args=snake_case , **snake_case )
| 296
| 0
|
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0**1_2 ) ->int:
A__ : Tuple = 1
A__ : str = 0
A__ : Optional[int] = 1
A__ : List[str] = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(F'{solution() = }')
| 368
|
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
A_ = random.Random()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]:
if rng is None:
A__ : Optional[int] = global_rng
A__ : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ):
'''simple docstring'''
A__ : Any = parent
A__ : str = batch_size
A__ : List[str] = min_seq_length
A__ : Dict = max_seq_length
A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A__ : Dict = padding_value
A__ : Optional[Any] = sampling_rate
A__ : Any = return_attention_mask
A__ : Optional[int] = do_normalize
A__ : Tuple = feature_size
A__ : Optional[Any] = chunk_length
A__ : Union[str, Any] = hop_length
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ):
'''simple docstring'''
def _flatten(snake_case : Dict ):
return list(itertools.chain(*snake_case ) )
if equal_length:
A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A__ : Optional[int] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = WhisperFeatureExtractor if is_speech_available() else None
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : str = WhisperFeatureExtractionTester(self )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0]
check_json_file_has_correct_format(snake_case )
A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case )
A__ : str = feat_extract_first.to_dict()
A__ : Union[str, Any] = feat_extract_second.to_dict()
A__ : List[Any] = feat_extract_first.mel_filters
A__ : Optional[Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : Any = os.path.join(snake_case , """feat_extract.json""" )
feat_extract_first.to_json_file(snake_case )
A__ : int = self.feature_extraction_class.from_json_file(snake_case )
A__ : Dict = feat_extract_first.to_dict()
A__ : str = feat_extract_second.to_dict()
A__ : str = feat_extract_first.mel_filters
A__ : Dict = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
# Test feature size
A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test batched
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A__ : str = np.asarray(snake_case )
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test truncation required
A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs]
A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated]
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
import torch
A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa )
A__ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
A__ : Optional[Any] = self._load_datasamples(1 )
A__ : Union[str, Any] = WhisperFeatureExtractor()
A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : Union[str, Any] = self._load_datasamples(1 )[0]
A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0]
self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
A_ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''BartphoTokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 369
|
"""simple docstring"""
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = (0, 0)
A__ : Dict = None
A__ : int = 0
A__ : str = 0
A__ : Optional[Any] = 0
def __eq__( self : str , snake_case : Optional[int] ):
'''simple docstring'''
return self.position == cell.position
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
print(self.position )
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : Any=(5, 5) ):
'''simple docstring'''
A__ : Optional[int] = np.zeros(snake_case )
A__ : List[Any] = world_size[0]
A__ : Dict = world_size[1]
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
print(self.w )
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
A__ : int = cell.position[0]
A__ : str = cell.position[1]
A__ : Any = []
for n in neughbour_cord:
A__ : List[Any] = current_x + n[0]
A__ : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
A__ : List[Any] = Cell()
A__ : str = (x, y)
A__ : Optional[Any] = cell
neighbours.append(snake_case )
return neighbours
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict:
A__ : Union[str, Any] = []
A__ : Optional[int] = []
_open.append(UpperCAmelCase__ )
while _open:
A__ : List[Any] = np.argmin([n.f for n in _open] )
A__ : Union[str, Any] = _open[min_f]
_closed.append(_open.pop(UpperCAmelCase__ ) )
if current == goal:
break
for n in world.get_neigbours(UpperCAmelCase__ ):
for c in _closed:
if c == n:
continue
A__ : Dict = current.g + 1
A__ , A__ : int = n.position
A__ , A__ : Optional[int] = goal.position
A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
A__ : Optional[int] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(UpperCAmelCase__ )
A__ : List[str] = []
while current.parent is not None:
path.append(current.position )
A__ : Union[str, Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
A_ = Gridworld()
# Start position and goal
A_ = Cell()
A_ = (0, 0)
A_ = Cell()
A_ = (4, 4)
print(F'path from {start.position} to {goal.position}')
A_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
A_ = 1
print(world.w)
| 296
| 0
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
A_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __SCREAMING_SNAKE_CASE ( a__ ):
def __init__( self : int , snake_case : List[Any] , snake_case : str ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=snake_case , scheduler=snake_case )
@torch.no_grad()
def __call__( self : List[str] , snake_case : int = 1 , snake_case : int = 100 , snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case : Optional[float] = None , snake_case : bool = True , ):
'''simple docstring'''
if audio_length_in_s is None:
A__ : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate
A__ : List[Any] = audio_length_in_s * self.unet.config.sample_rate
A__ : Tuple = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
F' {3 * down_scale_factor / self.unet.config.sample_rate}.' )
A__ : List[str] = int(snake_case )
if sample_size % down_scale_factor != 0:
A__ : Any = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
""" process.""" )
A__ : Optional[int] = int(snake_case )
A__ : str = next(iter(self.unet.parameters() ) ).dtype
A__ : Tuple = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
A__ : List[str] = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=snake_case )
# set step values
self.scheduler.set_timesteps(snake_case , device=audio.device )
A__ : Tuple = self.scheduler.timesteps.to(snake_case )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
A__ : Tuple = self.unet(snake_case , snake_case ).sample
# 2. compute previous image: x_t -> t_t-1
A__ : Union[str, Any] = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample
A__ : Tuple = audio.clamp(-1 , 1 ).float().cpu().numpy()
A__ : Union[str, Any] = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=snake_case )
| 370
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str:
A__ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any = """"""
else:
A__ : Tuple = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
A__ : str = in_proj_bias[: config.hidden_size]
A__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
A__ : Any = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any:
A__ : int = dct.pop(UpperCAmelCase__ )
A__ : Tuple = val
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple:
A__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
A__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
A__ : str = 1_0_0_0
A__ : List[str] = """huggingface/label-files"""
A__ : Dict = """imagenet-1k-id2label.json"""
A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) )
A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Optional[int] = idalabel
A__ : Dict = {v: k for k, v in idalabel.items()}
A__ : List[str] = int(deit_name[-6:-4] )
A__ : str = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
A__ : List[str] = 1_9_2
A__ : int = 7_6_8
A__ : List[Any] = 1_2
A__ : Dict = 3
elif deit_name[9:].startswith("""small""" ):
A__ : List[Any] = 3_8_4
A__ : List[str] = 1_5_3_6
A__ : Any = 1_2
A__ : Union[str, Any] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
A__ : int = 1_0_2_4
A__ : str = 4_0_9_6
A__ : Any = 2_4
A__ : int = 1_6
# load original model from timm
A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : Tuple = timm_model.state_dict()
A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval()
model.load_state_dict(UpperCAmelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
A__ : int = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size )
A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Optional[Any] = encoding["""pixel_values"""]
A__ : Union[str, Any] = model(UpperCAmelCase__ )
A__ : Union[str, Any] = timm_model(UpperCAmelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 296
| 0
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class __SCREAMING_SNAKE_CASE :
snake_case_ = BlenderbotSmallConfig
snake_case_ = {}
snake_case_ = 'gelu'
def __init__( self : Tuple , snake_case : Optional[Any] , snake_case : str=13 , snake_case : Optional[int]=7 , snake_case : str=True , snake_case : List[str]=False , snake_case : List[Any]=99 , snake_case : int=32 , snake_case : int=2 , snake_case : Union[str, Any]=4 , snake_case : Union[str, Any]=37 , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Tuple=20 , snake_case : Any=2 , snake_case : Dict=1 , snake_case : List[str]=0 , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : List[Any] = batch_size
A__ : List[str] = seq_length
A__ : Any = is_training
A__ : Union[str, Any] = use_labels
A__ : Optional[int] = vocab_size
A__ : Optional[Any] = hidden_size
A__ : Optional[int] = num_hidden_layers
A__ : Dict = num_attention_heads
A__ : Optional[Any] = intermediate_size
A__ : Optional[Any] = hidden_dropout_prob
A__ : Any = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = eos_token_id
A__ : Union[str, Any] = pad_token_id
A__ : Union[str, Any] = bos_token_id
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
A__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
A__ : str = tf.concat([input_ids, eos_tensor] , axis=1 )
A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
A__ : List[str] = prepare_blenderbot_small_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _UpperCamelCase ( self : Optional[int] , snake_case : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = TFBlenderbotSmallModel(config=_SCREAMING_SNAKE_CASE ).get_decoder()
A__ : Dict = inputs_dict['''input_ids''']
A__ : Any = input_ids[:1, :]
A__ : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :]
A__ : Dict = inputs_dict['''head_mask''']
A__ : List[str] = 1
# first forward pass
A__ : Optional[int] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )
A__ : List[Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
A__ : Dict = tf.concat([input_ids, next_tokens] , axis=-1 )
A__ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
A__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0]
A__ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
A__ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
A__ : str = output_from_no_past[:, -3:, random_slice_idx]
A__ : Optional[Any] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-3 )
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=None, UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : Tuple=None, UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : List[Any]=None, ) ->Any:
if attention_mask is None:
A__ : str = tf.cast(tf.math.not_equal(UpperCAmelCase__, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
A__ : Union[str, Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
A__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
snake_case_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
snake_case_ = (
{
'conversational': TFBlenderbotSmallForConditionalGeneration,
'feature-extraction': TFBlenderbotSmallModel,
'summarization': TFBlenderbotSmallForConditionalGeneration,
'text2text-generation': TFBlenderbotSmallForConditionalGeneration,
'translation': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case_ = True
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = TFBlenderbotSmallModelTester(self )
A__ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE )
@require_tokenizers
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
snake_case_ = [
'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '
' i\'m going to throw up.\nand why is that?'
]
snake_case_ = 'facebook/blenderbot_small-90M'
@cached_property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
@cached_property
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.tokenizer(self.src_text , return_tensors="""tf""" )
A__ : List[str] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_SCREAMING_SNAKE_CASE , )
A__ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_SCREAMING_SNAKE_CASE )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 371
|
"""simple docstring"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
A__ : Optional[int] = (low + high) // 2
A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]:
A__ , A__ : Dict = float("""-inf""" ), -1
A__ , A__ : Optional[Any] = float("""-inf""" ), -1
A__ : int | float = 0
for i in range(UpperCAmelCase__, low - 1, -1 ):
summ += arr[i]
if summ > left_sum:
A__ : Optional[int] = summ
A__ : Union[str, Any] = i
A__ : Optional[Any] = 0
for i in range(mid + 1, high + 1 ):
summ += arr[i]
if summ > right_sum:
A__ : int = summ
A__ : Union[str, Any] = i
return max_left, max_right, (left_sum + right_sum)
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float:
A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
A__ : Any = time.time()
max_subarray(UpperCAmelCase__, 0, input_size - 1 )
A__ : List[Any] = time.time()
return end - start
def _lowerCAmelCase ( ) ->None:
A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0]
A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ):
print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ )
plt.plot(UpperCAmelCase__, UpperCAmelCase__ )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 296
| 0
|
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
A_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __SCREAMING_SNAKE_CASE ( a_ ):
def __init__( self : Any , snake_case : int , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Tuple , snake_case : Union[str, Any] , ):
'''simple docstring'''
super().__init__()
if safety_checker is None:
logger.warning(
F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=snake_case , speech_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , )
def _UpperCamelCase ( self : str , snake_case : Optional[int] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
A__ : Dict = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
self.enable_attention_slicing(snake_case )
@torch.no_grad()
def __call__( self : Tuple , snake_case : Any , snake_case : Dict=1_6000 , snake_case : str = 512 , snake_case : Any = 512 , snake_case : int = 50 , snake_case : str = 7.5 , snake_case : Any = None , snake_case : List[str] = 1 , snake_case : Optional[int] = 0.0 , snake_case : Tuple = None , snake_case : Union[str, Any] = None , snake_case : Tuple = "pil" , snake_case : str = True , snake_case : int = None , snake_case : List[Any] = 1 , **snake_case : Dict , ):
'''simple docstring'''
A__ : Union[str, Any] = self.speech_processor.feature_extractor(
snake_case , return_tensors="""pt""" , sampling_rate=snake_case ).input_features.to(self.device )
A__ : List[str] = self.speech_model.generate(snake_case , max_length=48_0000 )
A__ : Tuple = self.speech_processor.tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case , normalize=snake_case )[
0
]
if isinstance(snake_case , snake_case ):
A__ : str = 1
elif isinstance(snake_case , snake_case ):
A__ : Tuple = len(snake_case )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(snake_case )}' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case , snake_case ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(snake_case )}.' )
# get prompt text embeddings
A__ : Any = self.tokenizer(
snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
A__ : Optional[Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
A__ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
A__ : Union[str, Any] = text_input_ids[:, : self.tokenizer.model_max_length]
A__ : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
A__ , A__ , A__ : List[Any] = text_embeddings.shape
A__ : Optional[Any] = text_embeddings.repeat(1 , snake_case , 1 )
A__ : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
A__ : List[str] = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
A__ : int = 42
if negative_prompt is None:
A__ : str = [""""""] * batch_size
elif type(snake_case ) is not type(snake_case ):
raise TypeError(
F'`negative_prompt` should be the same type to `prompt`, but got {type(snake_case )} !='
F' {type(snake_case )}.' )
elif isinstance(snake_case , snake_case ):
A__ : List[str] = [negative_prompt]
elif batch_size != len(snake_case ):
raise ValueError(
F'`negative_prompt`: {negative_prompt} has batch size {len(snake_case )}, but `prompt`:'
F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
""" the batch size of `prompt`.""" )
else:
A__ : List[str] = negative_prompt
A__ : int = text_input_ids.shape[-1]
A__ : Optional[Any] = self.tokenizer(
snake_case , padding="""max_length""" , max_length=snake_case , truncation=snake_case , return_tensors="""pt""" , )
A__ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
A__ : Any = uncond_embeddings.shape[1]
A__ : int = uncond_embeddings.repeat(1 , snake_case , 1 )
A__ : str = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
A__ : List[str] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
A__ : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
A__ : Optional[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
A__ : int = torch.randn(snake_case , generator=snake_case , device="""cpu""" , dtype=snake_case ).to(
self.device )
else:
A__ : List[Any] = torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case )
else:
if latents.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
A__ : str = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(snake_case )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
A__ : int = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
A__ : Dict = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
A__ : Tuple = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
A__ : List[str] = {}
if accepts_eta:
A__ : Union[str, Any] = eta
for i, t in enumerate(self.progress_bar(snake_case ) ):
# expand the latents if we are doing classifier free guidance
A__ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
A__ : Union[str, Any] = self.scheduler.scale_model_input(snake_case , snake_case )
# predict the noise residual
A__ : Optional[int] = self.unet(snake_case , snake_case , encoder_hidden_states=snake_case ).sample
# perform guidance
if do_classifier_free_guidance:
A__ , A__ : List[Any] = noise_pred.chunk(2 )
A__ : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
A__ : str = self.scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case , snake_case , snake_case )
A__ : Optional[int] = 1 / 0.18215 * latents
A__ : Tuple = self.vae.decode(snake_case ).sample
A__ : List[str] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
A__ : List[Any] = self.numpy_to_pil(snake_case )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case )
| 350
|
"""simple docstring"""
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , snake_case : int ):
'''simple docstring'''
A__ : List[Any] = order
# a_{0} ... a_{k}
A__ : List[Any] = [1.0] + [0.0] * order
# b_{0} ... b_{k}
A__ : str = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
A__ : Union[str, Any] = [0.0] * self.order
# y[n-1] ... y[n-k]
A__ : List[str] = [0.0] * self.order
def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ):
'''simple docstring'''
if len(snake_case ) < self.order:
A__ : Any = [1.0, *a_coeffs]
if len(snake_case ) != self.order + 1:
A__ : str = (
F'Expected a_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
if len(snake_case ) != self.order + 1:
A__ : Union[str, Any] = (
F'Expected b_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
A__ : Dict = a_coeffs
A__ : Any = b_coeffs
def _UpperCamelCase ( self : List[str] , snake_case : float ):
'''simple docstring'''
A__ : str = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
A__ : Tuple = self.input_history[:-1]
A__ : int = self.output_history[:-1]
A__ : Dict = sample
A__ : Tuple = result
return result
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str ) ->str:
if not (isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE )):
raise ValueError("""longest_common_substring() takes two strings for inputs""" )
A__ : Tuple = len(_SCREAMING_SNAKE_CASE )
A__ : Dict = len(_SCREAMING_SNAKE_CASE )
A__ : Tuple = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
A__ : List[Any] = 0
A__ : Any = 0
for i in range(1, texta_length + 1 ):
for j in range(1, texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
A__ : Union[str, Any] = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
A__ : Any = i
A__ : Any = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ):
'''simple docstring'''
A__ : Tuple = parent
A__ : Union[str, Any] = batch_size
A__ : List[str] = seq_length
A__ : Optional[int] = is_training
A__ : Dict = use_input_mask
A__ : Any = use_token_type_ids
A__ : Optional[Any] = use_labels
A__ : List[str] = vocab_size
A__ : Optional[int] = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : Any = num_attention_heads
A__ : List[Any] = intermediate_size
A__ : Optional[Any] = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : str = max_position_embeddings
A__ : List[str] = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[Any] = initializer_range
A__ : Optional[int] = num_labels
A__ : Dict = num_choices
A__ : Dict = scope
A__ : List[Any] = vocab_size - 1
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : List[Any] = None
if self.use_input_mask:
A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_labels:
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Tuple = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs()
A__ : Union[str, Any] = True
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ):
'''simple docstring'''
A__ : Any = GPTNeoXModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case )
A__ : Optional[int] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = True
A__ : str = GPTNeoXModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ):
'''simple docstring'''
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ):
'''simple docstring'''
A__ : int = self.num_labels
A__ : int = GPTNeoXForQuestionAnswering(snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[Any] = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Tuple = GPTNeoXForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = self.num_labels
A__ : Any = GPTNeoXForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Optional[int] = True
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
# first forward pass
A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 )
A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case )
A__ : List[Any] = output_from_no_past["""hidden_states"""][0]
A__ : List[str] = model(
snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0]
# select random slice
A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : str = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ : Dict = config_and_inputs
A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = GPTNeoXModelTester(self )
A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common()
A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size )
A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Union[str, Any] = GPTNeoXModel(snake_case )
original_model.to(snake_case )
original_model.eval()
A__ : Optional[int] = original_model(snake_case ).last_hidden_state
A__ : List[str] = original_model(snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0}
A__ : Optional[int] = GPTNeoXModel(snake_case )
scaled_model.to(snake_case )
scaled_model.eval()
A__ : List[str] = scaled_model(snake_case ).last_hidden_state
A__ : Tuple = scaled_model(snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case )
A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 )
A__ : Tuple = tokenizer.batch_decode(snake_case )[0]
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[Any] , snake_case : int , snake_case : str=13 , snake_case : List[str]=7 , snake_case : Tuple=True , snake_case : List[Any]=True , snake_case : Any=False , snake_case : str=True , snake_case : Dict=99 , snake_case : Union[str, Any]=32 , snake_case : List[str]=5 , snake_case : int=4 , snake_case : int=37 , snake_case : Optional[int]="gelu" , snake_case : Optional[int]=0.1 , snake_case : int=0.1 , snake_case : str=512 , snake_case : str=16 , snake_case : Any=2 , snake_case : Optional[Any]=0.02 , snake_case : str=3 , snake_case : int=4 , snake_case : Union[str, Any]=None , ):
'''simple docstring'''
A__ : Dict = parent
A__ : int = batch_size
A__ : Union[str, Any] = seq_length
A__ : str = is_training
A__ : Optional[Any] = use_input_mask
A__ : List[Any] = use_token_type_ids
A__ : str = use_labels
A__ : List[str] = vocab_size
A__ : str = hidden_size
A__ : List[str] = num_hidden_layers
A__ : List[str] = num_attention_heads
A__ : Union[str, Any] = intermediate_size
A__ : str = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Union[str, Any] = attention_probs_dropout_prob
A__ : str = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : List[str] = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : Optional[int] = num_labels
A__ : int = num_choices
A__ : Dict = scope
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : int = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : int = None
A__ : Optional[int] = None
A__ : Optional[Any] = None
if self.use_labels:
A__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
A__ : List[str] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : int , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , snake_case : int ):
'''simple docstring'''
A__ : int = DistilBertModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[int] = model(snake_case , snake_case )
A__ : List[str] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : List[Any] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : int = DistilBertForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Any = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : str , snake_case : Any , snake_case : List[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = DistilBertForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[int] = model(
snake_case , attention_mask=snake_case , start_positions=snake_case , end_positions=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : List[Any] , snake_case : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Any , snake_case : Tuple ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Union[str, Any] = DistilBertForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Tuple , snake_case : str , snake_case : Dict , snake_case : Optional[int] ):
'''simple docstring'''
A__ : Any = self.num_labels
A__ : Optional[int] = DistilBertForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[Any] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : List[str] , snake_case : str ):
'''simple docstring'''
A__ : str = self.num_choices
A__ : Dict = DistilBertForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Optional[Any] = model(
snake_case , attention_mask=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Dict = self.prepare_config_and_inputs()
(A__) : int = config_and_inputs
A__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
snake_case_ = (
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = True
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = DistilBertModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , dim=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case )
@slow
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[int] = DistilBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@slow
@require_torch_gpu
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
A__ : Tuple = True
A__ : Union[str, Any] = model_class(config=snake_case )
A__ : List[Any] = self._prepare_for_class(snake_case , snake_case )
A__ : int = torch.jit.trace(
snake_case , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(snake_case , os.path.join(snake_case , """traced_model.pt""" ) )
A__ : Optional[int] = torch.jit.load(os.path.join(snake_case , """traced_model.pt""" ) , map_location=snake_case )
loaded(inputs_dict["""input_ids"""].to(snake_case ) , inputs_dict["""attention_mask"""].to(snake_case ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Dict = DistilBertModel.from_pretrained("""distilbert-base-uncased""" )
A__ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
A__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
A__ : str = model(snake_case , attention_mask=snake_case )[0]
A__ : Dict = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , snake_case )
A__ : Any = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) )
| 352
|
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int:
A__ : defaultdict = defaultdict(UpperCAmelCase__ )
A__ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ):
if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1:
continue
A__ : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'{solution() = }')
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Tuple:
A__ : Union[str, Any] = [[0 for _ in range(UpperCAmelCase_ )] for _ in range(m + 1 )]
for i in range(m + 1 ):
A__ : List[Any] = 1
for n in range(m + 1 ):
for k in range(1, UpperCAmelCase_ ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
A_ = int(input('''Enter a number: ''').strip())
print(partition(n))
except ValueError:
print('''Please enter a number.''')
else:
try:
A_ = int(sys.argv[1])
print(partition(n))
except ValueError:
print('''Please pass a number.''')
| 353
|
"""simple docstring"""
import os
from distutils.util import strtobool
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]:
for e in env_keys:
A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) )
if val >= 0:
return val
return default
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]:
A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int...
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int:
A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return value
| 296
| 0
|
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = 42
snake_case_ = None
# Automatically constructed
snake_case_ = 'dict'
snake_case_ = None
snake_case_ = field(default='Translation' , init=lowerCamelCase__ , repr=lowerCamelCase__ )
def __call__( self : Union[str, Any] ):
'''simple docstring'''
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = None
snake_case_ = None
snake_case_ = None
# Automatically constructed
snake_case_ = 'dict'
snake_case_ = None
snake_case_ = field(default='TranslationVariableLanguages' , init=lowerCamelCase__ , repr=lowerCamelCase__ )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = sorted(set(self.languages ) ) if self.languages else None
A__ : int = len(self.languages ) if self.languages else None
def __call__( self : Optional[int] ):
'''simple docstring'''
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def _UpperCamelCase ( self : List[str] , snake_case : List[str] ):
'''simple docstring'''
A__ : List[Any] = set(self.languages )
if self.languages and set(snake_case ) - lang_set:
raise ValueError(
F'Some languages in example ({", ".join(sorted(set(snake_case ) - lang_set ) )}) are not in valid set ({", ".join(snake_case )}).' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
A__ : Union[str, Any] = []
for lang, text in translation_dict.items():
if isinstance(snake_case , snake_case ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
A__ : Optional[int] = zip(*sorted(snake_case ) )
return {"language": languages, "translation": translations}
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 354
|
"""simple docstring"""
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ):
'''simple docstring'''
if k in (0.04, 0.06):
A__ : Optional[int] = k
A__ : int = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : List[Any] ):
'''simple docstring'''
return str(self.k )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : List[str] = cva.imread(snake_case , 0 )
A__ , A__ : Union[str, Any] = img.shape
A__ : list[list[int]] = []
A__ : Optional[Any] = img.copy()
A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB )
A__ , A__ : List[Any] = np.gradient(snake_case )
A__ : List[Any] = dx**2
A__ : Any = dy**2
A__ : Dict = dx * dy
A__ : Any = 0.04
A__ : Optional[Any] = self.window_size // 2
for y in range(snake_case , h - offset ):
for x in range(snake_case , w - offset ):
A__ : List[str] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Tuple = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : int = (wxx * wyy) - (wxy**2)
A__ : Any = wxx + wyy
A__ : List[str] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A_ = HarrisCorner(0.04, 3)
A_ , A_ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 296
| 0
|
"""simple docstring"""
A_ = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
10: "a",
11: "b",
12: "c",
13: "d",
14: "e",
15: "f",
}
def _lowerCAmelCase ( UpperCAmelCase__ : float ) ->str:
assert type(UpperCAmelCase__ ) in (int, float) and decimal == int(UpperCAmelCase__ )
A__ : Dict = int(UpperCAmelCase__ )
A__ : int = """"""
A__ : int = False
if decimal < 0:
A__ : Tuple = True
decimal *= -1
while decimal > 0:
A__ , A__ : List[Any] = divmod(UpperCAmelCase__, 1_6 )
A__ : Tuple = values[remainder] + hexadecimal
A__ : Dict = """0x""" + hexadecimal
if negative:
A__ : Tuple = """-""" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ = logging.get_logger(__name__)
A_ = Dict[str, Any]
A_ = List[Prediction]
@add_end_docstrings(UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : Dict = {}
if "threshold" in kwargs:
A__ : int = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ):
'''simple docstring'''
return super().__call__(*snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = load_image(snake_case )
A__ : int = torch.IntTensor([[image.height, image.width]] )
A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
A__ : List[str] = target_size
return inputs
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : str = model_inputs.pop("""target_size""" )
A__ : Dict = self.model(**snake_case )
A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
A__ : str = model_inputs["""bbox"""]
return model_outputs
def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ):
'''simple docstring'''
A__ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ : Tuple = target_size[0].tolist()
def unnormalize(snake_case : Optional[int] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
A__ : Tuple = ["""score""", """label""", """box"""]
A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case )
A__ : str = raw_annotations[0]
A__ : str = raw_annotation["""scores"""]
A__ : List[Any] = raw_annotation["""labels"""]
A__ : int = raw_annotation["""boxes"""]
A__ : str = scores.tolist()
A__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
A__ : int = [self._get_bounding_box(snake_case ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ : str = ["""score""", """label""", """box"""]
A__ : Dict = [
dict(zip(snake_case , snake_case ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
A__ , A__ , A__ , A__ : Any = box.int().tolist()
A__ : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 296
| 0
|
"""simple docstring"""
from __future__ import annotations
import math
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str] ) ->float:
A__ : str = u
for i in range(1, __UpperCAmelCase ):
A__ : Any = temp * (u - i)
return temp
def _lowerCAmelCase ( ) ->None:
A__ : int = int(input("""enter the numbers of values: """ ) )
A__ : Tuple = []
for _ in range(__UpperCAmelCase ):
y.append([] )
for i in range(__UpperCAmelCase ):
for j in range(__UpperCAmelCase ):
y[i].append(__UpperCAmelCase )
A__ : str = 0
print("""enter the values of parameters in a list: """ )
A__ : Tuple = list(map(__UpperCAmelCase, input().split() ) )
print("""enter the values of corresponding parameters: """ )
for i in range(__UpperCAmelCase ):
A__ : Tuple = float(input() )
A__ : str = int(input("""enter the value to interpolate: """ ) )
A__ : Union[str, Any] = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1, __UpperCAmelCase ):
for j in range(n - i ):
A__ : int = y[j + 1][i - 1] - y[j][i - 1]
A__ : str = y[0][0]
for i in range(1, __UpperCAmelCase ):
summ += (ucal(__UpperCAmelCase, __UpperCAmelCase ) * y[0][i]) / math.factorial(__UpperCAmelCase )
print(f'the value at {value} is {summ}' )
if __name__ == "__main__":
main()
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'table-transformer'
snake_case_ = ['past_key_values']
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(snake_case , snake_case ):
A__ : Optional[int] = backbone_config.get("""model_type""" )
A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
A__ : List[str] = config_class.from_dict(snake_case )
# set timm attributes to None
A__ , A__ , A__ : str = None, None, None
A__ : Tuple = use_timm_backbone
A__ : str = backbone_config
A__ : str = num_channels
A__ : List[Any] = num_queries
A__ : Optional[Any] = d_model
A__ : Tuple = encoder_ffn_dim
A__ : Union[str, Any] = encoder_layers
A__ : List[Any] = encoder_attention_heads
A__ : Optional[int] = decoder_ffn_dim
A__ : Any = decoder_layers
A__ : int = decoder_attention_heads
A__ : Any = dropout
A__ : Dict = attention_dropout
A__ : Dict = activation_dropout
A__ : Tuple = activation_function
A__ : List[str] = init_std
A__ : List[str] = init_xavier_std
A__ : Any = encoder_layerdrop
A__ : Optional[Any] = decoder_layerdrop
A__ : Union[str, Any] = encoder_layers
A__ : Dict = auxiliary_loss
A__ : List[Any] = position_embedding_type
A__ : Optional[Any] = backbone
A__ : str = use_pretrained_backbone
A__ : Union[str, Any] = dilation
# Hungarian matcher
A__ : Tuple = class_cost
A__ : Optional[Any] = bbox_cost
A__ : Dict = giou_cost
# Loss coefficients
A__ : Any = mask_loss_coefficient
A__ : str = dice_loss_coefficient
A__ : str = bbox_loss_coefficient
A__ : Union[str, Any] = giou_loss_coefficient
A__ : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return self.d_model
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = version.parse('1.11' )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return 1e-5
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return 12
| 296
| 0
|
"""simple docstring"""
from bisect import bisect
from itertools import accumulate
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : str ) ->Any:
A__ : int = sorted(zip(lowercase_, lowercase_ ), key=lambda UpperCAmelCase__ : x[0] / x[1], reverse=lowercase_ )
A__ , A__ : List[str] = [i[0] for i in r], [i[1] for i in r]
A__ : str = list(accumulate(lowercase_ ) )
A__ : Any = bisect(lowercase_, lowercase_ )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 357
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'Salesforce/blip-image-captioning-base'
snake_case_ = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case_ = 'image_captioner'
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ['image']
snake_case_ = ['text']
def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def _UpperCamelCase ( self : int , snake_case : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def _UpperCamelCase ( self : int , snake_case : List[Any] ):
'''simple docstring'''
return self.model.generate(**snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 296
| 0
|
"""simple docstring"""
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
set_seed(770)
A_ = {
'''c_attn''': '''att_proj''',
'''c_proj''': '''out_proj''',
'''c_fc''': '''in_proj''',
'''transformer.''': '''''',
'''h.''': '''layers.''',
'''ln_1''': '''layernorm_1''',
'''ln_2''': '''layernorm_2''',
'''ln_f''': '''layernorm_final''',
'''wpe''': '''position_embeds_layer''',
'''wte''': '''input_embeds_layer''',
}
A_ = {
'''text_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text.pt''',
},
'''coarse_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse.pt''',
},
'''fine_small''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine.pt''',
},
'''text''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''text_2.pt''',
},
'''coarse''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''coarse_2.pt''',
},
'''fine''': {
'''repo_id''': '''suno/bark''',
'''file_name''': '''fine_2.pt''',
},
}
A_ = os.path.dirname(os.path.abspath(__file__))
A_ = os.path.join(os.path.expanduser('''~'''), '''.cache''')
A_ = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''')
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any]=False ) ->Union[str, Any]:
A__ : Optional[int] = model_type
if use_small:
key += "_small"
return os.path.join(A_, REMOTE_MODEL_PATHS[key]["""file_name"""] )
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[int] ) ->Any:
os.makedirs(A_, exist_ok=A_ )
hf_hub_download(repo_id=A_, filename=A_, local_dir=A_ )
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any]=False, UpperCAmelCase__ : Dict="text" ) ->List[Any]:
if model_type == "text":
A__ : Any = BarkSemanticModel
A__ : str = BarkSemanticConfig
A__ : Optional[int] = BarkSemanticGenerationConfig
elif model_type == "coarse":
A__ : Tuple = BarkCoarseModel
A__ : str = BarkCoarseConfig
A__ : Optional[Any] = BarkCoarseGenerationConfig
elif model_type == "fine":
A__ : str = BarkFineModel
A__ : Dict = BarkFineConfig
A__ : int = BarkFineGenerationConfig
else:
raise NotImplementedError()
A__ : str = f'{model_type}_small' if use_small else model_type
A__ : Dict = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(A_ ):
logger.info(f'{model_type} model not found, downloading into `{CACHE_DIR}`.' )
_download(model_info["""repo_id"""], model_info["""file_name"""] )
A__ : str = torch.load(A_, map_location=A_ )
# this is a hack
A__ : Union[str, Any] = checkpoint['''model_args''']
if "input_vocab_size" not in model_args:
A__ : Tuple = model_args['''vocab_size''']
A__ : Optional[Any] = model_args['''vocab_size''']
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
A__ : Tuple = model_args.pop("""n_head""" )
A__ : Dict = model_args.pop("""n_embd""" )
A__ : Dict = model_args.pop("""n_layer""" )
A__ : Optional[Any] = ConfigClass(**checkpoint["""model_args"""] )
A__ : int = ModelClass(config=A_ )
A__ : List[Any] = GenerationConfigClass()
A__ : List[Any] = model_generation_config
A__ : List[Any] = checkpoint['''model''']
# fixup checkpoint
A__ : List[str] = '''_orig_mod.'''
for k, v in list(state_dict.items() ):
if k.startswith(A_ ):
# replace part of the key with corresponding layer name in HF implementation
A__ : Tuple = k[len(A_ ) :]
for old_layer_name in new_layer_name_dict:
A__ : str = new_k.replace(A_, new_layer_name_dict[old_layer_name] )
A__ : Any = state_dict.pop(A_ )
A__ : Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() )
A__ : Dict = {k for k in extra_keys if not k.endswith(""".attn.bias""" )}
A__ : List[str] = set(model.state_dict().keys() ) - set(state_dict.keys() )
A__ : Optional[int] = {k for k in missing_keys if not k.endswith(""".attn.bias""" )}
if len(A_ ) != 0:
raise ValueError(f'extra keys found: {extra_keys}' )
if len(A_ ) != 0:
raise ValueError(f'missing keys: {missing_keys}' )
model.load_state_dict(A_, strict=A_ )
A__ : Optional[int] = model.num_parameters(exclude_embeddings=A_ )
A__ : int = checkpoint['''best_val_loss'''].item()
logger.info(f'model loaded: {round(n_params/1e6, 1 )}M params, {round(A_, 3 )} loss' )
model.eval()
model.to(A_ )
del checkpoint, state_dict
return model
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str]=False, UpperCAmelCase__ : List[Any]="text" ) ->Any:
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
A__ : Optional[Any] = '''cpu''' # do conversion on cpu
A__ : Tuple = _get_ckpt_path(A_, use_small=A_ )
A__ : Dict = _load_model(A_, A_, model_type=A_, use_small=A_ )
# load bark initial model
A__ : int = _bark_load_model(A_, """cpu""", model_type=A_, use_small=A_ )
if model_type == "text":
A__ : Optional[Any] = bark_model['''model''']
if model.num_parameters(exclude_embeddings=A_ ) != bark_model.get_num_params():
raise ValueError("""initial and new models don\'t have the same number of parameters""" )
# check if same output as the bark model
A__ : Optional[int] = 5
A__ : Any = 1_0
if model_type in ["text", "coarse"]:
A__ : Optional[int] = torch.randint(2_5_6, (batch_size, sequence_length), dtype=torch.int )
A__ : Optional[Any] = bark_model(A_ )[0]
A__ : List[Any] = model(A_ )
# take last logits
A__ : List[str] = output_new_model_total.logits[:, [-1], :]
else:
A__ : Optional[Any] = 3
A__ : List[Any] = 8
A__ : Union[str, Any] = torch.randint(2_5_6, (batch_size, sequence_length, n_codes_total), dtype=torch.int )
A__ : Union[str, Any] = model(A_, A_ )
A__ : List[str] = bark_model(A_, A_ )
A__ : int = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("""initial and new outputs don\'t have the same shape""" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("""initial and new outputs are not equal""" )
Path(A_ ).mkdir(exist_ok=A_ )
model.save_pretrained(A_ )
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int, ) ->Tuple:
A__ : Optional[Any] = os.path.join(A_, A_ )
A__ : Optional[Any] = BarkSemanticConfig.from_pretrained(os.path.join(A_, """config.json""" ) )
A__ : int = BarkCoarseConfig.from_pretrained(os.path.join(A_, """config.json""" ) )
A__ : Union[str, Any] = BarkFineConfig.from_pretrained(os.path.join(A_, """config.json""" ) )
A__ : Optional[Any] = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" )
A__ : Optional[int] = BarkSemanticModel.from_pretrained(A_ )
A__ : int = BarkCoarseModel.from_pretrained(A_ )
A__ : Dict = BarkFineModel.from_pretrained(A_ )
A__ : Union[str, Any] = EncodecModel.from_pretrained("""facebook/encodec_24khz""" )
A__ : Dict = BarkConfig.from_sub_model_configs(
A_, A_, A_, A_ )
A__ : Tuple = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config, coarseAcoustic.generation_config, fineAcoustic.generation_config )
A__ : Tuple = BarkModel(A_ )
A__ : List[str] = semantic
A__ : Optional[int] = coarseAcoustic
A__ : int = fineAcoustic
A__ : int = codec
A__ : List[Any] = bark_generation_config
Path(A_ ).mkdir(exist_ok=A_ )
bark.save_pretrained(A_, repo_id=A_, push_to_hub=A_ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''')
A_ = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 358
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = nn.Linear(3 , 4 )
A__ : Union[str, Any] = nn.BatchNormad(4 )
A__ : Union[str, Any] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[str] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , model.state_dict() )
A__ : List[str] = os.path.join(snake_case , """index.json""" )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
A__ : List[str] = os.path.join(snake_case , F'{key}.dat' )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on the fact weights are properly loaded
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
A__ : str = torch.randn(2 , 3 , dtype=snake_case )
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} )
A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" )
self.assertTrue(os.path.isfile(snake_case ) )
self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} )
A__ : str = load_offloaded_weight(snake_case , index["""weight"""] )
self.assertTrue(torch.equal(snake_case , snake_case ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = ModelForTest()
A__ : Union[str, Any] = model.state_dict()
A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k}
A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
# Duplicates are removed
A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} )
A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
| 296
| 0
|
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , snake_case : List[Any] , snake_case : Dict=3 , snake_case : Optional[int]=32 , snake_case : List[Any]=3 , snake_case : Optional[int]=10 , snake_case : str=[8, 16, 32, 64] , snake_case : int=[1, 1, 2, 1] , snake_case : str=True , snake_case : List[str]=True , snake_case : Optional[int]="relu" , snake_case : List[Any]=3 , snake_case : List[Any]=None , snake_case : int=["stage2", "stage3", "stage4"] , snake_case : List[Any]=[2, 3, 4] , snake_case : Optional[Any]=1 , ):
'''simple docstring'''
A__ : Optional[Any] = parent
A__ : int = batch_size
A__ : Tuple = image_size
A__ : Any = num_channels
A__ : Dict = embeddings_size
A__ : List[str] = hidden_sizes
A__ : Union[str, Any] = depths
A__ : str = is_training
A__ : Union[str, Any] = use_labels
A__ : Tuple = hidden_act
A__ : Any = num_labels
A__ : Union[str, Any] = scope
A__ : Tuple = len(__A )
A__ : Optional[int] = out_features
A__ : List[Any] = out_indices
A__ : Tuple = num_groups
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ : str = None
if self.use_labels:
A__ : Dict = ids_tensor([self.batch_size] , self.num_labels )
A__ : int = self.get_config()
return config, pixel_values, labels
def _UpperCamelCase ( self : str ):
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : int = BitModel(config=__A )
model.to(__A )
model.eval()
A__ : Union[str, Any] = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : str , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.num_labels
A__ : Optional[Any] = BitForImageClassification(__A )
model.to(__A )
model.eval()
A__ : Optional[int] = model(__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Dict , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : str ):
'''simple docstring'''
A__ : str = BitBackbone(config=__A )
model.to(__A )
model.eval()
A__ : str = model(__A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
A__ : Dict = None
A__ : str = BitBackbone(config=__A )
model.to(__A )
model.eval()
A__ : str = model(__A )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.prepare_config_and_inputs()
A__ , A__ , A__ : Optional[Any] = config_and_inputs
A__ : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
snake_case_ = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = BitModelTester(self )
A__ : Any = ConfigTester(self , config_class=__A , has_text_modality=__A )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _UpperCamelCase ( self : str ):
'''simple docstring'''
return
@unittest.skip(reason="""Bit does not output attentions""" )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
pass
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ , A__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ : Union[str, Any] = model_class(__A )
A__ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ : Optional[Any] = [*signature.parameters.keys()]
A__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __A )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__A )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ : Dict = model_class(config=__A )
for name, module in model.named_modules():
if isinstance(__A , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
def check_hidden_states_output(snake_case : List[str] , snake_case : Dict , snake_case : Any ):
A__ : Union[str, Any] = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
A__ : List[str] = model(**self._prepare_for_class(__A , __A ) )
A__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A__ : int = self.model_tester.num_stages
self.assertEqual(len(__A ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
A__ : List[Any] = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A__ : int = layer_type
A__ : Union[str, Any] = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ : List[str] = True
check_hidden_states_output(__A , __A , __A )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
pass
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BitModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def _lowerCAmelCase ( ) ->str:
A__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__A )
A__ : Any = self.default_image_processor
A__ : int = prepare_img()
A__ : Any = image_processor(images=__A , return_tensors="""pt""" ).to(__A )
# forward pass
with torch.no_grad():
A__ : Any = model(**__A )
# verify the logits
A__ : List[str] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __A )
A__ : Optional[int] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (BitBackbone,) if is_torch_available() else ()
snake_case_ = BitConfig
snake_case_ = False
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : str = BitModelTester(self )
| 359
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : int = parent
A__ : Union[str, Any] = batch_size
A__ : Optional[int] = seq_length
A__ : List[Any] = is_training
A__ : List[str] = use_input_mask
A__ : Optional[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : Union[str, Any] = vocab_size
A__ : List[Any] = hidden_size
A__ : Any = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Optional[int] = intermediate_size
A__ : Any = hidden_act
A__ : Tuple = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[str] = initializer_range
A__ : Any = num_labels
A__ : Any = num_choices
A__ : int = scope
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : int = None
A__ : int = None
A__ : List[str] = None
if self.use_labels:
A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case )
A__ : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : List[str] = BioGptForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ):
'''simple docstring'''
A__ : Union[str, Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
# create attention mask
A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
A__ : Any = self.seq_length // 2
A__ : str = 0
# first forward pass
A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1
A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
A__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , )
# get two different outputs
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""]
# select random slice
A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
A__ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ):
'''simple docstring'''
A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval()
A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
# first forward pass
A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ , A__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[
"""last_hidden_state"""
]
# select random slice
A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM(snake_case )
model.to(snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
A__ : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = BioGptModel(snake_case )
A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : int = BioGptForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : str = config_and_inputs
A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = BioGptModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : str = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = """left"""
# Define PAD Token = EOS Token = 50256
A__ : Optional[int] = tokenizer.eos_token
A__ : Dict = model.config.eos_token_id
# use different length sentences to test batching
A__ : Union[str, Any] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case )
A__ : str = inputs["""input_ids"""].to(snake_case )
A__ : Dict = model.generate(
input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , )
A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Any = model.generate(input_ids=snake_case )
A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings )
A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case )
A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case )
A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case )
A__ : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] = 3
A__ : List[Any] = input_dict["""input_ids"""]
A__ : Dict = input_ids.ne(1 ).to(snake_case )
A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Any = 3
A__ : List[Any] = """multi_label_classification"""
A__ : Dict = input_dict["""input_ids"""]
A__ : Tuple = input_ids.ne(1 ).to(snake_case )
A__ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ : Tuple = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] )
A__ : Dict = model(snake_case )[0]
A__ : Tuple = 4_2384
A__ : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
torch.manual_seed(0 )
A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case )
A__ : Optional[int] = model.generate(
**snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , )
A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case )
A__ : List[str] = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A_ = {
"configuration_groupvit": [
"GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"GroupViTConfig",
"GroupViTOnnxConfig",
"GroupViTTextConfig",
"GroupViTVisionConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GroupViTModel",
"GroupViTPreTrainedModel",
"GroupViTTextModel",
"GroupViTVisionModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFGroupViTModel",
"TFGroupViTPreTrainedModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 360
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model'''}
A_ = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
A_ = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
A_ = 0
A_ = 1
A_ = 2
A_ = 3
A_ = 4
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 'left'
def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
A__ : str = 3
A__ : str = do_lower_case
A__ : Optional[Any] = remove_space
A__ : List[Any] = keep_accents
A__ : Union[str, Any] = vocab_file
A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ):
'''simple docstring'''
A__ : int = self.__dict__.copy()
A__ : int = None
return state
def __setstate__( self : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
A__ : Optional[int] = {}
A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ):
'''simple docstring'''
if self.remove_space:
A__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
A__ : Dict = inputs
A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
A__ : Any = unicodedata.normalize("""NFKD""" , snake_case )
A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] )
if self.do_lower_case:
A__ : Any = outputs.lower()
return outputs
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.preprocess_text(snake_case )
A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case )
A__ : Optional[int] = []
for piece in pieces:
if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
A__ : int = cur_pieces[1:]
else:
A__ : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case )
else:
new_pieces.append(snake_case )
return new_pieces
def _UpperCamelCase ( self : List[str] , snake_case : Tuple ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : Any ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip()
return out_string
def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case )
A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ : Any = []
A__ : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
A__ : str = []
sub_texts.append(snake_case )
else:
current_sub_text.append(snake_case )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
A__ : Dict = """""".join(snake_case )
A__ : int = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ : Tuple = self.clean_up_tokenization(snake_case )
return clean_text
else:
return text
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Tuple = [self.sep_token_id]
A__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is not None:
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1]
return ([0] * len(snake_case )) + [1, 1]
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Any = [self.sep_token_id]
A__ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : List[Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , """wb""" ) as fi:
A__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 296
| 0
|
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = 42
snake_case_ = None
snake_case_ = None
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = Node(1 )
A__ : Optional[int] = Node(2 )
A__ : Tuple = Node(3 )
A__ : Any = Node(4 )
A__ : str = Node(5 )
return tree
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Optional[Any]:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->List[str]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Optional[int]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Union[str, Any]:
return (max(height(root.left ), height(root.right ) ) + 1) if root else 0
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Any:
A__ : Any = []
if root is None:
return output
A__ : str = deque([root] )
while process_queue:
A__ : str = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None, UpperCAmelCase__ : int ) ->Union[str, Any]:
A__ : Any = []
def populate_output(UpperCAmelCase__ : Node | None, UpperCAmelCase__ : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left, level - 1 )
populate_output(root.right, level - 1 )
populate_output(_a, _a )
return output
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None, UpperCAmelCase__ : int ) ->int:
A__ : List[Any] = []
def populate_output(UpperCAmelCase__ : Node | None, UpperCAmelCase__ : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right, level - 1 )
populate_output(root.left, level - 1 )
populate_output(_a, _a )
return output
def _lowerCAmelCase ( UpperCAmelCase__ : Node | None ) ->Any:
if root is None:
return []
A__ : Union[str, Any] = []
A__ : List[Any] = 0
A__ : Dict = height(_a )
for h in range(1, height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(_a, _a ) )
A__ : str = 1
else:
output.append(get_nodes_from_right_to_left(_a, _a ) )
A__ : Union[str, Any] = 0
return output
def _lowerCAmelCase ( ) ->List[str]: # Main function for testing.
A__ : int = make_tree()
print(f'In-order Traversal: {inorder(_a )}' )
print(f'Pre-order Traversal: {preorder(_a )}' )
print(f'Post-order Traversal: {postorder(_a )}', """\n""" )
print(f'Height of Tree: {height(_a )}', """\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(_a ), """\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1, height(_a ) + 1 ):
print(f'Level {level}:', get_nodes_from_left_to_right(_a, level=_a ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(_a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 361
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
| 0
|
"""simple docstring"""
from functools import lru_cache
@lru_cache
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''src/diffusers'''
A_ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any:
return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]:
A__ : Any = object_name.split(""".""" )
A__ : int = 0
# First let's find the module where our object lives.
A__ : str = parts[i]
while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ):
i += 1
if i < len(UpperCAmelCase__ ):
A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] )
if i >= len(UpperCAmelCase__ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
A__ : Optional[Any] = """"""
A__ : Any = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
A__ : List[Any] = line_index
while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : List[Any] = lines[start_index:line_index]
return "".join(UpperCAmelCase__ )
A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
A_ = re.compile(r'''<FILL\s+[^>]*>''')
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]:
A__ : Dict = code.split("""\n""" )
A__ : List[Any] = 0
while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCAmelCase__ ):
return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0
if has_indent:
A__ : Union[str, Any] = f'class Bla:\n{code}'
A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ )
A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ )
A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
A__ : Dict = []
A__ : List[str] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCAmelCase__ ):
A__ : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
A__ , A__ , A__ : Dict = search.groups()
A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ )
A__ : int = get_indent(UpperCAmelCase__ )
A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2
A__ : Tuple = theoretical_indent
A__ : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
A__ : Tuple = True
while line_index < len(UpperCAmelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
break
A__ : Optional[int] = lines[line_index]
A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : Dict = lines[start_index:line_index]
A__ : Tuple = """""".join(UpperCAmelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None]
A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCAmelCase__ ) > 0:
A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" )
A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
A__ , A__ , A__ : Union[str, Any] = pattern.groups()
A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if option.strip() == "all-casing":
A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ )
A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
A__ : Tuple = start_index + 1
if overwrite and len(UpperCAmelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(UpperCAmelCase__ )
return diffs
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any:
A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ )
A__ : str = []
for filename in all_files:
A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(UpperCAmelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 296
| 0
|
"""simple docstring"""
import argparse
import shlex
import runhouse as rh
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access
# setup instructions, if using on-demand hardware
# If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster
# If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster
# Throw an error if user passes both BYO and on-demand cluster args
# Otherwise, use default values
A_ = argparse.ArgumentParser()
parser.add_argument('''--user''', type=str, default='''ubuntu''')
parser.add_argument('''--host''', type=str, default='''localhost''')
parser.add_argument('''--key_path''', type=str, default=None)
parser.add_argument('''--instance''', type=str, default='''V100:1''')
parser.add_argument('''--provider''', type=str, default='''cheapest''')
parser.add_argument('''--use_spot''', type=bool, default=False)
parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''')
A_ = parser.parse_known_args()
if args.host != "localhost":
if args.instance != "V100:1" or args.provider != "cheapest":
raise ValueError('''Cannot specify both BYO and on-demand cluster args''')
A_ = rh.cluster(
name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path}
)
else:
A_ = rh.cluster(
name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot
)
A_ = args.example.rsplit('''/''', 1)[0]
# Set up remote environment
cluster.install_packages(['''pip:./''']) # Installs transformers from local source
# Note transformers is copied into the home directory on the remote machine, so we can install from there
cluster.run([F'pip install -r transformers/examples/{example_dir}/requirements.txt'])
cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117'''])
# Run example. You can bypass the CLI wrapper and paste your own code here.
cluster.run([F'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}'])
# Alternatively, we can just import and run a training function (especially if there's no wrapper CLI):
# from my_script... import train
# reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard']
# launch_train_gpu = rh.function(fn=train,
# system=gpu,
# reqs=reqs,
# name='train_bert_glue')
#
# We can pass in arguments just like we would to a function:
# launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16
# stream_logs=True)
| 363
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : list[int] ) ->int:
if not numbers:
return 0
if not isinstance(UpperCAmelCase__, (list, tuple) ) or not all(
isinstance(UpperCAmelCase__, UpperCAmelCase__ ) for number in numbers ):
raise ValueError("""numbers must be an iterable of integers""" )
A__ : List[Any] = numbers[0]
for i in range(1, len(UpperCAmelCase__ ) ):
# update the maximum and minimum subarray products
A__ : Union[str, Any] = numbers[i]
if number < 0:
A__ , A__ : int = min_till_now, max_till_now
A__ : int = max(UpperCAmelCase__, max_till_now * number )
A__ : str = min(UpperCAmelCase__, min_till_now * number )
# update the maximum product found till now
A__ : Any = max(UpperCAmelCase__, UpperCAmelCase__ )
return max_prod
| 364
|
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
A_ = object()
# For specifying empty leaf dict `{}`
A_ = object()
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict:
A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ):
A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )]
if matches and all(UpperCAmelCase__ ):
return True
return False
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict:
def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ):
for rule, replacement in rules:
if _match(UpperCAmelCase__, UpperCAmelCase__ ):
return replacement
return val
return replace
def _lowerCAmelCase ( ) ->Tuple:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )),
(("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any:
A__ : Union[str, Any] = _get_partition_rules()
A__ : int = _replacement_rules(UpperCAmelCase__ )
A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )}
A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCAmelCase__ ) )
| 296
| 0
|
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : str , snake_case : Union[str, Any]=13 , snake_case : List[Any]=7 , snake_case : List[str]=True , snake_case : int=True , snake_case : Optional[int]=True , snake_case : List[Any]=True , snake_case : Optional[int]=99 , snake_case : Any=24 , snake_case : Optional[Any]=2 , snake_case : Optional[Any]=6 , snake_case : Optional[int]=37 , snake_case : int="gelu" , snake_case : int=0.1 , snake_case : List[str]=0.1 , snake_case : Any=512 , snake_case : Optional[int]=16 , snake_case : int=2 , snake_case : List[Any]=0.02 , snake_case : Optional[Any]=3 , snake_case : Union[str, Any]=None , snake_case : Optional[Any]=1000 , ):
'''simple docstring'''
A__ : Tuple = parent
A__ : str = batch_size
A__ : List[Any] = seq_length
A__ : Optional[Any] = is_training
A__ : List[str] = use_input_mask
A__ : List[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : int = vocab_size
A__ : Union[str, Any] = hidden_size
A__ : int = num_hidden_layers
A__ : Optional[int] = num_attention_heads
A__ : Tuple = intermediate_size
A__ : Tuple = hidden_act
A__ : str = hidden_dropout_prob
A__ : Optional[int] = attention_probs_dropout_prob
A__ : Dict = max_position_embeddings
A__ : int = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Union[str, Any] = initializer_range
A__ : Dict = num_labels
A__ : int = scope
A__ : int = range_bbox
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
A__ : Optional[int] = bbox[i, j, 3]
A__ : str = bbox[i, j, 1]
A__ : Dict = t
if bbox[i, j, 2] < bbox[i, j, 0]:
A__ : Dict = bbox[i, j, 2]
A__ : int = bbox[i, j, 0]
A__ : int = t
A__ : List[str] = None
if self.use_input_mask:
A__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
A__ : List[Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : str , snake_case : List[str] , snake_case : Any , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : int , ):
'''simple docstring'''
A__ : Optional[int] = LiltModel(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )
A__ : Optional[int] = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )
A__ : Tuple = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCamelCase ( self : Any , snake_case : Optional[Any] , snake_case : Any , snake_case : Dict , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , snake_case : int , ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : Dict = LiltForTokenClassification(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : List[str] = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Any , snake_case : List[Any] , snake_case : str , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[Any] , snake_case : str , ):
'''simple docstring'''
A__ : str = LiltForQuestionAnswering(config=lowerCAmelCase_ )
model.to(lowerCAmelCase_ )
model.eval()
A__ : Any = model(
lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : int = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = config_and_inputs
A__ : Union[str, Any] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
snake_case_ = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case_ = (
{
'''feature-extraction''': LiltModel,
'''question-answering''': LiltForQuestionAnswering,
'''text-classification''': LiltForSequenceClassification,
'''token-classification''': LiltForTokenClassification,
'''zero-shot''': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : List[Any] , snake_case : Tuple , snake_case : str , snake_case : Tuple , snake_case : Optional[int] , snake_case : List[str] ):
'''simple docstring'''
return True
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = LiltModelTester(self )
A__ : int = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[Any] = type
self.model_tester.create_and_check_model(*lowerCAmelCase_ )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : List[Any] = LiltModel.from_pretrained(lowerCAmelCase_ )
self.assertIsNotNone(lowerCAmelCase_ )
@require_torch
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCAmelCase_ )
A__ : List[Any] = torch.tensor([[1, 2]] , device=lowerCAmelCase_ )
A__ : Union[str, Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCAmelCase_ )
# forward pass
with torch.no_grad():
A__ : Tuple = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ )
A__ : Optional[int] = torch.Size([1, 2, 768] )
A__ : Union[str, Any] = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=lowerCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , lowerCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCAmelCase_ , atol=1e-3 ) )
| 365
|
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : Optional[Any] = batch_size
A__ : Dict = seq_length
A__ : str = is_training
A__ : Tuple = use_input_mask
A__ : Dict = use_token_type_ids
A__ : Dict = use_labels
A__ : int = vocab_size
A__ : List[str] = hidden_size
A__ : Union[str, Any] = num_hidden_layers
A__ : int = num_attention_heads
A__ : List[str] = intermediate_size
A__ : int = hidden_act
A__ : str = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : int = num_labels
A__ : Optional[int] = num_choices
A__ : Optional[int] = scope
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Any = None
if self.use_input_mask:
A__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] = None
if self.use_token_type_ids:
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : List[str] = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.get_config()
A__ : List[str] = 300
return config
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = self.prepare_config_and_inputs()
A__ : List[str] = True
A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : List[str] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
A__ : List[str] = model(snake_case , token_type_ids=snake_case )
A__ : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ):
'''simple docstring'''
A__ : Dict = True
A__ : Optional[Any] = MraModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Dict = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Optional[Any] = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Union[str, Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : str = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Dict = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = ()
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = MraModelTester(self )
A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[str] = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : str = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="""MRA does not output attentions""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Any = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : List[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , snake_case )
A__ : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Dict = 5_0265
A__ : List[str] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : List[Any] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Union[str, Any] = 5_0265
A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : Optional[int] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 296
| 0
|
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE :
snake_case_ = 42
snake_case_ = None
@staticmethod
def _UpperCamelCase ( ):
'''simple docstring'''
raise NotImplementedError
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Tuple , **snake_case : str ):
'''simple docstring'''
raise NotImplementedError
def _UpperCamelCase ( self : List[Any] , snake_case : List[Any] ):
'''simple docstring'''
raise NotImplementedError
def _UpperCamelCase ( self : int ):
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' )
@classmethod
def _UpperCamelCase ( cls : Optional[int] ):
'''simple docstring'''
return F'`pip install {cls.pip_package or cls.name}`'
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = 'optuna'
@staticmethod
def _UpperCamelCase ( ):
'''simple docstring'''
return is_optuna_available()
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Any , snake_case : Any , **snake_case : Union[str, Any] ):
'''simple docstring'''
return run_hp_search_optuna(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
return default_hp_space_optuna(SCREAMING_SNAKE_CASE_ )
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = 'ray'
snake_case_ = '\'ray[tune]\''
@staticmethod
def _UpperCamelCase ( ):
'''simple docstring'''
return is_ray_available()
def _UpperCamelCase ( self : Union[str, Any] , snake_case : int , snake_case : List[Any] , snake_case : Optional[int] , **snake_case : Optional[Any] ):
'''simple docstring'''
return run_hp_search_ray(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : List[Any] , snake_case : int ):
'''simple docstring'''
return default_hp_space_ray(SCREAMING_SNAKE_CASE_ )
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = 'sigopt'
@staticmethod
def _UpperCamelCase ( ):
'''simple docstring'''
return is_sigopt_available()
def _UpperCamelCase ( self : Union[str, Any] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Dict , **snake_case : Optional[Any] ):
'''simple docstring'''
return run_hp_search_sigopt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : str , snake_case : Dict ):
'''simple docstring'''
return default_hp_space_sigopt(SCREAMING_SNAKE_CASE_ )
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = 'wandb'
@staticmethod
def _UpperCamelCase ( ):
'''simple docstring'''
return is_wandb_available()
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Tuple , **snake_case : List[str] ):
'''simple docstring'''
return run_hp_search_wandb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : int , snake_case : Union[str, Any] ):
'''simple docstring'''
return default_hp_space_wandb(SCREAMING_SNAKE_CASE_ )
A_ = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def _lowerCAmelCase ( ) ->List[str]:
A__ : Tuple = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowerCAmelCase__ ) > 0:
A__ : List[str] = available_backends[0].name
if len(lowerCAmelCase__ ) > 1:
logger.info(
f'{len(lowerCAmelCase__ )} hyperparameter search backends available. Using {name} as the default.' )
return name
raise RuntimeError(
"""No hyperparameter search backend available.\n"""
+ """\n""".join(
f' - To install {backend.name} run {backend.pip_install()}'
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 366
|
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
A_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
A_ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
A_ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ):
'''simple docstring'''
A__ : Optional[int] = mean_squared_error(
snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case )
return {"mse": mse}
| 296
| 0
|
"""simple docstring"""
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
snake_case_ = CTRLTokenizer
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A__ : List[str] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>''']
A__ : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) )
A__ : str = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', '''''']
A__ : Optional[Any] = {'''unk_token''': '''<unk>'''}
A__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(UpperCamelCase__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(UpperCamelCase__ ) )
def _UpperCamelCase ( self : Dict , **snake_case : Optional[int] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ )
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = '''adapt react readapt apt'''
A__ : str = '''adapt react readapt apt'''
return input_text, output_text
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
A__ : Tuple = '''adapt react readapt apt'''
A__ : Tuple = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split()
A__ : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
A__ : Any = tokens + [tokenizer.unk_token]
A__ : Tuple = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
| 367
|
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ):
'''simple docstring'''
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" , snake_case , )
super().__init__(args=snake_case , **snake_case )
| 296
| 0
|
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
A_ = TypeVar('''T''')
class __SCREAMING_SNAKE_CASE ( Generic[T] ):
def __init__( self : List[Any] , snake_case : str , snake_case : str ):
'''simple docstring'''
A__ : Any | T = None
A__ : int = len(snake_case )
A__ : list[T] = [any_type for _ in range(self.N )] + arr
A__ : Optional[int] = fnc
self.build()
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for p in range(self.N - 1 , 0 , -1 ):
A__ : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Optional[Any] ):
'''simple docstring'''
p += self.N
A__ : str = v
while p > 1:
A__ : List[Any] = p // 2
A__ : str = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _UpperCamelCase ( self : Optional[int] , snake_case : str , snake_case : Optional[Any] ): # noqa: E741
'''simple docstring'''
A__ : List[Any] = l + self.N, r + self.N
A__ : T | None = None
while l <= r:
if l % 2 == 1:
A__ : Optional[Any] = self.st[l] if res is None else self.fn(snake_case , self.st[l] )
if r % 2 == 0:
A__ : Tuple = self.st[r] if res is None else self.fn(snake_case , self.st[r] )
A__ : List[Any] = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
A_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
A_ = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
A_ = SegmentTree(test_array, min)
A_ = SegmentTree(test_array, max)
A_ = SegmentTree(test_array, lambda a, b: a + b)
def _lowerCAmelCase ( ) ->None:
for i in range(len(lowerCamelCase_ ) ):
for j in range(lowerCamelCase_, len(lowerCamelCase_ ) ):
A__ : Dict = reduce(lowerCamelCase_, test_array[i : j + 1] )
A__ : int = reduce(lowerCamelCase_, test_array[i : j + 1] )
A__ : Optional[int] = reduce(lambda UpperCAmelCase__, UpperCAmelCase__ : a + b, test_array[i : j + 1] )
assert min_range == min_segment_tree.query(lowerCamelCase_, lowerCamelCase_ )
assert max_range == max_segment_tree.query(lowerCamelCase_, lowerCamelCase_ )
assert sum_range == sum_segment_tree.query(lowerCamelCase_, lowerCamelCase_ )
test_all_segments()
for index, value in test_updates.items():
A_ = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 368
|
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
A_ = random.Random()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]:
if rng is None:
A__ : Optional[int] = global_rng
A__ : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ):
'''simple docstring'''
A__ : Any = parent
A__ : str = batch_size
A__ : List[str] = min_seq_length
A__ : Dict = max_seq_length
A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A__ : Dict = padding_value
A__ : Optional[Any] = sampling_rate
A__ : Any = return_attention_mask
A__ : Optional[int] = do_normalize
A__ : Tuple = feature_size
A__ : Optional[Any] = chunk_length
A__ : Union[str, Any] = hop_length
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ):
'''simple docstring'''
def _flatten(snake_case : Dict ):
return list(itertools.chain(*snake_case ) )
if equal_length:
A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A__ : Optional[int] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = WhisperFeatureExtractor if is_speech_available() else None
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : str = WhisperFeatureExtractionTester(self )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0]
check_json_file_has_correct_format(snake_case )
A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case )
A__ : str = feat_extract_first.to_dict()
A__ : Union[str, Any] = feat_extract_second.to_dict()
A__ : List[Any] = feat_extract_first.mel_filters
A__ : Optional[Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : Any = os.path.join(snake_case , """feat_extract.json""" )
feat_extract_first.to_json_file(snake_case )
A__ : int = self.feature_extraction_class.from_json_file(snake_case )
A__ : Dict = feat_extract_first.to_dict()
A__ : str = feat_extract_second.to_dict()
A__ : str = feat_extract_first.mel_filters
A__ : Dict = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
# Test feature size
A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test batched
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A__ : str = np.asarray(snake_case )
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test truncation required
A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs]
A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated]
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
import torch
A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa )
A__ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
A__ : Optional[Any] = self._load_datasamples(1 )
A__ : Union[str, Any] = WhisperFeatureExtractor()
A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : Union[str, Any] = self._load_datasamples(1 )[0]
A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0]
self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
| 296
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
A_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE ( __a ):
snake_case_ = ['pixel_values']
def __init__( self : List[str] , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = True , **snake_case : List[Any] , ):
'''simple docstring'''
super().__init__(**UpperCamelCase__ )
A__ : Optional[Any] = size if size is not None else {"""shortest_edge""": 224}
A__ : str = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
A__ : Optional[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
A__ : Tuple = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ , param_name="""crop_size""" )
A__ : Dict = do_resize
A__ : List[str] = size
A__ : Optional[Any] = resample
A__ : Optional[int] = do_center_crop
A__ : str = crop_size
A__ : Tuple = do_rescale
A__ : List[str] = rescale_factor
A__ : Tuple = do_normalize
A__ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A__ : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD
A__ : int = do_convert_rgb
def _UpperCamelCase ( self : List[str] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : int = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A__ : Tuple = get_resize_output_image_size(UpperCamelCase__ , size=size["""shortest_edge"""] , default_to_square=UpperCamelCase__ )
return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def _UpperCamelCase ( self : Optional[Any] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Tuple , ):
'''simple docstring'''
A__ : List[str] = get_size_dict(UpperCamelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(UpperCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def _UpperCamelCase ( self : Optional[int] , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Any , ):
'''simple docstring'''
return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def _UpperCamelCase ( self : Any , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Optional[int] , ):
'''simple docstring'''
return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ )
def _UpperCamelCase ( self : List[str] , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case : Tuple , ):
'''simple docstring'''
A__ : List[Any] = do_resize if do_resize is not None else self.do_resize
A__ : Optional[int] = size if size is not None else self.size
A__ : List[Any] = get_size_dict(UpperCamelCase__ , param_name="""size""" , default_to_square=UpperCamelCase__ )
A__ : Union[str, Any] = resample if resample is not None else self.resample
A__ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ : List[Any] = crop_size if crop_size is not None else self.crop_size
A__ : List[str] = get_size_dict(UpperCamelCase__ , param_name="""crop_size""" , default_to_square=UpperCamelCase__ )
A__ : Any = do_rescale if do_rescale is not None else self.do_rescale
A__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ : Any = do_normalize if do_normalize is not None else self.do_normalize
A__ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean
A__ : Optional[Any] = image_std if image_std is not None else self.image_std
A__ : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A__ : str = make_list_of_images(UpperCamelCase__ )
if not valid_images(UpperCamelCase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A__ : str = [convert_to_rgb(UpperCamelCase__ ) for image in images]
# All transformations expect numpy arrays.
A__ : Optional[Any] = [to_numpy_array(UpperCamelCase__ ) for image in images]
if do_resize:
A__ : Union[str, Any] = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images]
if do_center_crop:
A__ : Optional[Any] = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images]
if do_rescale:
A__ : List[str] = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images]
if do_normalize:
A__ : str = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images]
A__ : List[Any] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images]
A__ : int = {"""pixel_values""": images}
return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
| 369
|
"""simple docstring"""
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = (0, 0)
A__ : Dict = None
A__ : int = 0
A__ : str = 0
A__ : Optional[Any] = 0
def __eq__( self : str , snake_case : Optional[int] ):
'''simple docstring'''
return self.position == cell.position
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
print(self.position )
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : Any=(5, 5) ):
'''simple docstring'''
A__ : Optional[int] = np.zeros(snake_case )
A__ : List[Any] = world_size[0]
A__ : Dict = world_size[1]
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
print(self.w )
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
A__ : int = cell.position[0]
A__ : str = cell.position[1]
A__ : Any = []
for n in neughbour_cord:
A__ : List[Any] = current_x + n[0]
A__ : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
A__ : List[Any] = Cell()
A__ : str = (x, y)
A__ : Optional[Any] = cell
neighbours.append(snake_case )
return neighbours
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict:
A__ : Union[str, Any] = []
A__ : Optional[int] = []
_open.append(UpperCAmelCase__ )
while _open:
A__ : List[Any] = np.argmin([n.f for n in _open] )
A__ : Union[str, Any] = _open[min_f]
_closed.append(_open.pop(UpperCAmelCase__ ) )
if current == goal:
break
for n in world.get_neigbours(UpperCAmelCase__ ):
for c in _closed:
if c == n:
continue
A__ : Dict = current.g + 1
A__ , A__ : int = n.position
A__ , A__ : Optional[int] = goal.position
A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
A__ : Optional[int] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(UpperCAmelCase__ )
A__ : List[str] = []
while current.parent is not None:
path.append(current.position )
A__ : Union[str, Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
A_ = Gridworld()
# Start position and goal
A_ = Cell()
A_ = (0, 0)
A_ = Cell()
A_ = (4, 4)
print(F'path from {start.position} to {goal.position}')
A_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
A_ = 1
print(world.w)
| 296
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
A_ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ):
snake_case_ = ["pixel_values"]
def __init__( self : Tuple , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : bool = True , snake_case : Dict[str, int] = None , snake_case : bool = True , snake_case : Union[int, float] = 1 / 255 , snake_case : bool = True , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = True , **snake_case : int , ):
'''simple docstring'''
super().__init__(**_lowercase )
A__ : List[str] = size if size is not None else {"""shortest_edge""": 224}
A__ : int = get_size_dict(_lowercase , default_to_square=_lowercase )
A__ : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
A__ : Dict = get_size_dict(_lowercase , default_to_square=_lowercase , param_name="""crop_size""" )
A__ : Any = do_resize
A__ : str = size
A__ : List[str] = resample
A__ : int = do_center_crop
A__ : int = crop_size
A__ : Any = do_rescale
A__ : Union[str, Any] = rescale_factor
A__ : Any = do_normalize
A__ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A__ : Dict = image_std if image_std is not None else OPENAI_CLIP_STD
A__ : Tuple = do_convert_rgb
def _UpperCamelCase ( self : Union[str, Any] , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : PILImageResampling = PILImageResampling.BICUBIC , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : Dict = get_size_dict(_lowercase , default_to_square=_lowercase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A__ : str = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase )
return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase )
def _UpperCamelCase ( self : Any , snake_case : np.ndarray , snake_case : Dict[str, int] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : str , ):
'''simple docstring'''
A__ : Any = get_size_dict(_lowercase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase )
def _UpperCamelCase ( self : Optional[Any] , snake_case : np.ndarray , snake_case : Union[int, float] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Dict , ):
'''simple docstring'''
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def _UpperCamelCase ( self : Any , snake_case : np.ndarray , snake_case : Union[float, List[float]] , snake_case : Union[float, List[float]] , snake_case : Optional[Union[str, ChannelDimension]] = None , **snake_case : Union[str, Any] , ):
'''simple docstring'''
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def _UpperCamelCase ( self : Dict , snake_case : ImageInput , snake_case : bool = None , snake_case : Dict[str, int] = None , snake_case : PILImageResampling = None , snake_case : bool = None , snake_case : int = None , snake_case : bool = None , snake_case : float = None , snake_case : bool = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : Optional[Union[float, List[float]]] = None , snake_case : bool = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case : Any , ):
'''simple docstring'''
A__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
A__ : str = size if size is not None else self.size
A__ : str = get_size_dict(_lowercase , param_name="""size""" , default_to_square=_lowercase )
A__ : List[Any] = resample if resample is not None else self.resample
A__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
A__ : Optional[int] = crop_size if crop_size is not None else self.crop_size
A__ : List[str] = get_size_dict(_lowercase , param_name="""crop_size""" , default_to_square=_lowercase )
A__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
A__ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
A__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
A__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
A__ : Optional[Any] = image_std if image_std is not None else self.image_std
A__ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A__ : Tuple = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A__ : Optional[int] = [convert_to_rgb(_lowercase ) for image in images]
# All transformations expect numpy arrays.
A__ : List[str] = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
A__ : Tuple = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
A__ : Union[str, Any] = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
A__ : int = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
A__ : List[Any] = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
A__ : Tuple = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
A__ : Optional[int] = {"""pixel_values""": images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 370
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str:
A__ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any = """"""
else:
A__ : Tuple = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
A__ : str = in_proj_bias[: config.hidden_size]
A__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
A__ : Any = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any:
A__ : int = dct.pop(UpperCAmelCase__ )
A__ : Tuple = val
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple:
A__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
A__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
A__ : str = 1_0_0_0
A__ : List[str] = """huggingface/label-files"""
A__ : Dict = """imagenet-1k-id2label.json"""
A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) )
A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Optional[int] = idalabel
A__ : Dict = {v: k for k, v in idalabel.items()}
A__ : List[str] = int(deit_name[-6:-4] )
A__ : str = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
A__ : List[str] = 1_9_2
A__ : int = 7_6_8
A__ : List[Any] = 1_2
A__ : Dict = 3
elif deit_name[9:].startswith("""small""" ):
A__ : List[Any] = 3_8_4
A__ : List[str] = 1_5_3_6
A__ : Any = 1_2
A__ : Union[str, Any] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
A__ : int = 1_0_2_4
A__ : str = 4_0_9_6
A__ : Any = 2_4
A__ : int = 1_6
# load original model from timm
A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : Tuple = timm_model.state_dict()
A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval()
model.load_state_dict(UpperCAmelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
A__ : int = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size )
A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Optional[Any] = encoding["""pixel_values"""]
A__ : Union[str, Any] = model(UpperCAmelCase__ )
A__ : Union[str, Any] = timm_model(UpperCAmelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 296
| 0
|
"""simple docstring"""
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
if hor == 1_2_8:
A__ : Tuple = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
A__ : Tuple = (3_2, 1_2_8, 2_5_6)
A__ : Any = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 3_2:
A__ : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
A__ : Dict = (3_2, 6_4, 1_2_8, 2_5_6)
A__ : Optional[int] = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
A__ : Tuple = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' )
A__ : Dict = model.state_dict()
A__ : Union[str, Any] = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 1_4,
"""out_channels""": 1_4,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_5_5_3_6,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
A__ : Any = UNetaDModel(**a__ )
print(f'length of state dict: {len(state_dict.keys() )}' )
print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' )
A__ : Tuple = dict(zip(model.state_dict().keys(), hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
A__ : Optional[Any] = state_dict.pop(a__ )
hf_value_function.load_state_dict(a__ )
torch.save(hf_value_function.state_dict(), f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' )
with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json', """w""" ) as f:
json.dump(a__, a__ )
def _lowerCAmelCase ( ) ->Tuple:
A__ : List[str] = {
"""in_channels""": 1_4,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (3_2, 6_4, 1_2_8, 2_5_6),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_5_5_3_6,
"""out_channels""": 1_4,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
A__ : List[Any] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
A__ : Optional[int] = model
A__ : Optional[int] = UNetaDModel(**a__ )
print(f'length of state dict: {len(state_dict.keys() )}' )
print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' )
A__ : Union[str, Any] = dict(zip(state_dict.keys(), hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
A__ : Dict = state_dict.pop(a__ )
hf_value_function.load_state_dict(a__ )
torch.save(hf_value_function.state_dict(), """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""", """w""" ) as f:
json.dump(a__, a__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 371
|
"""simple docstring"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
A__ : Optional[int] = (low + high) // 2
A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]:
A__ , A__ : Dict = float("""-inf""" ), -1
A__ , A__ : Optional[Any] = float("""-inf""" ), -1
A__ : int | float = 0
for i in range(UpperCAmelCase__, low - 1, -1 ):
summ += arr[i]
if summ > left_sum:
A__ : Optional[int] = summ
A__ : Union[str, Any] = i
A__ : Optional[Any] = 0
for i in range(mid + 1, high + 1 ):
summ += arr[i]
if summ > right_sum:
A__ : int = summ
A__ : Union[str, Any] = i
return max_left, max_right, (left_sum + right_sum)
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float:
A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
A__ : Any = time.time()
max_subarray(UpperCAmelCase__, 0, input_size - 1 )
A__ : List[Any] = time.time()
return end - start
def _lowerCAmelCase ( ) ->None:
A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0]
A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ):
print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ )
plt.plot(UpperCAmelCase__, UpperCAmelCase__ )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 296
| 0
|
"""simple docstring"""
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
class __SCREAMING_SNAKE_CASE ( unittest.TestCase , snake_case_ ):
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : str = load_tool("""text-classification""" )
self.tool.setup()
A__ : Dict = load_tool("""text-classification""" , remote=_A )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.tool("""That\'s quite cool""" , ["""positive""", """negative"""] )
self.assertEqual(_A , """positive""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Union[str, Any] = self.remote_tool("""That\'s quite cool""" , ["""positive""", """negative"""] )
self.assertEqual(_A , """positive""" )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Dict = self.tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] )
self.assertEqual(_A , """positive""" )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Optional[int] = self.remote_tool(text="""That\'s quite cool""" , labels=["""positive""", """negative"""] )
self.assertEqual(_A , """positive""" )
| 350
|
"""simple docstring"""
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , snake_case : int ):
'''simple docstring'''
A__ : List[Any] = order
# a_{0} ... a_{k}
A__ : List[Any] = [1.0] + [0.0] * order
# b_{0} ... b_{k}
A__ : str = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
A__ : Union[str, Any] = [0.0] * self.order
# y[n-1] ... y[n-k]
A__ : List[str] = [0.0] * self.order
def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ):
'''simple docstring'''
if len(snake_case ) < self.order:
A__ : Any = [1.0, *a_coeffs]
if len(snake_case ) != self.order + 1:
A__ : str = (
F'Expected a_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
if len(snake_case ) != self.order + 1:
A__ : Union[str, Any] = (
F'Expected b_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
A__ : Dict = a_coeffs
A__ : Any = b_coeffs
def _UpperCamelCase ( self : List[str] , snake_case : float ):
'''simple docstring'''
A__ : str = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
A__ : Tuple = self.input_history[:-1]
A__ : int = self.output_history[:-1]
A__ : Dict = sample
A__ : Tuple = result
return result
| 296
| 0
|
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
A_ = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : List[Any] , snake_case : Path , snake_case : Union[str, None] = None , snake_case : Union[List[str], None] = None , snake_case : Union[str, List[str], None] = None , snake_case : bool = True , ):
'''simple docstring'''
A__ : Optional[int] = [file for file in os.listdir(snake_case ) if os.path.isfile(os.path.join(snake_case , snake_case ) )]
if identifier is not None:
A__ : Union[str, Any] = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(snake_case , snake_case ):
for n_ in n_identifier:
A__ : List[str] = [file for file in files if n_ not in file]
else:
A__ : List[Any] = [file for file in files if n_identifier not in file]
A__ : Optional[Any] = ignore_files or []
ignore_files.append("""__init__.py""" )
A__ : Dict = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("""Testing""" , snake_case )
if only_modules:
A__ : Union[str, Any] = file.split(""".""" )[0]
try:
A__ : Any = getattr(snake_case , snake_case )
A__ : int = doctest.DocTestSuite(snake_case )
A__ : Dict = unittest.TextTestRunner().run(snake_case )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
A__ : Union[str, Any] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = Path("""src/transformers""" )
A__ : List[str] = """modeling"""
A__ : Dict = [
"""modeling_ctrl.py""",
"""modeling_tf_ctrl.py""",
]
self.analyze_directory(snake_case , identifier=snake_case , ignore_files=snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = Path("""src/transformers""" )
A__ : List[Any] = """tokenization"""
self.analyze_directory(snake_case , identifier=snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Optional[Any] = Path("""src/transformers""" )
A__ : List[Any] = """configuration"""
self.analyze_directory(snake_case , identifier=snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = Path("""src/transformers""" )
A__ : str = ["""configuration""", """modeling""", """tokenization"""]
self.analyze_directory(snake_case , n_identifier=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = Path("""docs/source""" )
A__ : Optional[Any] = ["""favicon.ico"""]
self.analyze_directory(snake_case , ignore_files=snake_case , only_modules=snake_case )
| 351
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ):
'''simple docstring'''
A__ : Tuple = parent
A__ : Union[str, Any] = batch_size
A__ : List[str] = seq_length
A__ : Optional[int] = is_training
A__ : Dict = use_input_mask
A__ : Any = use_token_type_ids
A__ : Optional[Any] = use_labels
A__ : List[str] = vocab_size
A__ : Optional[int] = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : Any = num_attention_heads
A__ : List[Any] = intermediate_size
A__ : Optional[Any] = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : str = max_position_embeddings
A__ : List[str] = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[Any] = initializer_range
A__ : Optional[int] = num_labels
A__ : Dict = num_choices
A__ : Dict = scope
A__ : List[Any] = vocab_size - 1
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : List[Any] = None
if self.use_input_mask:
A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_labels:
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Tuple = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs()
A__ : Union[str, Any] = True
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ):
'''simple docstring'''
A__ : Any = GPTNeoXModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case )
A__ : Optional[int] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = True
A__ : str = GPTNeoXModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ):
'''simple docstring'''
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ):
'''simple docstring'''
A__ : int = self.num_labels
A__ : int = GPTNeoXForQuestionAnswering(snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[Any] = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Tuple = GPTNeoXForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = self.num_labels
A__ : Any = GPTNeoXForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Optional[int] = True
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
# first forward pass
A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 )
A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case )
A__ : List[Any] = output_from_no_past["""hidden_states"""][0]
A__ : List[str] = model(
snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0]
# select random slice
A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : str = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ : Dict = config_and_inputs
A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = GPTNeoXModelTester(self )
A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common()
A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size )
A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Union[str, Any] = GPTNeoXModel(snake_case )
original_model.to(snake_case )
original_model.eval()
A__ : Optional[int] = original_model(snake_case ).last_hidden_state
A__ : List[str] = original_model(snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0}
A__ : Optional[int] = GPTNeoXModel(snake_case )
scaled_model.to(snake_case )
scaled_model.eval()
A__ : List[str] = scaled_model(snake_case ).last_hidden_state
A__ : Tuple = scaled_model(snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case )
A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 )
A__ : Tuple = tokenizer.batch_decode(snake_case )[0]
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
A_ = {
'''tokenizer_file''': {
'''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''',
},
}
A_ = {
'''gpt-neox-20b''': 2048,
}
class __SCREAMING_SNAKE_CASE ( __lowercase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ["input_ids", "attention_mask"]
def __init__( self : List[Any] , snake_case : int=None , snake_case : int=None , snake_case : str=None , snake_case : Any="<|endoftext|>" , snake_case : List[Any]="<|endoftext|>" , snake_case : Union[str, Any]="<|endoftext|>" , snake_case : str=False , **snake_case : Any , ):
'''simple docstring'''
super().__init__(
snake_case_ , snake_case_ , tokenizer_file=snake_case_ , unk_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , )
A__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , snake_case_ ) != add_prefix_space:
A__ : Dict = getattr(snake_case_ , pre_tok_state.pop("""type""" ) )
A__ : Optional[int] = add_prefix_space
A__ : int = pre_tok_class(**snake_case_ )
A__ : Optional[int] = add_prefix_space
def _UpperCamelCase ( self : str , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
A__ : List[Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
def _UpperCamelCase ( self : Optional[int] , snake_case : "Conversation" ):
'''simple docstring'''
A__ : int = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(snake_case_ , add_special_tokens=snake_case_ ) + [self.eos_token_id] )
if len(snake_case_ ) > self.model_max_length:
A__ : Dict = input_ids[-self.model_max_length :]
return input_ids
| 352
|
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int:
A__ : defaultdict = defaultdict(UpperCAmelCase__ )
A__ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ):
if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1:
continue
A__ : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'{solution() = }')
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str ) ->str:
def get_matched_characters(UpperCAmelCase__ : str, UpperCAmelCase__ : str ) -> str:
A__ : int = []
A__ : Any = min(len(_stra ), len(_stra ) ) // 2
for i, l in enumerate(_stra ):
A__ : Union[str, Any] = int(max(0, i - limit ) )
A__ : int = int(min(i + limit + 1, len(_stra ) ) )
if l in _stra[left:right]:
matched.append(UpperCAmelCase__ )
A__ : Any = f'{_stra[0:_stra.index(UpperCAmelCase__ )]} {_stra[_stra.index(UpperCAmelCase__ ) + 1:]}'
return "".join(UpperCAmelCase__ )
# matching characters
A__ : Union[str, Any] = get_matched_characters(UpperCAmelCase__, UpperCAmelCase__ )
A__ : int = get_matched_characters(UpperCAmelCase__, UpperCAmelCase__ )
A__ : List[Any] = len(UpperCAmelCase__ )
# transposition
A__ : int = (
len([(ca, ca) for ca, ca in zip(UpperCAmelCase__, UpperCAmelCase__ ) if ca != ca] ) // 2
)
if not match_count:
A__ : List[str] = 0.0
else:
A__ : Dict = (
1
/ 3
* (
match_count / len(UpperCAmelCase__ )
+ match_count / len(UpperCAmelCase__ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
A__ : Tuple = 0
for ca, ca in zip(stra[:4], stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler('''hello''', '''world'''))
| 353
|
"""simple docstring"""
import os
from distutils.util import strtobool
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]:
for e in env_keys:
A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) )
if val >= 0:
return val
return default
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]:
A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int...
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int:
A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return value
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A_ = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 354
|
"""simple docstring"""
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ):
'''simple docstring'''
if k in (0.04, 0.06):
A__ : Optional[int] = k
A__ : int = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : List[Any] ):
'''simple docstring'''
return str(self.k )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : List[str] = cva.imread(snake_case , 0 )
A__ , A__ : Union[str, Any] = img.shape
A__ : list[list[int]] = []
A__ : Optional[Any] = img.copy()
A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB )
A__ , A__ : List[Any] = np.gradient(snake_case )
A__ : List[Any] = dx**2
A__ : Any = dy**2
A__ : Dict = dx * dy
A__ : Any = 0.04
A__ : Optional[Any] = self.window_size // 2
for y in range(snake_case , h - offset ):
for x in range(snake_case , w - offset ):
A__ : List[str] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Tuple = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : int = (wxx * wyy) - (wxy**2)
A__ : Any = wxx + wyy
A__ : List[str] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A_ = HarrisCorner(0.04, 3)
A_ , A_ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 296
| 0
|
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ):
def __init__( self : List[Any] , snake_case : pyspark.sql.DataFrame , snake_case : Optional[NamedSplit] = None , snake_case : Optional[Features] = None , snake_case : bool = True , snake_case : str = None , snake_case : bool = False , snake_case : str = None , snake_case : bool = True , snake_case : str = "arrow" , **snake_case : Dict , ):
'''simple docstring'''
super().__init__(
split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , )
A__ : Dict = load_from_cache_file
A__ : List[str] = file_format
A__ : str = Spark(
df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
A__ : Tuple = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=UpperCamelCase_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 355
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ = logging.get_logger(__name__)
A_ = Dict[str, Any]
A_ = List[Prediction]
@add_end_docstrings(UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : Dict = {}
if "threshold" in kwargs:
A__ : int = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ):
'''simple docstring'''
return super().__call__(*snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = load_image(snake_case )
A__ : int = torch.IntTensor([[image.height, image.width]] )
A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
A__ : List[str] = target_size
return inputs
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : str = model_inputs.pop("""target_size""" )
A__ : Dict = self.model(**snake_case )
A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
A__ : str = model_inputs["""bbox"""]
return model_outputs
def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ):
'''simple docstring'''
A__ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ : Tuple = target_size[0].tolist()
def unnormalize(snake_case : Optional[int] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
A__ : Tuple = ["""score""", """label""", """box"""]
A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case )
A__ : str = raw_annotations[0]
A__ : str = raw_annotation["""scores"""]
A__ : List[Any] = raw_annotation["""labels"""]
A__ : int = raw_annotation["""boxes"""]
A__ : str = scores.tolist()
A__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
A__ : int = [self._get_bounding_box(snake_case ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ : str = ["""score""", """label""", """box"""]
A__ : Dict = [
dict(zip(snake_case , snake_case ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
A__ , A__ , A__ , A__ : Any = box.int().tolist()
A__ : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ = {'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'VAN_PRETRAINED_MODEL_ARCHIVE_LIST',
'VanForImageClassification',
'VanModel',
'VanPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'table-transformer'
snake_case_ = ['past_key_values']
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(snake_case , snake_case ):
A__ : Optional[int] = backbone_config.get("""model_type""" )
A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
A__ : List[str] = config_class.from_dict(snake_case )
# set timm attributes to None
A__ , A__ , A__ : str = None, None, None
A__ : Tuple = use_timm_backbone
A__ : str = backbone_config
A__ : str = num_channels
A__ : List[Any] = num_queries
A__ : Optional[Any] = d_model
A__ : Tuple = encoder_ffn_dim
A__ : Union[str, Any] = encoder_layers
A__ : List[Any] = encoder_attention_heads
A__ : Optional[int] = decoder_ffn_dim
A__ : Any = decoder_layers
A__ : int = decoder_attention_heads
A__ : Any = dropout
A__ : Dict = attention_dropout
A__ : Dict = activation_dropout
A__ : Tuple = activation_function
A__ : List[str] = init_std
A__ : List[str] = init_xavier_std
A__ : Any = encoder_layerdrop
A__ : Optional[Any] = decoder_layerdrop
A__ : Union[str, Any] = encoder_layers
A__ : Dict = auxiliary_loss
A__ : List[Any] = position_embedding_type
A__ : Optional[Any] = backbone
A__ : str = use_pretrained_backbone
A__ : Union[str, Any] = dilation
# Hungarian matcher
A__ : Tuple = class_cost
A__ : Optional[Any] = bbox_cost
A__ : Dict = giou_cost
# Loss coefficients
A__ : Any = mask_loss_coefficient
A__ : str = dice_loss_coefficient
A__ : str = bbox_loss_coefficient
A__ : Union[str, Any] = giou_loss_coefficient
A__ : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return self.d_model
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = version.parse('1.11' )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return 1e-5
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return 12
| 296
| 0
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
"microsoft/unispeech-sat-base-100h-libri-ft": (
"https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json"
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = """unispeech-sat"""
def __init__( self : str , snake_case : Any=32 , snake_case : int=768 , snake_case : str=12 , snake_case : int=12 , snake_case : List[Any]=3072 , snake_case : Optional[Any]="gelu" , snake_case : List[Any]=0.1 , snake_case : List[str]=0.1 , snake_case : List[str]=0.1 , snake_case : List[Any]=0.0 , snake_case : int=0.0 , snake_case : Union[str, Any]=0.1 , snake_case : List[str]=0.1 , snake_case : List[Any]=0.02 , snake_case : Optional[Any]=1e-5 , snake_case : int="group" , snake_case : Any="gelu" , snake_case : Any=(512, 512, 512, 512, 512, 512, 512) , snake_case : str=(5, 2, 2, 2, 2, 2, 2) , snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , snake_case : Optional[int]=False , snake_case : Tuple=128 , snake_case : Optional[int]=16 , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : str=0.05 , snake_case : Optional[Any]=10 , snake_case : Dict=2 , snake_case : str=0.0 , snake_case : Any=10 , snake_case : str=0 , snake_case : Union[str, Any]=320 , snake_case : List[Any]=2 , snake_case : str=0.1 , snake_case : Dict=100 , snake_case : Tuple=256 , snake_case : Any=256 , snake_case : Tuple=0.1 , snake_case : Optional[int]="mean" , snake_case : List[Any]=False , snake_case : Union[str, Any]=False , snake_case : Any=256 , snake_case : List[Any]=(512, 512, 512, 512, 1500) , snake_case : Optional[int]=(5, 3, 3, 1, 1) , snake_case : List[Any]=(1, 2, 3, 1, 1) , snake_case : List[Any]=512 , snake_case : List[str]=0 , snake_case : List[str]=1 , snake_case : List[Any]=2 , snake_case : Optional[Any]=504 , **snake_case : Dict , ):
'''simple docstring'''
super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A )
A__ : Any = hidden_size
A__ : int = feat_extract_norm
A__ : Optional[Any] = feat_extract_activation
A__ : List[str] = list(_A )
A__ : Any = list(_A )
A__ : str = list(_A )
A__ : List[str] = conv_bias
A__ : Union[str, Any] = num_conv_pos_embeddings
A__ : List[str] = num_conv_pos_embedding_groups
A__ : Any = len(self.conv_dim )
A__ : List[str] = num_hidden_layers
A__ : Optional[int] = intermediate_size
A__ : List[Any] = hidden_act
A__ : Dict = num_attention_heads
A__ : Any = hidden_dropout
A__ : Dict = attention_dropout
A__ : List[str] = activation_dropout
A__ : str = feat_proj_dropout
A__ : str = final_dropout
A__ : int = layerdrop
A__ : int = layer_norm_eps
A__ : Any = initializer_range
A__ : str = vocab_size
A__ : Dict = num_clusters
A__ : Optional[int] = do_stable_layer_norm
A__ : List[str] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A__ : Optional[int] = apply_spec_augment
A__ : Dict = mask_time_prob
A__ : Optional[int] = mask_time_length
A__ : str = mask_time_min_masks
A__ : Optional[int] = mask_feature_prob
A__ : Any = mask_feature_length
A__ : Tuple = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
A__ : List[str] = num_codevectors_per_group
A__ : Dict = num_codevector_groups
A__ : Tuple = contrastive_logits_temperature
A__ : Optional[int] = feat_quantizer_dropout
A__ : Any = num_negatives
A__ : List[str] = codevector_dim
A__ : Union[str, Any] = proj_codevector_dim
A__ : List[Any] = diversity_loss_weight
# ctc loss
A__ : List[Any] = ctc_loss_reduction
A__ : Optional[int] = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
A__ : Any = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
A__ : Tuple = list(_A )
A__ : Union[str, Any] = list(_A )
A__ : Dict = list(_A )
A__ : Optional[Any] = xvector_output_dim
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 357
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'Salesforce/blip-image-captioning-base'
snake_case_ = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case_ = 'image_captioner'
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ['image']
snake_case_ = ['text']
def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def _UpperCamelCase ( self : int , snake_case : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def _UpperCamelCase ( self : int , snake_case : List[Any] ):
'''simple docstring'''
return self.model.generate(**snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A_ = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['PoolFormerFeatureExtractor']
A_ = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 358
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = nn.Linear(3 , 4 )
A__ : Union[str, Any] = nn.BatchNormad(4 )
A__ : Union[str, Any] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[str] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , model.state_dict() )
A__ : List[str] = os.path.join(snake_case , """index.json""" )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
A__ : List[str] = os.path.join(snake_case , F'{key}.dat' )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on the fact weights are properly loaded
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
A__ : str = torch.randn(2 , 3 , dtype=snake_case )
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} )
A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" )
self.assertTrue(os.path.isfile(snake_case ) )
self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} )
A__ : str = load_offloaded_weight(snake_case , index["""weight"""] )
self.assertTrue(torch.equal(snake_case , snake_case ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = ModelForTest()
A__ : Union[str, Any] = model.state_dict()
A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k}
A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
# Duplicates are removed
A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} )
A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
| 296
| 0
|
A_ = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 359
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : int = parent
A__ : Union[str, Any] = batch_size
A__ : Optional[int] = seq_length
A__ : List[Any] = is_training
A__ : List[str] = use_input_mask
A__ : Optional[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : Union[str, Any] = vocab_size
A__ : List[Any] = hidden_size
A__ : Any = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Optional[int] = intermediate_size
A__ : Any = hidden_act
A__ : Tuple = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[str] = initializer_range
A__ : Any = num_labels
A__ : Any = num_choices
A__ : int = scope
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : int = None
A__ : int = None
A__ : List[str] = None
if self.use_labels:
A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case )
A__ : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : List[str] = BioGptForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ):
'''simple docstring'''
A__ : Union[str, Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
# create attention mask
A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
A__ : Any = self.seq_length // 2
A__ : str = 0
# first forward pass
A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1
A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
A__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , )
# get two different outputs
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""]
# select random slice
A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
A__ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ):
'''simple docstring'''
A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval()
A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
# first forward pass
A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ , A__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[
"""last_hidden_state"""
]
# select random slice
A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM(snake_case )
model.to(snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
A__ : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = BioGptModel(snake_case )
A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : int = BioGptForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : str = config_and_inputs
A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = BioGptModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : str = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = """left"""
# Define PAD Token = EOS Token = 50256
A__ : Optional[int] = tokenizer.eos_token
A__ : Dict = model.config.eos_token_id
# use different length sentences to test batching
A__ : Union[str, Any] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case )
A__ : str = inputs["""input_ids"""].to(snake_case )
A__ : Dict = model.generate(
input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , )
A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Any = model.generate(input_ids=snake_case )
A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings )
A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case )
A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case )
A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case )
A__ : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] = 3
A__ : List[Any] = input_dict["""input_ids"""]
A__ : Dict = input_ids.ne(1 ).to(snake_case )
A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Any = 3
A__ : List[Any] = """multi_label_classification"""
A__ : Dict = input_dict["""input_ids"""]
A__ : Tuple = input_ids.ne(1 ).to(snake_case )
A__ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ : Tuple = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] )
A__ : Dict = model(snake_case )[0]
A__ : Tuple = 4_2384
A__ : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
torch.manual_seed(0 )
A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case )
A__ : Optional[int] = model.generate(
**snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , )
A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case )
A__ : List[str] = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int ) ->Optional[Any]:
A__ : int = RobertaPreLayerNormConfig.from_pretrained(
UpperCAmelCase__, architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
A__ : Optional[Any] = torch.load(hf_hub_download(repo_id=UpperCAmelCase__, filename="""pytorch_model.bin""" ) )
A__ : int = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
A__ : Optional[int] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
A__ : str = tensor_value
A__ : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=UpperCAmelCase__, config=UpperCAmelCase__, state_dict=UpperCAmelCase__ )
model.save_pretrained(UpperCAmelCase__ )
# convert tokenizer
A__ : List[str] = AutoTokenizer.from_pretrained(UpperCAmelCase__ )
tokenizer.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
A_ = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 360
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model'''}
A_ = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
A_ = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
A_ = 0
A_ = 1
A_ = 2
A_ = 3
A_ = 4
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 'left'
def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
A__ : str = 3
A__ : str = do_lower_case
A__ : Optional[Any] = remove_space
A__ : List[Any] = keep_accents
A__ : Union[str, Any] = vocab_file
A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ):
'''simple docstring'''
A__ : int = self.__dict__.copy()
A__ : int = None
return state
def __setstate__( self : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
A__ : Optional[int] = {}
A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ):
'''simple docstring'''
if self.remove_space:
A__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
A__ : Dict = inputs
A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
A__ : Any = unicodedata.normalize("""NFKD""" , snake_case )
A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] )
if self.do_lower_case:
A__ : Any = outputs.lower()
return outputs
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.preprocess_text(snake_case )
A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case )
A__ : Optional[int] = []
for piece in pieces:
if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
A__ : int = cur_pieces[1:]
else:
A__ : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case )
else:
new_pieces.append(snake_case )
return new_pieces
def _UpperCamelCase ( self : List[str] , snake_case : Tuple ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : Any ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip()
return out_string
def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case )
A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ : Any = []
A__ : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
A__ : str = []
sub_texts.append(snake_case )
else:
current_sub_text.append(snake_case )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
A__ : Dict = """""".join(snake_case )
A__ : int = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ : Tuple = self.clean_up_tokenization(snake_case )
return clean_text
else:
return text
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Tuple = [self.sep_token_id]
A__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is not None:
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1]
return ([0] * len(snake_case )) + [1, 1]
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Any = [self.sep_token_id]
A__ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : List[Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , """wb""" ) as fi:
A__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 296
| 0
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ ):
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = tempfile.mkdtemp()
A__ : Dict = 8
# DPR tok
A__ : List[str] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
A__ : List[str] = os.path.join(self.tmpdirname , """dpr_tokenizer""" )
os.makedirs(__A , exist_ok=__A )
A__ : int = os.path.join(__A , DPR_VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
# BART tok
A__ : Optional[Any] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
A__ : int = dict(zip(__A , range(len(__A ) ) ) )
A__ : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
A__ : Any = {'''unk_token''': '''<unk>'''}
A__ : int = os.path.join(self.tmpdirname , """bart_tokenizer""" )
os.makedirs(__A , exist_ok=__A )
A__ : int = os.path.join(__A , BART_VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : List[str] = os.path.join(__A , BART_VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__A ) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , """dpr_tokenizer""" ) )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , """bart_tokenizer""" ) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Dict = os.path.join(self.tmpdirname , """rag_tokenizer""" )
A__ : Tuple = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
A__ : List[str] = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(__A )
rag_tokenizer.save_pretrained(__A )
A__ : List[Any] = RagTokenizer.from_pretrained(__A , config=__A )
self.assertIsInstance(new_rag_tokenizer.question_encoder , __A )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , __A )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : int = RagTokenizer.from_pretrained("""facebook/rag-token-nq""" )
A__ : Optional[int] = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
A__ : Optional[Any] = tokenizer(__A )
self.assertIsNotNone(__A )
@slow
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = RagTokenizer.from_pretrained("""facebook/rag-sequence-nq""" )
A__ : List[Any] = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
A__ : Optional[int] = tokenizer(__A )
self.assertIsNotNone(__A )
| 361
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''huggingface/informer-tourism-monthly''': (
'''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json'''
),
# See all Informer models at https://huggingface.co/models?filter=informer
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'informer'
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : Optional[int] , snake_case : Any = None , snake_case : Optional[int] = None , snake_case : Union[str, Any] = "student_t" , snake_case : Optional[int] = "nll" , snake_case : Dict = 1 , snake_case : List[str] = None , snake_case : int = "mean" , snake_case : List[str] = 0 , snake_case : Tuple = 0 , snake_case : List[Any] = 0 , snake_case : Optional[Any] = 0 , snake_case : List[str] = None , snake_case : Union[str, Any] = None , snake_case : Tuple = 64 , snake_case : Optional[Any] = 32 , snake_case : List[Any] = 32 , snake_case : int = 2 , snake_case : Tuple = 2 , snake_case : Any = 2 , snake_case : Optional[Any] = 2 , snake_case : str = True , snake_case : int = "gelu" , snake_case : Dict = 0.05 , snake_case : List[Any] = 0.1 , snake_case : int = 0.1 , snake_case : Union[str, Any] = 0.1 , snake_case : Optional[int] = 0.1 , snake_case : str = 100 , snake_case : List[str] = 0.02 , snake_case : str=True , snake_case : Union[str, Any] = "prob" , snake_case : Any = 5 , snake_case : List[str] = True , **snake_case : Any , ):
'''simple docstring'''
A__ : Union[str, Any] = prediction_length
A__ : List[Any] = context_length or prediction_length
A__ : List[Any] = distribution_output
A__ : str = loss
A__ : List[str] = input_size
A__ : List[str] = num_time_features
A__ : str = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7]
A__ : str = scaling
A__ : Union[str, Any] = num_dynamic_real_features
A__ : List[Any] = num_static_real_features
A__ : str = num_static_categorical_features
# set cardinality
if cardinality and num_static_categorical_features > 0:
if len(__a ) != num_static_categorical_features:
raise ValueError(
"""The cardinality should be a list of the same length as `num_static_categorical_features`""" )
A__ : List[Any] = cardinality
else:
A__ : int = [0]
# set embedding_dimension
if embedding_dimension and num_static_categorical_features > 0:
if len(__a ) != num_static_categorical_features:
raise ValueError(
"""The embedding dimension should be a list of the same length as `num_static_categorical_features`""" )
A__ : Any = embedding_dimension
else:
A__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
A__ : Optional[Any] = num_parallel_samples
# Transformer architecture configuration
A__ : int = input_size * len(self.lags_sequence ) + self._number_of_features
A__ : Any = d_model
A__ : List[Any] = encoder_attention_heads
A__ : List[str] = decoder_attention_heads
A__ : int = encoder_ffn_dim
A__ : str = decoder_ffn_dim
A__ : Tuple = encoder_layers
A__ : List[str] = decoder_layers
A__ : Any = dropout
A__ : Any = attention_dropout
A__ : Dict = activation_dropout
A__ : Union[str, Any] = encoder_layerdrop
A__ : Optional[int] = decoder_layerdrop
A__ : List[str] = activation_function
A__ : Dict = init_std
A__ : List[str] = use_cache
# Informer
A__ : Tuple = attention_type
A__ : int = sampling_factor
A__ : Dict = distil
super().__init__(is_encoder_decoder=__a , **__a )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 362
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''src/diffusers'''
A_ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any:
return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]:
A__ : Any = object_name.split(""".""" )
A__ : int = 0
# First let's find the module where our object lives.
A__ : str = parts[i]
while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ):
i += 1
if i < len(UpperCAmelCase__ ):
A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] )
if i >= len(UpperCAmelCase__ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
A__ : Optional[Any] = """"""
A__ : Any = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
A__ : List[Any] = line_index
while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : List[Any] = lines[start_index:line_index]
return "".join(UpperCAmelCase__ )
A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
A_ = re.compile(r'''<FILL\s+[^>]*>''')
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]:
A__ : Dict = code.split("""\n""" )
A__ : List[Any] = 0
while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCAmelCase__ ):
return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0
if has_indent:
A__ : Union[str, Any] = f'class Bla:\n{code}'
A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ )
A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ )
A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
A__ : Dict = []
A__ : List[str] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCAmelCase__ ):
A__ : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
A__ , A__ , A__ : Dict = search.groups()
A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ )
A__ : int = get_indent(UpperCAmelCase__ )
A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2
A__ : Tuple = theoretical_indent
A__ : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
A__ : Tuple = True
while line_index < len(UpperCAmelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
break
A__ : Optional[int] = lines[line_index]
A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : Dict = lines[start_index:line_index]
A__ : Tuple = """""".join(UpperCAmelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None]
A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCAmelCase__ ) > 0:
A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" )
A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
A__ , A__ , A__ : Union[str, Any] = pattern.groups()
A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if option.strip() == "all-casing":
A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ )
A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
A__ : Tuple = start_index + 1
if overwrite and len(UpperCAmelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(UpperCAmelCase__ )
return diffs
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any:
A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ )
A__ : str = []
for filename in all_files:
A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(UpperCAmelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 296
| 0
|
"""simple docstring"""
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
A_ = logging.getLogger()
def _lowerCAmelCase ( ) ->Union[str, Any]:
A__ : Tuple = argparse.ArgumentParser()
parser.add_argument("""-f""" )
A__ : Union[str, Any] = parser.parse_args()
return args.f
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) ->Optional[Any]:
A__ : str = {}
A__ : List[str] = os.path.join(UpperCAmelCase__, """all_results.json""" )
if os.path.exists(UpperCAmelCase__ ):
with open(UpperCAmelCase__, """r""" ) as f:
A__ : str = json.load(UpperCAmelCase__ )
else:
raise ValueError(f'can\'t find {path}' )
return results
def _lowerCAmelCase ( ) ->int:
A__ : List[str] = torch.cuda.is_available() and torch_device == """cuda"""
return is_using_cuda and is_apex_available()
A_ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __SCREAMING_SNAKE_CASE ( _snake_case ):
@classmethod
def _UpperCamelCase ( cls : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = tempfile.mkdtemp()
A__ : Dict = os.path.join(cls.tmpdir , """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
A__ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def _UpperCamelCase ( cls : Optional[Any] ):
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[Any] = self.get_auto_remove_tmp_dir()
A__ : int = F'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
A__ : Any = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """glue_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Tuple = self.get_auto_remove_tmp_dir()
A__ : Dict = F'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
A__ : Any = get_results(UpperCamelCase__ )
self.assertLess(result["""perplexity"""] , 100 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """clm_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Tuple = self.get_auto_remove_tmp_dir()
A__ : Optional[Any] = F'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : str = get_results(UpperCamelCase__ )
self.assertLess(result["""perplexity"""] , 42 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """mlm_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : List[Any] = 7 if get_gpu_count() > 1 else 2
A__ : str = self.get_auto_remove_tmp_dir()
A__ : Optional[Any] = F'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : str = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
self.assertLess(result["""train_loss"""] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """ner_no_trainer""" ) ) )
@unittest.skip(reason="""Fix me @muellerzr""" )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.get_auto_remove_tmp_dir()
A__ : List[Any] = F'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : List[str] = get_results(UpperCamelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result["""eval_f1"""] , 28 )
self.assertGreaterEqual(result["""eval_exact"""] , 28 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """qa_no_trainer""" ) ) )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : List[Any] = self.get_auto_remove_tmp_dir()
A__ : Dict = F'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : List[Any] = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """swag_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.get_auto_remove_tmp_dir()
A__ : str = F'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : str = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_rouge1"""] , 10 )
self.assertGreaterEqual(result["""eval_rouge2"""] , 2 )
self.assertGreaterEqual(result["""eval_rougeL"""] , 7 )
self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """summarization_no_trainer""" ) ) )
@slow
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = self.get_auto_remove_tmp_dir()
A__ : str = F'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split()
run_command(self._launch_args + testargs )
A__ : List[Any] = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_bleu"""] , 30 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """epoch_0""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """translation_no_trainer""" ) ) )
@slow
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = logging.StreamHandler(sys.stdout )
logger.addHandler(UpperCamelCase__ )
A__ : Optional[int] = self.get_auto_remove_tmp_dir()
A__ : List[Any] = F'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split()
run_command(self._launch_args + testargs )
A__ : Dict = get_results(UpperCamelCase__ )
self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 )
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.get_auto_remove_tmp_dir()
A__ : Union[str, Any] = F'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split()
if is_cuda_and_apex_available():
testargs.append("""--fp16""" )
run_command(self._launch_args + testargs )
A__ : Union[str, Any] = get_results(UpperCamelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """step_1""" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase__ , """image_classification_no_trainer""" ) ) )
| 363
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 296
| 0
|
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
A_ = '''true'''
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=8_2, UpperCAmelCase__ : str=1_6 ) ->Optional[int]:
set_seed(4_2 )
A__ : str = RegressionModel()
A__ : List[Any] = deepcopy(SCREAMING_SNAKE_CASE_ )
A__ : Optional[int] = RegressionDataset(length=SCREAMING_SNAKE_CASE_ )
A__ : str = DataLoader(SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_ )
model.to(accelerator.device )
A__ , A__ : str = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
return model, ddp_model, dataloader
def _lowerCAmelCase ( UpperCAmelCase__ : Accelerator, UpperCAmelCase__ : Optional[int]=False ) ->Optional[int]:
A__ : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
A__ : Tuple = load_dataset("""glue""", """mrpc""", split="""validation""" )
def tokenize_function(UpperCAmelCase__ : List[Any] ):
A__ : int = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_ )
return outputs
with accelerator.main_process_first():
A__ : Any = dataset.map(
SCREAMING_SNAKE_CASE_, batched=SCREAMING_SNAKE_CASE_, remove_columns=["""idx""", """sentence1""", """sentence2"""], )
A__ : str = tokenized_datasets.rename_column("""label""", """labels""" )
def collate_fn(UpperCAmelCase__ : Union[str, Any] ):
if use_longest:
return tokenizer.pad(SCREAMING_SNAKE_CASE_, padding="""longest""", return_tensors="""pt""" )
return tokenizer.pad(SCREAMING_SNAKE_CASE_, padding="""max_length""", max_length=1_2_8, return_tensors="""pt""" )
return DataLoader(SCREAMING_SNAKE_CASE_, shuffle=SCREAMING_SNAKE_CASE_, collate_fn=SCREAMING_SNAKE_CASE_, batch_size=1_6 )
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : int ) ->List[Any]:
A__ : Tuple = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_, split_batches=SCREAMING_SNAKE_CASE_ )
A__ : Optional[Any] = get_dataloader(SCREAMING_SNAKE_CASE_, not dispatch_batches )
A__ : int = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""", return_dict=SCREAMING_SNAKE_CASE_ )
A__ , A__ : Optional[int] = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int] ) ->Any:
A__ : List[str] = []
for batch in dataloader:
A__ , A__ : List[str] = batch.values()
with torch.no_grad():
A__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )
A__ , A__ : Optional[int] = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
A__ , A__ : List[str] = [], []
for logit, targ in logits_and_targets:
logits.append(SCREAMING_SNAKE_CASE_ )
targs.append(SCREAMING_SNAKE_CASE_ )
A__ , A__ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ )
return logits, targs
def _lowerCAmelCase ( UpperCAmelCase__ : Accelerator, UpperCAmelCase__ : Union[str, Any]=8_2, UpperCAmelCase__ : Union[str, Any]=False, UpperCAmelCase__ : Any=False, UpperCAmelCase__ : Optional[int]=1_6 ) ->List[Any]:
A__ , A__ , A__ : Dict = get_basic_setup(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
A__ , A__ : List[str] = generate_predictions(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
assert (
len(SCREAMING_SNAKE_CASE_ ) == num_samples
), f'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}'
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False, UpperCAmelCase__ : bool = False ) ->List[str]:
A__ : List[Any] = evaluate.load("""glue""", """mrpc""" )
A__ , A__ : List[Any] = get_mrpc_setup(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
# First do baseline
A__ , A__ , A__ : List[str] = setup["""no"""]
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
for batch in dataloader:
batch.to(SCREAMING_SNAKE_CASE_ )
with torch.inference_mode():
A__ : Tuple = model(**SCREAMING_SNAKE_CASE_ )
A__ : Tuple = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE_, references=batch["""labels"""] )
A__ : Any = metric.compute()
# Then do distributed
A__ , A__ , A__ : Optional[Any] = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
A__ : int = model(**SCREAMING_SNAKE_CASE_ )
A__ : Any = outputs.logits.argmax(dim=-1 )
A__ : Union[str, Any] = batch["""labels"""]
A__ , A__ : int = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=SCREAMING_SNAKE_CASE_, references=SCREAMING_SNAKE_CASE_ )
A__ : List[Any] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key], distributed[key] ), f'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _lowerCAmelCase ( ) ->str:
A__ : List[Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE_, dispatch_batches=SCREAMING_SNAKE_CASE_ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
A__ : Union[str, Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE_, dispatch_batches=SCREAMING_SNAKE_CASE_ )
if accelerator.is_local_main_process:
print(f'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(SCREAMING_SNAKE_CASE_, 9_9 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
A__ : Any = Accelerator()
test_torch_metrics(SCREAMING_SNAKE_CASE_, 5_1_2 )
accelerator.state._reset_state()
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Tuple:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 364
|
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
A_ = object()
# For specifying empty leaf dict `{}`
A_ = object()
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict:
A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ):
A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )]
if matches and all(UpperCAmelCase__ ):
return True
return False
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict:
def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ):
for rule, replacement in rules:
if _match(UpperCAmelCase__, UpperCAmelCase__ ):
return replacement
return val
return replace
def _lowerCAmelCase ( ) ->Tuple:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )),
(("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any:
A__ : Union[str, Any] = _get_partition_rules()
A__ : int = _replacement_rules(UpperCAmelCase__ )
A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )}
A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCAmelCase__ ) )
| 296
| 0
|
"""simple docstring"""
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Union[str, Any]:
A__ : List[str] = torch.exp(snake_case__ )
A__ : List[str] = torch.sum(snake_case__, dim=1 ) # sum of exp(x_i)
A__ : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i)
return torch.log(snake_case__ ) - B / A
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
super().__init__()
A__ : Optional[int] = config.output_attentions
A__ : Union[str, Any] = config.output_hidden_states
A__ : Any = nn.ModuleList([BertLayer(SCREAMING_SNAKE_CASE_ ) for _ in range(config.num_hidden_layers )] )
A__ : int = nn.ModuleList([BertHighway(SCREAMING_SNAKE_CASE_ ) for _ in range(config.num_hidden_layers )] )
A__ : str = [-1 for _ in range(config.num_hidden_layers )]
def _UpperCamelCase ( self : Tuple , snake_case : int ):
'''simple docstring'''
if (type(SCREAMING_SNAKE_CASE_ ) is float) or (type(SCREAMING_SNAKE_CASE_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
A__ : str = x
else:
A__ : Optional[int] = x
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : int = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def _UpperCamelCase ( self : Any , snake_case : Tuple , snake_case : int=None , snake_case : Dict=None , snake_case : Optional[Any]=None , snake_case : List[str]=None , ):
'''simple docstring'''
A__ : Optional[int] = ()
A__ : Tuple = ()
A__ : Optional[int] = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
A__ : Dict = all_hidden_states + (hidden_states,)
A__ : List[Any] = layer_module(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , head_mask[i] , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A__ : Union[str, Any] = layer_outputs[0]
if self.output_attentions:
A__ : Tuple = all_attentions + (layer_outputs[1],)
A__ : Dict = (hidden_states,)
if self.output_hidden_states:
A__ : Dict = current_outputs + (all_hidden_states,)
if self.output_attentions:
A__ : Union[str, Any] = current_outputs + (all_attentions,)
A__ : List[str] = self.highway[i](SCREAMING_SNAKE_CASE_ )
# logits, pooled_output
if not self.training:
A__ : str = highway_exit[0]
A__ : Tuple = entropy(SCREAMING_SNAKE_CASE_ )
A__ : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
A__ : int = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
A__ : int = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(SCREAMING_SNAKE_CASE_ , i + 1 )
else:
A__ : Union[str, Any] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
A__ : Optional[int] = all_hidden_states + (hidden_states,)
A__ : int = (hidden_states,)
if self.output_hidden_states:
A__ : Optional[int] = outputs + (all_hidden_states,)
if self.output_attentions:
A__ : str = outputs + (all_attentions,)
A__ : Optional[Any] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
'The Bert Model transformer with early exiting (DeeBERT). ' , a__ , )
class __SCREAMING_SNAKE_CASE ( a__ ):
def __init__( self : Optional[Any] , snake_case : List[str] ):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ )
A__ : Tuple = config
A__ : Optional[int] = BertEmbeddings(SCREAMING_SNAKE_CASE_ )
A__ : Any = DeeBertEncoder(SCREAMING_SNAKE_CASE_ )
A__ : Any = BertPooler(SCREAMING_SNAKE_CASE_ )
self.init_weights()
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.embeddings.word_embeddings
def _UpperCamelCase ( self : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = value
def _UpperCamelCase ( self : Dict , snake_case : int ):
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(SCREAMING_SNAKE_CASE_ )
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[Any]=None , snake_case : Union[str, Any]=None , snake_case : int=None , snake_case : Any=None , snake_case : Optional[int]=None , ):
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" )
elif input_ids is not None:
A__ : List[Any] = input_ids.size()
elif inputs_embeds is not None:
A__ : Optional[Any] = inputs_embeds.size()[:-1]
else:
raise ValueError("""You have to specify either input_ids or inputs_embeds""" )
A__ : List[str] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
A__ : Tuple = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
if encoder_attention_mask is None:
A__ : Tuple = torch.ones(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ )
if token_type_ids is None:
A__ : str = torch.zeros(SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
A__ : torch.Tensor = self.get_extended_attention_mask(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
A__ : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
A__ : str = encoder_attention_mask[:, None, None, :]
A__ : Any = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
A__ : List[str] = (1.0 - encoder_extended_attention_mask) * -1_0000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
A__ : Optional[int] = self.get_head_mask(SCREAMING_SNAKE_CASE_ , self.config.num_hidden_layers )
A__ : Optional[int] = self.embeddings(
input_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ )
A__ : Optional[Any] = self.encoder(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
A__ : Dict = encoder_outputs[0]
A__ : Union[str, Any] = self.pooler(SCREAMING_SNAKE_CASE_ )
A__ : List[str] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class __SCREAMING_SNAKE_CASE ( a__ ):
def __init__( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : int ):
'''simple docstring'''
A__ : Dict = message
A__ : int = exit_layer # start from 1!
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : str , snake_case : Union[str, Any] ):
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] = BertPooler(SCREAMING_SNAKE_CASE_ )
A__ : Optional[int] = nn.Dropout(config.hidden_dropout_prob )
A__ : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : Dict = encoder_outputs[0]
A__ : List[Any] = self.pooler(SCREAMING_SNAKE_CASE_ )
# "return" pooler_output
# BertModel
A__ : Any = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
A__ : List[str] = bmodel_output[1]
A__ : Optional[Any] = self.dropout(SCREAMING_SNAKE_CASE_ )
A__ : Tuple = self.classifier(SCREAMING_SNAKE_CASE_ )
return logits, pooled_output
@add_start_docstrings(
'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , a__ , )
class __SCREAMING_SNAKE_CASE ( a__ ):
def __init__( self : Union[str, Any] , snake_case : Optional[Any] ):
'''simple docstring'''
super().__init__(SCREAMING_SNAKE_CASE_ )
A__ : str = config.num_labels
A__ : Dict = config.num_hidden_layers
A__ : Optional[Any] = DeeBertModel(SCREAMING_SNAKE_CASE_ )
A__ : Dict = nn.Dropout(config.hidden_dropout_prob )
A__ : Optional[int] = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ )
def _UpperCamelCase ( self : List[str] , snake_case : Dict=None , snake_case : Tuple=None , snake_case : List[str]=None , snake_case : List[str]=None , snake_case : List[Any]=None , snake_case : Optional[int]=None , snake_case : Optional[Any]=None , snake_case : Tuple=-1 , snake_case : Tuple=False , ):
'''simple docstring'''
A__ : str = self.num_layers
try:
A__ : Tuple = self.bert(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , position_ids=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , inputs_embeds=SCREAMING_SNAKE_CASE_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
A__ : Optional[Any] = outputs[1]
A__ : Union[str, Any] = self.dropout(SCREAMING_SNAKE_CASE_ )
A__ : int = self.classifier(SCREAMING_SNAKE_CASE_ )
A__ : Dict = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
A__ : Optional[int] = e.message
A__ : List[Any] = e.exit_layer
A__ : Optional[int] = outputs[0]
if not self.training:
A__ : List[Any] = entropy(SCREAMING_SNAKE_CASE_ )
A__ : Any = []
A__ : Any = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
A__ : str = MSELoss()
A__ : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
A__ : List[Any] = CrossEntropyLoss()
A__ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
A__ : List[Any] = []
for highway_exit in outputs[-1]:
A__ : Tuple = highway_exit[0]
if not self.training:
highway_logits_all.append(SCREAMING_SNAKE_CASE_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
A__ : Optional[Any] = MSELoss()
A__ : Optional[int] = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
A__ : Tuple = CrossEntropyLoss()
A__ : Tuple = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(SCREAMING_SNAKE_CASE_ )
if train_highway:
A__ : Tuple = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
A__ : Optional[int] = (loss,) + outputs
if not self.training:
A__ : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
A__ : str = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 365
|
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : Optional[Any] = batch_size
A__ : Dict = seq_length
A__ : str = is_training
A__ : Tuple = use_input_mask
A__ : Dict = use_token_type_ids
A__ : Dict = use_labels
A__ : int = vocab_size
A__ : List[str] = hidden_size
A__ : Union[str, Any] = num_hidden_layers
A__ : int = num_attention_heads
A__ : List[str] = intermediate_size
A__ : int = hidden_act
A__ : str = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : int = num_labels
A__ : Optional[int] = num_choices
A__ : Optional[int] = scope
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Any = None
if self.use_input_mask:
A__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] = None
if self.use_token_type_ids:
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : List[str] = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.get_config()
A__ : List[str] = 300
return config
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = self.prepare_config_and_inputs()
A__ : List[str] = True
A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : List[str] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
A__ : List[str] = model(snake_case , token_type_ids=snake_case )
A__ : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ):
'''simple docstring'''
A__ : Dict = True
A__ : Optional[Any] = MraModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Dict = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Optional[Any] = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Union[str, Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : str = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Dict = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = ()
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = MraModelTester(self )
A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[str] = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : str = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="""MRA does not output attentions""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Any = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : List[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , snake_case )
A__ : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Dict = 5_0265
A__ : List[str] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : List[Any] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Union[str, Any] = 5_0265
A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : Optional[int] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 296
| 0
|
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@property
def _UpperCamelCase ( self : int ):
'''simple docstring'''
torch.manual_seed(0 )
A__ : List[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[Any] = self.dummy_uncond_unet
A__ : Optional[Any] = KarrasVeScheduler()
A__ : List[str] = KarrasVePipeline(unet=snake_case , scheduler=snake_case )
pipe.to(snake_case )
pipe.set_progress_bar_config(disable=snake_case )
A__ : Union[str, Any] = torch.manual_seed(0 )
A__ : Any = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" ).images
A__ : Optional[Any] = torch.manual_seed(0 )
A__ : Dict = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" , return_dict=snake_case )[0]
A__ : List[str] = image[0, -3:, -3:, -1]
A__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A__ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = """google/ncsnpp-celebahq-256"""
A__ : List[Any] = UNetaDModel.from_pretrained(snake_case )
A__ : List[str] = KarrasVeScheduler()
A__ : Optional[Any] = KarrasVePipeline(unet=snake_case , scheduler=snake_case )
pipe.to(snake_case )
pipe.set_progress_bar_config(disable=snake_case )
A__ : int = torch.manual_seed(0 )
A__ : Tuple = pipe(num_inference_steps=20 , generator=snake_case , output_type="""numpy""" ).images
A__ : Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
A__ : int = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 366
|
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
A_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
A_ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
A_ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ):
'''simple docstring'''
A__ : Optional[int] = mean_squared_error(
snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case )
return {"mse": mse}
| 296
| 0
|
"""simple docstring"""
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
A_ = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : int , snake_case : List[Any] , snake_case : int=7 , snake_case : Any=3 , snake_case : Optional[int]=18 , snake_case : Optional[Any]=30 , snake_case : Optional[int]=400 , snake_case : List[str]=None , snake_case : Dict=True , snake_case : str=True , snake_case : Dict=None , ):
'''simple docstring'''
A__ : Optional[Any] = size if size is not None else {'''height''': 20, '''width''': 20}
A__ : List[Any] = parent
A__ : Dict = batch_size
A__ : Any = num_channels
A__ : Dict = image_size
A__ : Union[str, Any] = min_resolution
A__ : Tuple = max_resolution
A__ : Any = size
A__ : Optional[int] = do_normalize
A__ : Tuple = do_convert_rgb
A__ : List[str] = [512, 1024, 2048, 4096]
A__ : str = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16}
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg'''
A__ : Optional[Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("""RGB""" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ):
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = PixaStructImageProcessingTester(self )
@property
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowercase , """do_convert_rgb""" ) )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = self.image_processor_tester.prepare_dummy_image()
A__ : Any = self.image_processing_class(**self.image_processor_dict )
A__ : int = 2048
A__ : Tuple = image_processor(__lowercase , return_tensors="""pt""" , max_patches=__lowercase )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
A__ : Optional[int] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
A__ : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
A__ : Any = image_processor(
__lowercase , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
A__ : Any = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
A__ : str = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(__lowercase ):
A__ : Tuple = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
A__ : int = '''Hello'''
A__ : str = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase , header_text=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
A__ : List[Any] = image_processor(
__lowercase , return_tensors="""pt""" , max_patches=__lowercase , header_text=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , np.ndarray )
A__ : Optional[Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
A__ : Dict = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
A__ : str = image_processor(
__lowercase , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , torch.Tensor )
# Test not batched input
A__ : Union[str, Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
A__ : Tuple = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
A__ : Optional[Any] = image_processor(
__lowercase , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ):
snake_case_ = PixaStructImageProcessor if is_vision_available() else None
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
A__ : int = 3
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowercase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowercase , """do_convert_rgb""" ) )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase )
for image in image_inputs:
self.assertIsInstance(__lowercase , Image.Image )
# Test not batched input
A__ : Union[str, Any] = (
(self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width'''])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
A__ : int = image_processor(
image_inputs[0] , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
A__ : Any = image_processor(
__lowercase , return_tensors="""pt""" , max_patches=__lowercase ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 367
|
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ):
'''simple docstring'''
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" , snake_case , )
super().__init__(args=snake_case , **snake_case )
| 296
| 0
|
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self : int , snake_case : int = 128 , snake_case : int = 256 , snake_case : float = 2000.0 , snake_case : int = 768 , snake_case : int = 12 , snake_case : int = 12 , snake_case : int = 64 , snake_case : int = 2048 , snake_case : float = 0.1 , ):
'''simple docstring'''
super().__init__()
A__ : str = nn.Sequential(
nn.Linear(__a , d_model * 4 , bias=__a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__a ) , nn.SiLU() , )
A__ : Dict = nn.Embedding(__a , __a )
A__ : Union[str, Any] = False
A__ : List[Any] = nn.Linear(__a , __a , bias=__a )
A__ : Optional[Any] = nn.Dropout(p=__a )
A__ : List[str] = nn.ModuleList()
for lyr_num in range(__a ):
# FiLM conditional T5 decoder
A__ : int = DecoderLayer(d_model=__a , d_kv=__a , num_heads=__a , d_ff=__a , dropout_rate=__a )
self.decoders.append(__a )
A__ : int = TaLayerNorm(__a )
A__ : List[str] = nn.Dropout(p=__a )
A__ : Optional[int] = nn.Linear(__a , __a , bias=__a )
def _UpperCamelCase ( self : List[str] , snake_case : str , snake_case : List[str] ):
'''simple docstring'''
A__ : List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def _UpperCamelCase ( self : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ , A__ , A__ : Any = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
A__ : Union[str, Any] = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
A__ : Dict = self.conditioning_emb(__a ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
A__ : List[Any] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
A__ : Optional[int] = torch.broadcast_to(
torch.arange(__a , device=decoder_input_tokens.device ) , (batch, seq_length) , )
A__ : Dict = self.position_encoding(__a )
A__ : Union[str, Any] = self.continuous_inputs_projection(__a )
inputs += position_encodings
A__ : Dict = self.dropout(__a )
# decoder: No padding present.
A__ : Union[str, Any] = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
A__ : str = [(x, self.encoder_decoder_mask(__a , __a )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
A__ : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
A__ : Optional[int] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
A__ : Optional[Any] = lyr(
__a , conditioning_emb=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , )[0]
A__ : Optional[Any] = self.decoder_norm(__a )
A__ : Any = self.post_dropout(__a )
A__ : str = self.spec_out(__a )
return spec_out
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[Any] , snake_case : Union[str, Any] , snake_case : int , snake_case : Any , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Dict=1e-6 ):
'''simple docstring'''
super().__init__()
A__ : Tuple = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__a , d_kv=__a , num_heads=__a , dropout_rate=__a , layer_norm_epsilon=__a , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__a , d_ff=__a , dropout_rate=__a , layer_norm_epsilon=__a ) )
def _UpperCamelCase ( self : int , snake_case : Dict , snake_case : Optional[int]=None , snake_case : Union[str, Any]=None , snake_case : List[str]=None , snake_case : Dict=None , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : Optional[Any] = self.layer[0](
__a , conditioning_emb=__a , attention_mask=__a , )
if encoder_hidden_states is not None:
A__ : str = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
A__ : Union[str, Any] = self.layer[1](
__a , key_value_states=__a , attention_mask=__a , )
# Apply Film Conditional Feed Forward layer
A__ : Optional[Any] = self.layer[-1](__a , __a )
return (hidden_states,)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : int , snake_case : List[str] , snake_case : Optional[int] , snake_case : int , snake_case : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = TaLayerNorm(__a )
A__ : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__a )
A__ : List[Any] = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a )
A__ : Optional[Any] = nn.Dropout(__a )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] , snake_case : Dict=None , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : Dict = self.layer_norm(__a )
if conditioning_emb is not None:
A__ : Tuple = self.FiLMLayer(__a , __a )
# Self-attention block
A__ : Optional[int] = self.attention(__a )
A__ : List[str] = hidden_states + self.dropout(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Dict , snake_case : int , snake_case : Union[str, Any] , snake_case : int , snake_case : int , snake_case : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : str = Attention(query_dim=__a , heads=__a , dim_head=__a , out_bias=__a , scale_qk=__a )
A__ : List[Any] = TaLayerNorm(__a , eps=__a )
A__ : str = nn.Dropout(__a )
def _UpperCamelCase ( self : Optional[int] , snake_case : str , snake_case : List[str]=None , snake_case : Tuple=None , ):
'''simple docstring'''
A__ : Tuple = self.layer_norm(__a )
A__ : Any = self.attention(
__a , encoder_hidden_states=__a , attention_mask=attention_mask.squeeze(1 ) , )
A__ : Optional[int] = hidden_states + self.dropout(__a )
return layer_output
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : int , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[int] ):
'''simple docstring'''
super().__init__()
A__ : str = TaDenseGatedActDense(d_model=__a , d_ff=__a , dropout_rate=__a )
A__ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__a )
A__ : List[Any] = TaLayerNorm(__a , eps=__a )
A__ : Optional[int] = nn.Dropout(__a )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Any , snake_case : List[str]=None ):
'''simple docstring'''
A__ : int = self.layer_norm(__a )
if conditioning_emb is not None:
A__ : Optional[Any] = self.film(__a , __a )
A__ : Tuple = self.DenseReluDense(__a )
A__ : Tuple = hidden_states + self.dropout(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Dict , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : int ):
'''simple docstring'''
super().__init__()
A__ : Dict = nn.Linear(__a , __a , bias=__a )
A__ : Optional[int] = nn.Linear(__a , __a , bias=__a )
A__ : Optional[int] = nn.Linear(__a , __a , bias=__a )
A__ : List[Any] = nn.Dropout(__a )
A__ : Tuple = NewGELUActivation()
def _UpperCamelCase ( self : Optional[Any] , snake_case : int ):
'''simple docstring'''
A__ : List[Any] = self.act(self.wi_a(__a ) )
A__ : str = self.wi_a(__a )
A__ : Dict = hidden_gelu * hidden_linear
A__ : Optional[int] = self.dropout(__a )
A__ : Optional[int] = self.wo(__a )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[Any] , snake_case : str , snake_case : List[Any]=1e-6 ):
'''simple docstring'''
super().__init__()
A__ : Dict = nn.Parameter(torch.ones(__a ) )
A__ : Union[str, Any] = eps
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict ):
'''simple docstring'''
A__ : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__a )
A__ : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
A__ : int = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def _UpperCamelCase ( self : Optional[int] , snake_case : torch.Tensor ):
'''simple docstring'''
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(__a , 3.0 )) ))
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : int , snake_case : Union[str, Any] , snake_case : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : Union[str, Any] = nn.Linear(__a , out_features * 2 , bias=__a )
def _UpperCamelCase ( self : Dict , snake_case : Union[str, Any] , snake_case : Any ):
'''simple docstring'''
A__ : Optional[Any] = self.scale_bias(__a )
A__ , A__ : Union[str, Any] = torch.chunk(__a , 2 , -1 )
A__ : Tuple = x * (1 + scale) + shift
return x
| 368
|
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
A_ = random.Random()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]:
if rng is None:
A__ : Optional[int] = global_rng
A__ : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ):
'''simple docstring'''
A__ : Any = parent
A__ : str = batch_size
A__ : List[str] = min_seq_length
A__ : Dict = max_seq_length
A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A__ : Dict = padding_value
A__ : Optional[Any] = sampling_rate
A__ : Any = return_attention_mask
A__ : Optional[int] = do_normalize
A__ : Tuple = feature_size
A__ : Optional[Any] = chunk_length
A__ : Union[str, Any] = hop_length
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ):
'''simple docstring'''
def _flatten(snake_case : Dict ):
return list(itertools.chain(*snake_case ) )
if equal_length:
A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A__ : Optional[int] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = WhisperFeatureExtractor if is_speech_available() else None
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : str = WhisperFeatureExtractionTester(self )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0]
check_json_file_has_correct_format(snake_case )
A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case )
A__ : str = feat_extract_first.to_dict()
A__ : Union[str, Any] = feat_extract_second.to_dict()
A__ : List[Any] = feat_extract_first.mel_filters
A__ : Optional[Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : Any = os.path.join(snake_case , """feat_extract.json""" )
feat_extract_first.to_json_file(snake_case )
A__ : int = self.feature_extraction_class.from_json_file(snake_case )
A__ : Dict = feat_extract_first.to_dict()
A__ : str = feat_extract_second.to_dict()
A__ : str = feat_extract_first.mel_filters
A__ : Dict = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
# Test feature size
A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test batched
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A__ : str = np.asarray(snake_case )
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test truncation required
A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs]
A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated]
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
import torch
A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa )
A__ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
A__ : Optional[Any] = self._load_datasamples(1 )
A__ : Union[str, Any] = WhisperFeatureExtractor()
A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : Union[str, Any] = self._load_datasamples(1 )[0]
A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0]
self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
| 296
| 0
|
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : str = 'hf-internal-testing/tiny-random-t5'
A__ : List[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase )
A__ : Dict = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
A__ : Any = tokenizer("""This is me""" , return_tensors="""pt""" )
A__ : int = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
A__ : str = model.generate(**_UpperCAmelCase )
A__ : Optional[Any] = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase )
A__ : Tuple = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
A__ : Optional[int] = model_reloaded.generate(**_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = 'hf-internal-testing/tiny-random-t5'
A__ : int = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
A__ : Dict = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_UpperCAmelCase ):
model.save_pretrained(_UpperCAmelCase )
A__ : str = model.reverse_bettertransformer()
model.save_pretrained(_UpperCAmelCase )
| 369
|
"""simple docstring"""
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = (0, 0)
A__ : Dict = None
A__ : int = 0
A__ : str = 0
A__ : Optional[Any] = 0
def __eq__( self : str , snake_case : Optional[int] ):
'''simple docstring'''
return self.position == cell.position
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
print(self.position )
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : Any=(5, 5) ):
'''simple docstring'''
A__ : Optional[int] = np.zeros(snake_case )
A__ : List[Any] = world_size[0]
A__ : Dict = world_size[1]
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
print(self.w )
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
A__ : int = cell.position[0]
A__ : str = cell.position[1]
A__ : Any = []
for n in neughbour_cord:
A__ : List[Any] = current_x + n[0]
A__ : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
A__ : List[Any] = Cell()
A__ : str = (x, y)
A__ : Optional[Any] = cell
neighbours.append(snake_case )
return neighbours
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict:
A__ : Union[str, Any] = []
A__ : Optional[int] = []
_open.append(UpperCAmelCase__ )
while _open:
A__ : List[Any] = np.argmin([n.f for n in _open] )
A__ : Union[str, Any] = _open[min_f]
_closed.append(_open.pop(UpperCAmelCase__ ) )
if current == goal:
break
for n in world.get_neigbours(UpperCAmelCase__ ):
for c in _closed:
if c == n:
continue
A__ : Dict = current.g + 1
A__ , A__ : int = n.position
A__ , A__ : Optional[int] = goal.position
A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
A__ : Optional[int] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(UpperCAmelCase__ )
A__ : List[str] = []
while current.parent is not None:
path.append(current.position )
A__ : Union[str, Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
A_ = Gridworld()
# Start position and goal
A_ = Cell()
A_ = (0, 0)
A_ = Cell()
A_ = (4, 4)
print(F'path from {start.position} to {goal.position}')
A_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
A_ = 1
print(world.w)
| 296
| 0
|
"""simple docstring"""
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
A_ = logging.getLogger(__name__)
class __SCREAMING_SNAKE_CASE ( __snake_case ):
snake_case_ = """token-classification"""
def __init__( self : int , snake_case : Tuple ):
'''simple docstring'''
if type(UpperCamelCase__ ) == dict:
A__ : Optional[Any] = Namespace(**UpperCamelCase__ )
A__ : Any = import_module("""tasks""" )
try:
A__ : Optional[int] = getattr(UpperCamelCase__ , hparams.task_type )
A__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '
F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' )
A__ : List[str] = self.token_classification_task.get_labels(hparams.labels )
A__ : Any = CrossEntropyLoss().ignore_index
super().__init__(UpperCamelCase__ , len(self.labels ) , self.mode )
def _UpperCamelCase ( self : Union[str, Any] , **snake_case : Optional[int] ):
'''simple docstring'''
return self.model(**UpperCamelCase__ )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] ):
'''simple docstring'''
A__ : Optional[int] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
A__ : int = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
A__ : Any = self(**UpperCamelCase__ )
A__ : Dict = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[int] = self.hparams
for mode in ["train", "dev", "test"]:
A__ : Dict = self._feature_file(UpperCamelCase__ )
if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , UpperCamelCase__ )
A__ : List[str] = torch.load(UpperCamelCase__ )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
A__ : Any = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase__ )
A__ : Any = self.token_classification_task.convert_examples_to_features(
UpperCamelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("""Saving features into cached file %s""" , UpperCamelCase__ )
torch.save(UpperCamelCase__ , UpperCamelCase__ )
def _UpperCamelCase ( self : Optional[int] , snake_case : int , snake_case : int , snake_case : bool = False ):
'''simple docstring'''
A__ : Dict = self._feature_file(UpperCamelCase__ )
logger.info("""Loading features from cached file %s""" , UpperCamelCase__ )
A__ : Tuple = torch.load(UpperCamelCase__ )
A__ : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
A__ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
A__ : int = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
A__ : str = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
A__ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ )
def _UpperCamelCase ( self : List[Any] , snake_case : List[str] , snake_case : Optional[int] ):
'''simple docstring'''
"""Compute validation""" ""
A__ : str = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
A__ : Dict = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
A__ : List[str] = self(**UpperCamelCase__ )
A__ : Any = outputs[:2]
A__ : Union[str, Any] = logits.detach().cpu().numpy()
A__ : Optional[Any] = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _UpperCamelCase ( self : Optional[Any] , snake_case : int ):
'''simple docstring'''
A__ : Dict = torch.stack([x["""val_loss"""] for x in outputs] ).mean()
A__ : Dict = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
A__ : List[Any] = np.argmax(UpperCamelCase__ , axis=2 )
A__ : List[str] = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
A__ : Tuple = dict(enumerate(self.labels ) )
A__ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )]
A__ : int = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
A__ : Tuple = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(UpperCamelCase__ , UpperCamelCase__ ),
"precision": precision_score(UpperCamelCase__ , UpperCamelCase__ ),
"recall": recall_score(UpperCamelCase__ , UpperCamelCase__ ),
"f1": fa_score(UpperCamelCase__ , UpperCamelCase__ ),
}
A__ : str = dict(results.items() )
A__ : List[str] = results
return ret, preds_list, out_label_list
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self._eval_end(UpperCamelCase__ )
A__ : Tuple = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : List[Any] ):
'''simple docstring'''
A__ : List[str] = self._eval_end(UpperCamelCase__ )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
A__ : List[Any] = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _UpperCamelCase ( snake_case : List[Any] , snake_case : Optional[int] ):
'''simple docstring'''
BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ )
parser.add_argument(
"""--task_type""" , default="""NER""" , type=UpperCamelCase__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" )
parser.add_argument(
"""--max_seq_length""" , default=128 , type=UpperCamelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--labels""" , default="""""" , type=UpperCamelCase__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=UpperCamelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
A_ = NERTransformer.add_model_specific_args(parser, os.getcwd())
A_ = parser.parse_args()
A_ = NERTransformer(args)
A_ = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
A_ = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
A_ = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 370
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str:
A__ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any = """"""
else:
A__ : Tuple = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
A__ : str = in_proj_bias[: config.hidden_size]
A__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
A__ : Any = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any:
A__ : int = dct.pop(UpperCAmelCase__ )
A__ : Tuple = val
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple:
A__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
A__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
A__ : str = 1_0_0_0
A__ : List[str] = """huggingface/label-files"""
A__ : Dict = """imagenet-1k-id2label.json"""
A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) )
A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Optional[int] = idalabel
A__ : Dict = {v: k for k, v in idalabel.items()}
A__ : List[str] = int(deit_name[-6:-4] )
A__ : str = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
A__ : List[str] = 1_9_2
A__ : int = 7_6_8
A__ : List[Any] = 1_2
A__ : Dict = 3
elif deit_name[9:].startswith("""small""" ):
A__ : List[Any] = 3_8_4
A__ : List[str] = 1_5_3_6
A__ : Any = 1_2
A__ : Union[str, Any] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
A__ : int = 1_0_2_4
A__ : str = 4_0_9_6
A__ : Any = 2_4
A__ : int = 1_6
# load original model from timm
A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : Tuple = timm_model.state_dict()
A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval()
model.load_state_dict(UpperCAmelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
A__ : int = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size )
A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Optional[Any] = encoding["""pixel_values"""]
A__ : Union[str, Any] = model(UpperCAmelCase__ )
A__ : Union[str, Any] = timm_model(UpperCAmelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 296
| 0
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ):
snake_case_ = '''sew'''
def __init__( self : List[str] , snake_case : Dict=32 , snake_case : Optional[Any]=768 , snake_case : int=12 , snake_case : Any=12 , snake_case : str=3072 , snake_case : Any=2 , snake_case : Dict="gelu" , snake_case : Union[str, Any]=0.1 , snake_case : Dict=0.1 , snake_case : Tuple=0.1 , snake_case : int=0.0 , snake_case : str=0.1 , snake_case : Optional[Any]=0.1 , snake_case : Optional[Any]=0.02 , snake_case : Dict=1e-5 , snake_case : Tuple="group" , snake_case : Optional[int]="gelu" , snake_case : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case : Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case : Dict=False , snake_case : List[Any]=128 , snake_case : Optional[Any]=16 , snake_case : Union[str, Any]=True , snake_case : List[str]=0.05 , snake_case : Optional[int]=10 , snake_case : List[Any]=2 , snake_case : str=0.0 , snake_case : List[Any]=10 , snake_case : Optional[int]=0 , snake_case : Dict="mean" , snake_case : List[str]=False , snake_case : str=False , snake_case : Dict=256 , snake_case : Optional[int]=0 , snake_case : str=1 , snake_case : Any=2 , **snake_case : List[str] , ):
'''simple docstring'''
super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case )
A__ : Union[str, Any] = hidden_size
A__ : int = feat_extract_norm
A__ : List[Any] = feat_extract_activation
A__ : List[str] = list(__snake_case )
A__ : Tuple = list(__snake_case )
A__ : Dict = list(__snake_case )
A__ : Optional[int] = conv_bias
A__ : str = num_conv_pos_embeddings
A__ : Any = num_conv_pos_embedding_groups
A__ : int = len(self.conv_dim )
A__ : Union[str, Any] = num_hidden_layers
A__ : Union[str, Any] = intermediate_size
A__ : Optional[int] = squeeze_factor
A__ : List[Any] = hidden_act
A__ : Optional[int] = num_attention_heads
A__ : Optional[Any] = hidden_dropout
A__ : List[Any] = attention_dropout
A__ : Any = activation_dropout
A__ : int = feat_proj_dropout
A__ : Union[str, Any] = final_dropout
A__ : Dict = layerdrop
A__ : List[Any] = layer_norm_eps
A__ : Union[str, Any] = initializer_range
A__ : str = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A__ : List[Any] = apply_spec_augment
A__ : Any = mask_time_prob
A__ : Dict = mask_time_length
A__ : Any = mask_time_min_masks
A__ : Dict = mask_feature_prob
A__ : Any = mask_feature_length
A__ : Union[str, Any] = mask_feature_min_masks
# ctc loss
A__ : int = ctc_loss_reduction
A__ : Dict = ctc_zero_infinity
# sequence classification
A__ : List[Any] = use_weighted_layer_sum
A__ : List[Any] = classifier_proj_size
@property
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 371
|
"""simple docstring"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
A__ : Optional[int] = (low + high) // 2
A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]:
A__ , A__ : Dict = float("""-inf""" ), -1
A__ , A__ : Optional[Any] = float("""-inf""" ), -1
A__ : int | float = 0
for i in range(UpperCAmelCase__, low - 1, -1 ):
summ += arr[i]
if summ > left_sum:
A__ : Optional[int] = summ
A__ : Union[str, Any] = i
A__ : Optional[Any] = 0
for i in range(mid + 1, high + 1 ):
summ += arr[i]
if summ > right_sum:
A__ : int = summ
A__ : Union[str, Any] = i
return max_left, max_right, (left_sum + right_sum)
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float:
A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
A__ : Any = time.time()
max_subarray(UpperCAmelCase__, 0, input_size - 1 )
A__ : List[Any] = time.time()
return end - start
def _lowerCAmelCase ( ) ->None:
A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0]
A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ):
print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ )
plt.plot(UpperCAmelCase__, UpperCAmelCase__ )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 296
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ = {
'''configuration_bigbird_pegasus''': [
'''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BigBirdPegasusConfig''',
'''BigBirdPegasusOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BigBirdPegasusForCausalLM''',
'''BigBirdPegasusForConditionalGeneration''',
'''BigBirdPegasusForQuestionAnswering''',
'''BigBirdPegasusForSequenceClassification''',
'''BigBirdPegasusModel''',
'''BigBirdPegasusPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 350
|
"""simple docstring"""
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , snake_case : int ):
'''simple docstring'''
A__ : List[Any] = order
# a_{0} ... a_{k}
A__ : List[Any] = [1.0] + [0.0] * order
# b_{0} ... b_{k}
A__ : str = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
A__ : Union[str, Any] = [0.0] * self.order
# y[n-1] ... y[n-k]
A__ : List[str] = [0.0] * self.order
def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ):
'''simple docstring'''
if len(snake_case ) < self.order:
A__ : Any = [1.0, *a_coeffs]
if len(snake_case ) != self.order + 1:
A__ : str = (
F'Expected a_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
if len(snake_case ) != self.order + 1:
A__ : Union[str, Any] = (
F'Expected b_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
A__ : Dict = a_coeffs
A__ : Any = b_coeffs
def _UpperCamelCase ( self : List[str] , snake_case : float ):
'''simple docstring'''
A__ : str = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
A__ : Tuple = self.input_history[:-1]
A__ : int = self.output_history[:-1]
A__ : Dict = sample
A__ : Tuple = result
return result
| 296
| 0
|
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def _lowerCAmelCase ( ) ->Dict:
raise RuntimeError("""CUDA out of memory.""" )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : str ):
'''simple docstring'''
super().__init__()
A__ : List[str] = nn.Linear(3 , 4 )
A__ : Optional[Any] = nn.BatchNormad(4 )
A__ : Any = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[Any] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[Any] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case : Union[str, Any] ):
nonlocal batch_sizes
batch_sizes.append(snake_case )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(snake_case , [128, 64, 32, 16, 8] )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case : int , snake_case : Optional[Any] ):
nonlocal batch_sizes
batch_sizes.append(snake_case )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
A__ : Optional[int] = mock_training_loop_function("""hello""" )
self.assertListEqual(snake_case , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, """hello"""] )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(snake_case : Union[str, Any] ):
pass
with self.assertRaises(snake_case ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(snake_case : Union[str, Any] ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(snake_case ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case : Any , snake_case : List[str] , snake_case : Optional[int] ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(snake_case ) as cm:
mock_training_loop_function(128 , """hello""" , """world""" )
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] )
self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(snake_case : Dict ):
raise ValueError("""Oops, we had an error!""" )
with self.assertRaises(snake_case ) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] )
@require_cuda
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = torch.cuda.memory_allocated()
A__ : int = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , snake_case )
A__ : int = release_memory(snake_case )
self.assertEqual(torch.cuda.memory_allocated() , snake_case )
| 351
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ):
'''simple docstring'''
A__ : Tuple = parent
A__ : Union[str, Any] = batch_size
A__ : List[str] = seq_length
A__ : Optional[int] = is_training
A__ : Dict = use_input_mask
A__ : Any = use_token_type_ids
A__ : Optional[Any] = use_labels
A__ : List[str] = vocab_size
A__ : Optional[int] = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : Any = num_attention_heads
A__ : List[Any] = intermediate_size
A__ : Optional[Any] = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : str = max_position_embeddings
A__ : List[str] = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[Any] = initializer_range
A__ : Optional[int] = num_labels
A__ : Dict = num_choices
A__ : Dict = scope
A__ : List[Any] = vocab_size - 1
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : List[Any] = None
if self.use_input_mask:
A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_labels:
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Tuple = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs()
A__ : Union[str, Any] = True
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ):
'''simple docstring'''
A__ : Any = GPTNeoXModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case )
A__ : Optional[int] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = True
A__ : str = GPTNeoXModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ):
'''simple docstring'''
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ):
'''simple docstring'''
A__ : int = self.num_labels
A__ : int = GPTNeoXForQuestionAnswering(snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[Any] = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Tuple = GPTNeoXForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = self.num_labels
A__ : Any = GPTNeoXForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Optional[int] = True
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
# first forward pass
A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 )
A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case )
A__ : List[Any] = output_from_no_past["""hidden_states"""][0]
A__ : List[str] = model(
snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0]
# select random slice
A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : str = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ : Dict = config_and_inputs
A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = GPTNeoXModelTester(self )
A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common()
A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size )
A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Union[str, Any] = GPTNeoXModel(snake_case )
original_model.to(snake_case )
original_model.eval()
A__ : Optional[int] = original_model(snake_case ).last_hidden_state
A__ : List[str] = original_model(snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0}
A__ : Optional[int] = GPTNeoXModel(snake_case )
scaled_model.to(snake_case )
scaled_model.eval()
A__ : List[str] = scaled_model(snake_case ).last_hidden_state
A__ : Tuple = scaled_model(snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case )
A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 )
A__ : Tuple = tokenizer.batch_decode(snake_case )[0]
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import math
A_ = 10
A_ = 7
A_ = BALLS_PER_COLOUR * NUM_COLOURS
def _lowerCAmelCase ( UpperCAmelCase__ : int = 2_0 ) ->str:
A__ : List[Any] = math.comb(UpperCAmelCase__, UpperCAmelCase__ )
A__ : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, UpperCAmelCase__ )
A__ : int = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(20))
| 352
|
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int:
A__ : defaultdict = defaultdict(UpperCAmelCase__ )
A__ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ):
if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1:
continue
A__ : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'{solution() = }')
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) ->int:
A__ : int = set(range(3, UpperCAmelCase__, 2 ) )
primes.add(2 )
for p in range(3, UpperCAmelCase__, 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p, UpperCAmelCase__, UpperCAmelCase__ ) ) )
A__ : str = [float(UpperCAmelCase__ ) for n in range(limit + 1 )]
for p in primes:
for n in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'{solution() = }')
| 353
|
"""simple docstring"""
import os
from distutils.util import strtobool
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]:
for e in env_keys:
A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) )
if val >= 0:
return val
return default
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]:
A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int...
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int:
A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return value
| 296
| 0
|
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'git_vision_model'
def __init__( self : Union[str, Any] , snake_case : Any=768 , snake_case : Optional[int]=3072 , snake_case : Tuple=12 , snake_case : Any=12 , snake_case : Dict=3 , snake_case : Dict=224 , snake_case : List[str]=16 , snake_case : Optional[int]="quick_gelu" , snake_case : Optional[int]=1e-5 , snake_case : Tuple=0.0 , snake_case : Optional[int]=0.02 , **snake_case : Optional[Any] , ):
'''simple docstring'''
super().__init__(**snake_case )
A__ : Dict = hidden_size
A__ : Optional[Any] = intermediate_size
A__ : List[str] = num_hidden_layers
A__ : Optional[Any] = num_attention_heads
A__ : Any = num_channels
A__ : Tuple = patch_size
A__ : Any = image_size
A__ : str = initializer_range
A__ : Any = attention_dropout
A__ : List[str] = layer_norm_eps
A__ : Tuple = hidden_act
@classmethod
def _UpperCamelCase ( cls : str , snake_case : Union[str, os.PathLike] , **snake_case : Any ):
'''simple docstring'''
cls._set_token_in_kwargs(snake_case )
A__ : Any = cls.get_config_dict(snake_case , **snake_case )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("""model_type""" ) == "git":
A__ : Tuple = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(snake_case , **snake_case )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'git'
def __init__( self : Any , snake_case : Tuple=None , snake_case : int=3_0522 , snake_case : Optional[int]=768 , snake_case : int=6 , snake_case : int=12 , snake_case : Optional[Any]=3072 , snake_case : Dict="gelu" , snake_case : str=0.1 , snake_case : int=0.1 , snake_case : Dict=1024 , snake_case : Optional[Any]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : int=0 , snake_case : int="absolute" , snake_case : List[str]=True , snake_case : List[str]=False , snake_case : List[str]=101 , snake_case : int=102 , snake_case : Tuple=None , **snake_case : Optional[Any] , ):
'''simple docstring'''
super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case )
if vision_config is None:
A__ : Any = {}
logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" )
A__ : Union[str, Any] = GitVisionConfig(**snake_case )
A__ : Any = vocab_size
A__ : Optional[int] = hidden_size
A__ : List[str] = num_hidden_layers
A__ : Dict = num_attention_heads
A__ : List[Any] = hidden_act
A__ : Tuple = intermediate_size
A__ : str = hidden_dropout_prob
A__ : List[Any] = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Union[str, Any] = initializer_range
A__ : Union[str, Any] = layer_norm_eps
A__ : Dict = position_embedding_type
A__ : List[str] = use_cache
A__ : List[Any] = tie_word_embeddings
A__ : List[str] = num_image_with_embedding
A__ : str = bos_token_id
A__ : int = eos_token_id
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Union[str, Any] = copy.deepcopy(self.__dict__ )
A__ : Union[str, Any] = self.vision_config.to_dict()
A__ : str = self.__class__.model_type
return output
| 354
|
"""simple docstring"""
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ):
'''simple docstring'''
if k in (0.04, 0.06):
A__ : Optional[int] = k
A__ : int = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : List[Any] ):
'''simple docstring'''
return str(self.k )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : List[str] = cva.imread(snake_case , 0 )
A__ , A__ : Union[str, Any] = img.shape
A__ : list[list[int]] = []
A__ : Optional[Any] = img.copy()
A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB )
A__ , A__ : List[Any] = np.gradient(snake_case )
A__ : List[Any] = dx**2
A__ : Any = dy**2
A__ : Dict = dx * dy
A__ : Any = 0.04
A__ : Optional[Any] = self.window_size // 2
for y in range(snake_case , h - offset ):
for x in range(snake_case , w - offset ):
A__ : List[str] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Tuple = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : int = (wxx * wyy) - (wxy**2)
A__ : Any = wxx + wyy
A__ : List[str] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A_ = HarrisCorner(0.04, 3)
A_ , A_ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 296
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'xlm-roberta'
def __init__( self : Tuple , snake_case : Optional[Any]=3_0522 , snake_case : Optional[Any]=768 , snake_case : Any=12 , snake_case : Optional[int]=12 , snake_case : Any=3072 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : Dict=0.1 , snake_case : Tuple=512 , snake_case : Union[str, Any]=2 , snake_case : Any=0.02 , snake_case : Union[str, Any]=1e-12 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : Optional[int]=2 , snake_case : int="absolute" , snake_case : Dict=True , snake_case : str=None , **snake_case : Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case )
A__ : Optional[int] = vocab_size
A__ : Optional[Any] = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : List[str] = num_attention_heads
A__ : Union[str, Any] = hidden_act
A__ : Any = intermediate_size
A__ : Dict = hidden_dropout_prob
A__ : Any = attention_probs_dropout_prob
A__ : Tuple = max_position_embeddings
A__ : List[str] = type_vocab_size
A__ : Optional[int] = initializer_range
A__ : Any = layer_norm_eps
A__ : List[str] = position_embedding_type
A__ : str = use_cache
A__ : int = classifier_dropout
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
@property
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
A__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A__ : List[str] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 355
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ = logging.get_logger(__name__)
A_ = Dict[str, Any]
A_ = List[Prediction]
@add_end_docstrings(UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : Dict = {}
if "threshold" in kwargs:
A__ : int = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ):
'''simple docstring'''
return super().__call__(*snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = load_image(snake_case )
A__ : int = torch.IntTensor([[image.height, image.width]] )
A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
A__ : List[str] = target_size
return inputs
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : str = model_inputs.pop("""target_size""" )
A__ : Dict = self.model(**snake_case )
A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
A__ : str = model_inputs["""bbox"""]
return model_outputs
def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ):
'''simple docstring'''
A__ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ : Tuple = target_size[0].tolist()
def unnormalize(snake_case : Optional[int] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
A__ : Tuple = ["""score""", """label""", """box"""]
A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case )
A__ : str = raw_annotations[0]
A__ : str = raw_annotation["""scores"""]
A__ : List[Any] = raw_annotation["""labels"""]
A__ : int = raw_annotation["""boxes"""]
A__ : str = scores.tolist()
A__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
A__ : int = [self._get_bounding_box(snake_case ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ : str = ["""score""", """label""", """box"""]
A__ : Dict = [
dict(zip(snake_case , snake_case ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
A__ , A__ , A__ , A__ : Any = box.int().tolist()
A__ : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int | float | str ) ->tuple[int, int]:
try:
A__ : Dict = float(UpperCAmelCase__ )
except ValueError:
raise ValueError("""Please enter a valid number""" )
A__ : int = decimal - int(UpperCAmelCase__ )
if fractional_part == 0:
return int(UpperCAmelCase__ ), 1
else:
A__ : int = len(str(UpperCAmelCase__ ).split(""".""" )[1] )
A__ : Optional[Any] = int(decimal * (1_0**number_of_frac_digits) )
A__ : Any = 1_0**number_of_frac_digits
A__ : Union[str, Any] = denominator, numerator
while True:
A__ : List[str] = dividend % divisor
if remainder == 0:
break
A__ : Tuple = divisor, remainder
A__ : Optional[int] = numerator / divisor, denominator / divisor
return int(UpperCAmelCase__ ), int(UpperCAmelCase__ )
if __name__ == "__main__":
print(F'{decimal_to_fraction(2) = }')
print(F'{decimal_to_fraction(89.0) = }')
print(F'{decimal_to_fraction("67") = }')
print(F'{decimal_to_fraction("45.0") = }')
print(F'{decimal_to_fraction(1.5) = }')
print(F'{decimal_to_fraction("6.25") = }')
print(F'{decimal_to_fraction("78td") = }')
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'table-transformer'
snake_case_ = ['past_key_values']
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(snake_case , snake_case ):
A__ : Optional[int] = backbone_config.get("""model_type""" )
A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
A__ : List[str] = config_class.from_dict(snake_case )
# set timm attributes to None
A__ , A__ , A__ : str = None, None, None
A__ : Tuple = use_timm_backbone
A__ : str = backbone_config
A__ : str = num_channels
A__ : List[Any] = num_queries
A__ : Optional[Any] = d_model
A__ : Tuple = encoder_ffn_dim
A__ : Union[str, Any] = encoder_layers
A__ : List[Any] = encoder_attention_heads
A__ : Optional[int] = decoder_ffn_dim
A__ : Any = decoder_layers
A__ : int = decoder_attention_heads
A__ : Any = dropout
A__ : Dict = attention_dropout
A__ : Dict = activation_dropout
A__ : Tuple = activation_function
A__ : List[str] = init_std
A__ : List[str] = init_xavier_std
A__ : Any = encoder_layerdrop
A__ : Optional[Any] = decoder_layerdrop
A__ : Union[str, Any] = encoder_layers
A__ : Dict = auxiliary_loss
A__ : List[Any] = position_embedding_type
A__ : Optional[Any] = backbone
A__ : str = use_pretrained_backbone
A__ : Union[str, Any] = dilation
# Hungarian matcher
A__ : Tuple = class_cost
A__ : Optional[Any] = bbox_cost
A__ : Dict = giou_cost
# Loss coefficients
A__ : Any = mask_loss_coefficient
A__ : str = dice_loss_coefficient
A__ : str = bbox_loss_coefficient
A__ : Union[str, Any] = giou_loss_coefficient
A__ : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return self.d_model
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = version.parse('1.11' )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return 1e-5
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return 12
| 296
| 0
|
"""simple docstring"""
import qiskit
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->qiskit.result.counts.Counts:
A__ : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" )
# Create a Quantum Circuit acting on the q register
A__ : List[Any] = qiskit.QuantumCircuit(UpperCAmelCase__, UpperCAmelCase__ )
# Map the quantum measurement to the classical bits
circuit.measure([0], [0] )
# Execute the circuit on the simulator
A__ : int = qiskit.execute(UpperCAmelCase__, UpperCAmelCase__, shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(UpperCAmelCase__ )
if __name__ == "__main__":
print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
| 357
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'Salesforce/blip-image-captioning-base'
snake_case_ = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case_ = 'image_captioner'
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ['image']
snake_case_ = ['text']
def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def _UpperCamelCase ( self : int , snake_case : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def _UpperCamelCase ( self : int , snake_case : List[Any] ):
'''simple docstring'''
return self.model.generate(**snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 296
| 0
|
"""simple docstring"""
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
A_ = '''src/transformers'''
A_ = '''docs/source/en/tasks'''
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : str ) ->Optional[int]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
# Find the start prompt.
A__ : List[Any] = 0
while not lines[start_index].startswith(UpperCAmelCase__ ):
start_index += 1
start_index += 1
A__ : str = start_index
while not lines[end_index].startswith(UpperCAmelCase__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
A_ = direct_transformers_import(TRANSFORMERS_PATH)
A_ = {
'''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
A_ = {
'''summarization.md''': ('''nllb''',),
'''translation.md''': ('''nllb''',),
}
def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str:
A__ : Optional[int] = TASK_GUIDE_TO_MODELS[task_guide]
A__ : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase__, set() )
A__ : Any = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n"
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : int=False ) ->int:
A__ : str = _find_text_in_file(
filename=os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""", end_prompt="""<!--End of the generated tip-->""", )
A__ : List[Any] = get_model_list_for_task(UpperCAmelCase__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ), """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'
""" to fix this.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 358
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = nn.Linear(3 , 4 )
A__ : Union[str, Any] = nn.BatchNormad(4 )
A__ : Union[str, Any] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[str] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , model.state_dict() )
A__ : List[str] = os.path.join(snake_case , """index.json""" )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
A__ : List[str] = os.path.join(snake_case , F'{key}.dat' )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on the fact weights are properly loaded
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
A__ : str = torch.randn(2 , 3 , dtype=snake_case )
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} )
A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" )
self.assertTrue(os.path.isfile(snake_case ) )
self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} )
A__ : str = load_offloaded_weight(snake_case , index["""weight"""] )
self.assertTrue(torch.equal(snake_case , snake_case ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = ModelForTest()
A__ : Union[str, Any] = model.state_dict()
A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k}
A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
# Duplicates are removed
A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} )
A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
| 296
| 0
|
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str:
A__ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any = """"""
else:
A__ : Tuple = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
A__ : str = in_proj_bias[: config.hidden_size]
A__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
A__ : Any = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any:
A__ : int = dct.pop(UpperCAmelCase__ )
A__ : Tuple = val
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple:
A__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
A__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
A__ : str = 1_0_0_0
A__ : List[str] = """huggingface/label-files"""
A__ : Dict = """imagenet-1k-id2label.json"""
A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) )
A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Optional[int] = idalabel
A__ : Dict = {v: k for k, v in idalabel.items()}
A__ : List[str] = int(deit_name[-6:-4] )
A__ : str = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
A__ : List[str] = 1_9_2
A__ : int = 7_6_8
A__ : List[Any] = 1_2
A__ : Dict = 3
elif deit_name[9:].startswith("""small""" ):
A__ : List[Any] = 3_8_4
A__ : List[str] = 1_5_3_6
A__ : Any = 1_2
A__ : Union[str, Any] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
A__ : int = 1_0_2_4
A__ : str = 4_0_9_6
A__ : Any = 2_4
A__ : int = 1_6
# load original model from timm
A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : Tuple = timm_model.state_dict()
A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval()
model.load_state_dict(UpperCAmelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
A__ : int = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size )
A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Optional[Any] = encoding["""pixel_values"""]
A__ : Union[str, Any] = model(UpperCAmelCase__ )
A__ : Union[str, Any] = timm_model(UpperCAmelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 359
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : int = parent
A__ : Union[str, Any] = batch_size
A__ : Optional[int] = seq_length
A__ : List[Any] = is_training
A__ : List[str] = use_input_mask
A__ : Optional[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : Union[str, Any] = vocab_size
A__ : List[Any] = hidden_size
A__ : Any = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Optional[int] = intermediate_size
A__ : Any = hidden_act
A__ : Tuple = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[str] = initializer_range
A__ : Any = num_labels
A__ : Any = num_choices
A__ : int = scope
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : int = None
A__ : int = None
A__ : List[str] = None
if self.use_labels:
A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case )
A__ : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : List[str] = BioGptForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ):
'''simple docstring'''
A__ : Union[str, Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
# create attention mask
A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
A__ : Any = self.seq_length // 2
A__ : str = 0
# first forward pass
A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1
A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
A__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , )
# get two different outputs
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""]
# select random slice
A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
A__ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ):
'''simple docstring'''
A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval()
A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
# first forward pass
A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ , A__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[
"""last_hidden_state"""
]
# select random slice
A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM(snake_case )
model.to(snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
A__ : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = BioGptModel(snake_case )
A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : int = BioGptForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : str = config_and_inputs
A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = BioGptModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : str = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = """left"""
# Define PAD Token = EOS Token = 50256
A__ : Optional[int] = tokenizer.eos_token
A__ : Dict = model.config.eos_token_id
# use different length sentences to test batching
A__ : Union[str, Any] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case )
A__ : str = inputs["""input_ids"""].to(snake_case )
A__ : Dict = model.generate(
input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , )
A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Any = model.generate(input_ids=snake_case )
A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings )
A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case )
A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case )
A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case )
A__ : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] = 3
A__ : List[Any] = input_dict["""input_ids"""]
A__ : Dict = input_ids.ne(1 ).to(snake_case )
A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Any = 3
A__ : List[Any] = """multi_label_classification"""
A__ : Dict = input_dict["""input_ids"""]
A__ : Tuple = input_ids.ne(1 ).to(snake_case )
A__ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ : Tuple = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] )
A__ : Dict = model(snake_case )[0]
A__ : Tuple = 4_2384
A__ : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
torch.manual_seed(0 )
A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case )
A__ : Optional[int] = model.generate(
**snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , )
A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case )
A__ : List[str] = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float:
return round(float(moles / volume ) * nfactor )
def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float:
return round(float((moles * 0.0821 * temperature) / (volume) ) )
def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float:
return round(float((moles * 0.0821 * temperature) / (pressure) ) )
def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float:
return round(float((pressure * volume) / (0.0821 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model'''}
A_ = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
A_ = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
A_ = 0
A_ = 1
A_ = 2
A_ = 3
A_ = 4
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 'left'
def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
A__ : str = 3
A__ : str = do_lower_case
A__ : Optional[Any] = remove_space
A__ : List[Any] = keep_accents
A__ : Union[str, Any] = vocab_file
A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ):
'''simple docstring'''
A__ : int = self.__dict__.copy()
A__ : int = None
return state
def __setstate__( self : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
A__ : Optional[int] = {}
A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ):
'''simple docstring'''
if self.remove_space:
A__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
A__ : Dict = inputs
A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
A__ : Any = unicodedata.normalize("""NFKD""" , snake_case )
A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] )
if self.do_lower_case:
A__ : Any = outputs.lower()
return outputs
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.preprocess_text(snake_case )
A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case )
A__ : Optional[int] = []
for piece in pieces:
if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
A__ : int = cur_pieces[1:]
else:
A__ : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case )
else:
new_pieces.append(snake_case )
return new_pieces
def _UpperCamelCase ( self : List[str] , snake_case : Tuple ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : Any ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip()
return out_string
def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case )
A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ : Any = []
A__ : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
A__ : str = []
sub_texts.append(snake_case )
else:
current_sub_text.append(snake_case )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
A__ : Dict = """""".join(snake_case )
A__ : int = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ : Tuple = self.clean_up_tokenization(snake_case )
return clean_text
else:
return text
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Tuple = [self.sep_token_id]
A__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is not None:
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1]
return ([0] * len(snake_case )) + [1, 1]
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Any = [self.sep_token_id]
A__ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : List[Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , """wb""" ) as fi:
A__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 296
| 0
|
"""simple docstring"""
import os
A_ ={'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000}
def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->int:
A__ : Optional[int] = 0
A__ : Optional[Any] = 0
while index < len(UpperCAmelCase__ ) - 1:
A__ : Any = SYMBOLS[numerals[index]]
A__ : List[str] = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->str:
A__ : Union[str, Any] = """"""
A__ : Dict = num // 1_0_0_0
numerals += m_count * "M"
num %= 1_0_0_0
A__ : Optional[Any] = num // 1_0_0
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_0_0
A__ : Dict = num // 1_0
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 1_0
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowerCAmelCase ( UpperCAmelCase__ : str = "/p089_roman.txt" ) ->int:
A__ : str = 0
with open(os.path.dirname(UpperCAmelCase__ ) + roman_numerals_filename ) as filea:
A__ : List[Any] = filea.readlines()
for line in lines:
A__ : Optional[Any] = line.strip()
A__ : Tuple = parse_roman_numerals(UpperCAmelCase__ )
A__ : Tuple = generate_roman_numerals(UpperCAmelCase__ )
savings += len(UpperCAmelCase__ ) - len(UpperCAmelCase__ )
return savings
if __name__ == "__main__":
print(F'{solution() = }')
| 361
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
| 0
|
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
A_ = logging.get_logger(__name__) # pylint: disable=invalid-name
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : List[str] , snake_case : CLIPSegForImageSegmentation , snake_case : CLIPSegProcessor , snake_case : AutoencoderKL , snake_case : CLIPTextModel , snake_case : CLIPTokenizer , snake_case : UNetaDConditionModel , snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case : StableDiffusionSafetyChecker , snake_case : CLIPImageProcessor , ):
'''simple docstring'''
super().__init__()
if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1:
A__ : Dict = (
F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
"""to update the config accordingly as leaving `steps_offset` might led to incorrect results"""
""" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"""
""" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"""
""" file"""
)
deprecate("""steps_offset!=1""" , """1.0.0""" , snake_case , standard_warn=snake_case )
A__ : Optional[int] = dict(scheduler.config )
A__ : str = 1
A__ : List[Any] = FrozenDict(snake_case )
if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False:
A__ : Tuple = (
F'The configuration file of this scheduler: {scheduler} has not set the configuration'
""" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"""
""" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"""
""" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"""
""" Hub, it would be very nice if you could open a Pull request for the"""
""" `scheduler/scheduler_config.json` file"""
)
deprecate("""skip_prk_steps not set""" , """1.0.0""" , snake_case , standard_warn=snake_case )
A__ : List[Any] = dict(scheduler.config )
A__ : Tuple = True
A__ : Any = FrozenDict(snake_case )
if safety_checker is None:
logger.warning(
F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
segmentation_model=snake_case , segmentation_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
A__ : Dict = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
self.enable_attention_slicing(snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
A__ : Optional[Any] = torch.device("""cuda""" )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(snake_case , snake_case )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(snake_case , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self : str , snake_case : Union[str, List[str]] , snake_case : Union[torch.FloatTensor, PIL.Image.Image] , snake_case : str , snake_case : int = 512 , snake_case : int = 512 , snake_case : int = 50 , snake_case : float = 7.5 , snake_case : Optional[Union[str, List[str]]] = None , snake_case : Optional[int] = 1 , snake_case : float = 0.0 , snake_case : Optional[torch.Generator] = None , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case : int = 1 , **snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : Optional[int] = self.segmentation_processor(
text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device )
A__ : List[str] = self.segmentation_model(**snake_case )
A__ : Union[str, Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
A__ : Tuple = self.numpy_to_pil(snake_case )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
A__ : Dict = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=snake_case , image=snake_case , mask_image=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , )
| 362
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''src/diffusers'''
A_ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any:
return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]:
A__ : Any = object_name.split(""".""" )
A__ : int = 0
# First let's find the module where our object lives.
A__ : str = parts[i]
while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ):
i += 1
if i < len(UpperCAmelCase__ ):
A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] )
if i >= len(UpperCAmelCase__ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
A__ : Optional[Any] = """"""
A__ : Any = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
A__ : List[Any] = line_index
while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : List[Any] = lines[start_index:line_index]
return "".join(UpperCAmelCase__ )
A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
A_ = re.compile(r'''<FILL\s+[^>]*>''')
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]:
A__ : Dict = code.split("""\n""" )
A__ : List[Any] = 0
while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCAmelCase__ ):
return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0
if has_indent:
A__ : Union[str, Any] = f'class Bla:\n{code}'
A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ )
A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ )
A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
A__ : Dict = []
A__ : List[str] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCAmelCase__ ):
A__ : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
A__ , A__ , A__ : Dict = search.groups()
A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ )
A__ : int = get_indent(UpperCAmelCase__ )
A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2
A__ : Tuple = theoretical_indent
A__ : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
A__ : Tuple = True
while line_index < len(UpperCAmelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
break
A__ : Optional[int] = lines[line_index]
A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : Dict = lines[start_index:line_index]
A__ : Tuple = """""".join(UpperCAmelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None]
A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCAmelCase__ ) > 0:
A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" )
A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
A__ , A__ , A__ : Union[str, Any] = pattern.groups()
A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if option.strip() == "all-casing":
A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ )
A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
A__ : Tuple = start_index + 1
if overwrite and len(UpperCAmelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(UpperCAmelCase__ )
return diffs
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any:
A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ )
A__ : str = []
for filename in all_files:
A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(UpperCAmelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 296
| 0
|
"""simple docstring"""
from math import isclose, sqrt
def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->tuple[float, float, float]:
A__ : List[Any] = point_y / 4 / point_x
A__ : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
A__ : str = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
A__ : Dict = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
A__ : Optional[int] = outgoing_gradient**2 + 4
A__ : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
A__ : Any = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0
A__ : Dict = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
A__ : List[str] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
A__ : int = x_minus if isclose(UpperCAmelCase__, UpperCAmelCase__ ) else x_plus
A__ : Any = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def _lowerCAmelCase ( UpperCAmelCase__ : float = 1.4, UpperCAmelCase__ : float = -9.6 ) ->int:
A__ : int = 0
A__ : float = first_x_coord
A__ : float = first_y_coord
A__ : float = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
A__ : Optional[Any] = next_point(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'{solution() = }')
| 363
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 296
| 0
|
"""simple docstring"""
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
A_ = {
'''169M''': 12,
'''430M''': 24,
'''1B5''': 24,
'''3B''': 32,
'''7B''': 32,
'''14B''': 40,
}
A_ = {
'''169M''': 768,
'''430M''': 1024,
'''1B5''': 2048,
'''3B''': 2560,
'''7B''': 4096,
'''14B''': 5120,
}
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->List[Any]:
A__ : Tuple = list(state_dict.keys() )
for name in state_dict_keys:
A__ : Optional[Any] = state_dict.pop(UpperCAmelCase__ )
# emb -> embedding
if name.startswith("""emb.""" ):
A__ : Optional[Any] = name.replace("""emb.""", """embeddings.""" )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith("""blocks.0.ln0""" ):
A__ : List[Any] = name.replace("""blocks.0.ln0""", """blocks.0.pre_ln""" )
# att -> attention
A__ : Union[str, Any] = re.sub(R"""blocks\.(\d+)\.att""", R"""blocks.\1.attention""", UpperCAmelCase__ )
# ffn -> feed_forward
A__ : int = re.sub(R"""blocks\.(\d+)\.ffn""", R"""blocks.\1.feed_forward""", UpperCAmelCase__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith(""".time_mix_k""" ):
A__ : List[str] = name.replace(""".time_mix_k""", """.time_mix_key""" )
# time_mix_v -> time_mix_value and reshape
if name.endswith(""".time_mix_v""" ):
A__ : int = name.replace(""".time_mix_v""", """.time_mix_value""" )
# time_mix_r -> time_mix_key and reshape
if name.endswith(""".time_mix_r""" ):
A__ : int = name.replace(""".time_mix_r""", """.time_mix_receptance""" )
if name != "head.weight":
A__ : Union[str, Any] = """rwkv.""" + name
A__ : Optional[int] = weight
return state_dict
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any=None, UpperCAmelCase__ : int=None, UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Union[str, Any]=None ) ->Any:
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" )
A__ : str = 5_0_2_7_7
A__ : Optional[Any] = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" )
else:
A__ : Optional[int] = PreTrainedTokenizerFast(tokenizer_file=UpperCAmelCase__ )
A__ : List[Any] = len(UpperCAmelCase__ )
tokenizer.save_pretrained(UpperCAmelCase__ )
# 2. Build the config
A__ : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
A__ : int = candidate
break
if size is None:
raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" )
if size not in possible_sizes:
raise ValueError(f'`size` should be one of {possible_sizes}, got {size}.' )
A__ : int = RwkvConfig(
vocab_size=UpperCAmelCase__, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], )
config.save_pretrained(UpperCAmelCase__ )
# 3. Download model file then convert state_dict
A__ : Optional[Any] = hf_hub_download(UpperCAmelCase__, UpperCAmelCase__ )
A__ : Dict = torch.load(UpperCAmelCase__, map_location="""cpu""" )
A__ : List[str] = convert_state_dict(UpperCAmelCase__ )
# 4. Split in shards and save
A__ : str = shard_checkpoint(UpperCAmelCase__ )
for shard_file, shard in shards.items():
torch.save(UpperCAmelCase__, os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) )
if index is not None:
A__ : List[Any] = os.path.join(UpperCAmelCase__, UpperCAmelCase__ )
# Save the index as well
with open(UpperCAmelCase__, """w""", encoding="""utf-8""" ) as f:
A__ : Dict = json.dumps(UpperCAmelCase__, indent=2, sort_keys=UpperCAmelCase__ ) + """\n"""
f.write(UpperCAmelCase__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
"""Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" )
A__ : Optional[Any] = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
A__ : Union[str, Any] = torch.load(os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" )
A__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__ )
model.push_to_hub(UpperCAmelCase__, max_shard_size="""2GB""" )
tokenizer.push_to_hub(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.'''
)
parser.add_argument(
'''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.'''
)
parser.add_argument(
'''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.'''
)
parser.add_argument(
'''--tokenizer_file''',
default=None,
type=str,
help='''Path to the tokenizer file to use (if not provided, only the model is converted).''',
)
parser.add_argument(
'''--size''',
default=None,
type=str,
help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Push to the Hub the converted model.''',
)
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help='''Name of the pushed model on the Hub, including the username / organization.''',
)
A_ = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 364
|
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
A_ = object()
# For specifying empty leaf dict `{}`
A_ = object()
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict:
A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ):
A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )]
if matches and all(UpperCAmelCase__ ):
return True
return False
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict:
def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ):
for rule, replacement in rules:
if _match(UpperCAmelCase__, UpperCAmelCase__ ):
return replacement
return val
return replace
def _lowerCAmelCase ( ) ->Tuple:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )),
(("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any:
A__ : Union[str, Any] = _get_partition_rules()
A__ : int = _replacement_rules(UpperCAmelCase__ )
A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )}
A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCAmelCase__ ) )
| 296
| 0
|
"""simple docstring"""
import math
def _lowerCAmelCase ( UpperCAmelCase__ : list, UpperCAmelCase__ : int ) ->int:
A__ : Any = len(UpperCAmelCase__ )
A__ : Optional[int] = int(math.floor(math.sqrt(UpperCAmelCase__ ) ) )
A__ : int = 0
while arr[min(UpperCAmelCase__, UpperCAmelCase__ ) - 1] < x:
A__ : int = step
step += int(math.floor(math.sqrt(UpperCAmelCase__ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
A__ : Union[str, Any] = prev + 1
if prev == min(UpperCAmelCase__, UpperCAmelCase__ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
A_ = input('''Enter numbers separated by a comma:\n''').strip()
A_ = [int(item) for item in user_input.split(''',''')]
A_ = int(input('''Enter the number to be searched:\n'''))
A_ = jump_search(arr, x)
if res == -1:
print('''Number not found!''')
else:
print(F'Number {x} is at index {res}')
| 365
|
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : Optional[Any] = batch_size
A__ : Dict = seq_length
A__ : str = is_training
A__ : Tuple = use_input_mask
A__ : Dict = use_token_type_ids
A__ : Dict = use_labels
A__ : int = vocab_size
A__ : List[str] = hidden_size
A__ : Union[str, Any] = num_hidden_layers
A__ : int = num_attention_heads
A__ : List[str] = intermediate_size
A__ : int = hidden_act
A__ : str = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : int = num_labels
A__ : Optional[int] = num_choices
A__ : Optional[int] = scope
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Any = None
if self.use_input_mask:
A__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] = None
if self.use_token_type_ids:
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : List[str] = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.get_config()
A__ : List[str] = 300
return config
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = self.prepare_config_and_inputs()
A__ : List[str] = True
A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : List[str] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
A__ : List[str] = model(snake_case , token_type_ids=snake_case )
A__ : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ):
'''simple docstring'''
A__ : Dict = True
A__ : Optional[Any] = MraModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Dict = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Optional[Any] = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Union[str, Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : str = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Dict = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = ()
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = MraModelTester(self )
A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[str] = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : str = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="""MRA does not output attentions""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Any = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : List[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , snake_case )
A__ : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Dict = 5_0265
A__ : List[str] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : List[Any] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Union[str, Any] = 5_0265
A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : Optional[int] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 296
| 0
|
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->str:
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise TypeError("""'float' object cannot be interpreted as an integer""" )
if isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise TypeError("""'str' object cannot be interpreted as an integer""" )
if num == 0:
return "0b0"
A__ : Optional[int] = False
if num < 0:
A__ : int = True
A__ : int = -num
A__ : list[int] = []
while num > 0:
binary.insert(0, num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(UpperCAmelCase__ ) for e in binary )
return "0b" + "".join(str(UpperCAmelCase__ ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 366
|
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
A_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
A_ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
A_ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ):
'''simple docstring'''
A__ : Optional[int] = mean_squared_error(
snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case )
return {"mse": mse}
| 296
| 0
|
"""simple docstring"""
from PIL import Image
def _lowerCAmelCase ( UpperCAmelCase__ : Image, UpperCAmelCase__ : float ) ->Image:
def brightness(UpperCAmelCase__ : int ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" )
return img.point(UpperCAmelCase__ )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change brightness to 100
A_ = change_brightness(img, 100)
brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
| 367
|
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ):
'''simple docstring'''
warnings.warn(
"""`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """
"""instead.""" , snake_case , )
super().__init__(args=snake_case , **snake_case )
| 296
| 0
|
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Any , snake_case : Any , snake_case : Any , snake_case : Any=1024 , snake_case : Optional[int]=1024 , snake_case : Optional[Any]=3.6 ):
'''simple docstring'''
A__ : Optional[int] = tokenizer
A__ : Optional[int] = tokenizer.bos_token_id
A__ : Dict = dataset
A__ : Optional[int] = seq_length
A__ : Union[str, Any] = seq_length * chars_per_token * num_of_sequences
def __iter__( self : Any ):
'''simple docstring'''
A__ : int = iter(self.dataset )
A__ : str = True
while more_examples:
A__ : Any = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(snake_case )["""content"""] )
buffer_len += len(buffer[-1] )
except StopIteration:
A__ : str = False
break
A__ : Optional[Any] = tokenizer(snake_case , truncation=snake_case )["""input_ids"""]
A__ : Optional[Any] = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id] )
for i in range(0 , len(snake_case ) , self.seq_length ):
A__ : int = all_token_ids[i : i + self.seq_length]
if len(snake_case ) == self.seq_length:
yield torch.tensor(snake_case )
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Dict:
A__ : List[Any] = {"""streaming""": True}
A__ : Optional[int] = load_dataset(args.dataset_name, split="""train""", **UpperCAmelCase__ )
A__ : str = ConstantLengthDataset(UpperCAmelCase__, UpperCAmelCase__, seq_length=args.seq_length )
A__ : Union[str, Any] = DataLoader(UpperCAmelCase__, batch_size=args.batch_size )
return eval_dataloader
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->int:
model.eval()
A__ : Tuple = []
for step, batch in enumerate(UpperCAmelCase__ ):
with torch.no_grad():
A__ : List[str] = model(UpperCAmelCase__, labels=UpperCAmelCase__ )
A__ : Dict = outputs.loss.repeat(args.batch_size )
losses.append(accelerator.gather(UpperCAmelCase__ ) )
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
A__ : Union[str, Any] = torch.mean(torch.cat(UpperCAmelCase__ ) )
try:
A__ : Union[str, Any] = torch.exp(UpperCAmelCase__ )
except OverflowError:
A__ : Union[str, Any] = float("""inf""" )
return loss.item(), perplexity.item()
# Setup Accelerator
A_ = Accelerator()
# Parse configuration
A_ = HfArgumentParser(EvaluationArguments)
A_ = parser.parse_args()
set_seed(args.seed)
# Logging
A_ = logging.getLogger(__name__)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
# Load model and tokenizer
A_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
A_ = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
A_ = create_dataloader(args)
# Prepare everything with our `accelerator`.
A_ , A_ = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info('''Evaluating and saving model after training''')
A_ , A_ = evaluate(args)
logger.info(F'loss/eval: {eval_loss}, perplexity: {perplexity}')
| 368
|
"""simple docstring"""
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
A_ = random.Random()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]:
if rng is None:
A__ : Optional[int] = global_rng
A__ : Optional[Any] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ):
'''simple docstring'''
A__ : Any = parent
A__ : str = batch_size
A__ : List[str] = min_seq_length
A__ : Dict = max_seq_length
A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A__ : Dict = padding_value
A__ : Optional[Any] = sampling_rate
A__ : Any = return_attention_mask
A__ : Optional[int] = do_normalize
A__ : Tuple = feature_size
A__ : Optional[Any] = chunk_length
A__ : Union[str, Any] = hop_length
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ):
'''simple docstring'''
def _flatten(snake_case : Dict ):
return list(itertools.chain(*snake_case ) )
if equal_length:
A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A__ : Optional[int] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = WhisperFeatureExtractor if is_speech_available() else None
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : str = WhisperFeatureExtractionTester(self )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0]
check_json_file_has_correct_format(snake_case )
A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case )
A__ : str = feat_extract_first.to_dict()
A__ : Union[str, Any] = feat_extract_second.to_dict()
A__ : List[Any] = feat_extract_first.mel_filters
A__ : Optional[Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A__ : Any = os.path.join(snake_case , """feat_extract.json""" )
feat_extract_first.to_json_file(snake_case )
A__ : int = self.feature_extraction_class.from_json_file(snake_case )
A__ : Dict = feat_extract_first.to_dict()
A__ : str = feat_extract_second.to_dict()
A__ : str = feat_extract_first.mel_filters
A__ : Dict = feat_extract_second.mel_filters
self.assertTrue(np.allclose(snake_case , snake_case ) )
self.assertEqual(snake_case , snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
# Test feature size
A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test batched
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A__ : str = np.asarray(snake_case )
A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
# Test truncation required
A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )]
A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs]
A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs]
A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated]
A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features
A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ):
self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
import torch
A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa )
A__ : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = torch.tensor(
[
0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951,
0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678,
0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554,
-0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854
] )
# fmt: on
A__ : Optional[Any] = self._load_datasamples(1 )
A__ : Union[str, Any] = WhisperFeatureExtractor()
A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 3000) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A__ : Union[str, Any] = self._load_datasamples(1 )[0]
A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue
A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0]
self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
| 296
| 0
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ = logging.get_logger(__name__)
A_ = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
snake_case_ = 'nat'
snake_case_ = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Union[str, Any] , snake_case : Any=4 , snake_case : Any=3 , snake_case : Optional[Any]=64 , snake_case : Any=[3, 4, 6, 5] , snake_case : List[str]=[2, 4, 8, 16] , snake_case : str=7 , snake_case : List[Any]=3.0 , snake_case : Optional[Any]=True , snake_case : Any=0.0 , snake_case : int=0.0 , snake_case : int=0.1 , snake_case : int="gelu" , snake_case : Optional[Any]=0.02 , snake_case : List[str]=1e-5 , snake_case : Tuple=0.0 , snake_case : Dict=None , snake_case : Tuple=None , **snake_case : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**snake_case )
A__ : Optional[int] = patch_size
A__ : Optional[int] = num_channels
A__ : Dict = embed_dim
A__ : str = depths
A__ : Any = len(snake_case )
A__ : Tuple = num_heads
A__ : Tuple = kernel_size
A__ : int = mlp_ratio
A__ : int = qkv_bias
A__ : Any = hidden_dropout_prob
A__ : List[str] = attention_probs_dropout_prob
A__ : Any = drop_path_rate
A__ : str = hidden_act
A__ : Optional[int] = layer_norm_eps
A__ : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A__ : Optional[Any] = int(embed_dim * 2 ** (len(snake_case ) - 1) )
A__ : Tuple = layer_scale_init_value
A__ : Optional[int] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(snake_case ) + 1 )]
A__ : Dict = get_aligned_output_features_output_indices(
out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
| 369
|
"""simple docstring"""
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] ):
'''simple docstring'''
A__ : Optional[int] = (0, 0)
A__ : Dict = None
A__ : int = 0
A__ : str = 0
A__ : Optional[Any] = 0
def __eq__( self : str , snake_case : Optional[int] ):
'''simple docstring'''
return self.position == cell.position
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
print(self.position )
class __SCREAMING_SNAKE_CASE :
def __init__( self : int , snake_case : Any=(5, 5) ):
'''simple docstring'''
A__ : Optional[int] = np.zeros(snake_case )
A__ : List[Any] = world_size[0]
A__ : Dict = world_size[1]
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
print(self.w )
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : int = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
A__ : int = cell.position[0]
A__ : str = cell.position[1]
A__ : Any = []
for n in neughbour_cord:
A__ : List[Any] = current_x + n[0]
A__ : Tuple = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
A__ : List[Any] = Cell()
A__ : str = (x, y)
A__ : Optional[Any] = cell
neighbours.append(snake_case )
return neighbours
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict:
A__ : Union[str, Any] = []
A__ : Optional[int] = []
_open.append(UpperCAmelCase__ )
while _open:
A__ : List[Any] = np.argmin([n.f for n in _open] )
A__ : Union[str, Any] = _open[min_f]
_closed.append(_open.pop(UpperCAmelCase__ ) )
if current == goal:
break
for n in world.get_neigbours(UpperCAmelCase__ ):
for c in _closed:
if c == n:
continue
A__ : Dict = current.g + 1
A__ , A__ : int = n.position
A__ , A__ : Optional[int] = goal.position
A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2
A__ : Optional[int] = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(UpperCAmelCase__ )
A__ : List[str] = []
while current.parent is not None:
path.append(current.position )
A__ : Union[str, Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
A_ = Gridworld()
# Start position and goal
A_ = Cell()
A_ = (0, 0)
A_ = Cell()
A_ = (4, 4)
print(F'path from {start.position} to {goal.position}')
A_ = astar(world, start, goal)
# Just for visual reasons.
for i in s:
A_ = 1
print(world.w)
| 296
| 0
|
"""simple docstring"""
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Dict=None ) ->str:
return field(default_factory=lambda: default, metadata=UpperCAmelCase__ )
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = list_field(
default=[] , metadata={
'help': (
'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'
' of all available models'
)
} , )
snake_case_ = list_field(
default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} )
snake_case_ = list_field(
default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Use FP16 to accelerate inference.'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Benchmark training of model'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Verbose memory tracing'} )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={
'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'
} , )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Trace memory line by line'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save result to a CSV file'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save all print statements in a log file'} )
snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Whether to print environment information'} )
snake_case_ = field(
default=UpperCamelCase , metadata={
'help': (
'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'
' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'
' for debugging / testing and on TPU.'
)
} , )
snake_case_ = field(
default=F"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , )
snake_case_ = field(
default=F"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , )
snake_case_ = field(
default=F"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , )
snake_case_ = field(
default=F"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , )
snake_case_ = field(
default=F"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , )
snake_case_ = field(
default=F"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , )
snake_case_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} )
snake_case_ = field(
default=UpperCamelCase , metadata={
'help': (
'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'
' model weights.'
)
} , )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
warnings.warn(
F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils'
""" are deprecated in general and it is advised to use external Benchmarking libraries """
""" to benchmark Transformer models.""" , snake_case , )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def _UpperCamelCase ( self : int ):
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
"""Please make sure you provide at least one model name / model identifier, *e.g.* `--models"""
""" bert-base-cased` or `args.models = ['bert-base-cased'].""" )
return self.models
@property
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("""Multiprocessing is currently not possible on TPU.""" )
return False
else:
return True
| 370
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str:
A__ : Optional[int] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str:
for i in range(config.num_hidden_layers ):
if base_model:
A__ : Any = """"""
else:
A__ : Tuple = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[Any] = in_proj_weight[
: config.hidden_size, :
]
A__ : str = in_proj_bias[: config.hidden_size]
A__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Dict = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
A__ : Any = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any:
A__ : int = dct.pop(UpperCAmelCase__ )
A__ : Tuple = val
def _lowerCAmelCase ( ) ->List[Any]:
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple:
A__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
A__ : Tuple = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
A__ : str = 1_0_0_0
A__ : List[str] = """huggingface/label-files"""
A__ : Dict = """imagenet-1k-id2label.json"""
A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) )
A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Optional[int] = idalabel
A__ : Dict = {v: k for k, v in idalabel.items()}
A__ : List[str] = int(deit_name[-6:-4] )
A__ : str = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
A__ : List[str] = 1_9_2
A__ : int = 7_6_8
A__ : List[Any] = 1_2
A__ : Dict = 3
elif deit_name[9:].startswith("""small""" ):
A__ : List[Any] = 3_8_4
A__ : List[str] = 1_5_3_6
A__ : Any = 1_2
A__ : Union[str, Any] = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
A__ : int = 1_0_2_4
A__ : str = 4_0_9_6
A__ : Any = 2_4
A__ : int = 1_6
# load original model from timm
A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
A__ : Tuple = timm_model.state_dict()
A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ )
for src, dest in rename_keys:
rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval()
model.load_state_dict(UpperCAmelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
A__ : int = int(
(2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size )
A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" )
A__ : Optional[Any] = encoding["""pixel_values"""]
A__ : Union[str, Any] = model(UpperCAmelCase__ )
A__ : Union[str, Any] = timm_model(UpperCAmelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 )
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--deit_name''',
default='''vit_deit_base_distilled_patch16_224''',
type=str,
help='''Name of the DeiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
A_ = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) ->int:
A__ : Optional[Any] = 1
A__ : List[Any] = 1
A__ : List[Any] = {1: 1}
for inputa in range(2, UpperCAmelCase__ ):
A__ : List[str] = 0
A__ : Optional[int] = inputa
while True:
if number in counters:
counter += counters[number]
break
if number % 2 == 0:
number //= 2
counter += 1
else:
A__ : List[str] = (3 * number) + 1
counter += 1
if inputa not in counters:
A__ : str = counter
if counter > pre_counter:
A__ : str = inputa
A__ : Tuple = counter
return largest_number
if __name__ == "__main__":
print(solution(int(input().strip())))
| 371
|
"""simple docstring"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
A__ : Optional[int] = (low + high) // 2
A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ )
A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]:
A__ , A__ : Dict = float("""-inf""" ), -1
A__ , A__ : Optional[Any] = float("""-inf""" ), -1
A__ : int | float = 0
for i in range(UpperCAmelCase__, low - 1, -1 ):
summ += arr[i]
if summ > left_sum:
A__ : Optional[int] = summ
A__ : Union[str, Any] = i
A__ : Optional[Any] = 0
for i in range(mid + 1, high + 1 ):
summ += arr[i]
if summ > right_sum:
A__ : int = summ
A__ : Union[str, Any] = i
return max_left, max_right, (left_sum + right_sum)
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float:
A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
A__ : Any = time.time()
max_subarray(UpperCAmelCase__, 0, input_size - 1 )
A__ : List[Any] = time.time()
return end - start
def _lowerCAmelCase ( ) ->None:
A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0]
A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ):
print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ )
plt.plot(UpperCAmelCase__, UpperCAmelCase__ )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 296
| 0
|
"""simple docstring"""
import unittest
from transformers import DonutProcessor
A_ = '''naver-clova-ix/donut-base'''
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = DonutProcessor.from_pretrained(snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : int = {
"""name""": """John Doe""",
"""age""": """99""",
"""city""": """Atlanta""",
"""state""": """GA""",
"""zip""": """30301""",
"""phone""": """123-4567""",
"""nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}],
}
A__ : Optional[Any] = (
"""<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>"""
"""<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>"""
"""<s_nicknames><s_nickname>Johnny</s_nickname>"""
"""<sep/><s_nickname>JD</s_nickname></s_nicknames>"""
)
A__ : int = self.processor.tokenajson(snake_case )
self.assertDictEqual(snake_case , snake_case )
| 350
|
"""simple docstring"""
from __future__ import annotations
class __SCREAMING_SNAKE_CASE :
def __init__( self : Dict , snake_case : int ):
'''simple docstring'''
A__ : List[Any] = order
# a_{0} ... a_{k}
A__ : List[Any] = [1.0] + [0.0] * order
# b_{0} ... b_{k}
A__ : str = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
A__ : Union[str, Any] = [0.0] * self.order
# y[n-1] ... y[n-k]
A__ : List[str] = [0.0] * self.order
def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ):
'''simple docstring'''
if len(snake_case ) < self.order:
A__ : Any = [1.0, *a_coeffs]
if len(snake_case ) != self.order + 1:
A__ : str = (
F'Expected a_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
if len(snake_case ) != self.order + 1:
A__ : Union[str, Any] = (
F'Expected b_coeffs to have {self.order + 1} elements '
F'for {self.order}-order filter, got {len(snake_case )}'
)
raise ValueError(snake_case )
A__ : Dict = a_coeffs
A__ : Any = b_coeffs
def _UpperCamelCase ( self : List[str] , snake_case : float ):
'''simple docstring'''
A__ : str = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
A__ : Tuple = self.input_history[:-1]
A__ : int = self.output_history[:-1]
A__ : Dict = sample
A__ : Tuple = result
return result
| 296
| 0
|
"""simple docstring"""
from typing import List
from .keymap import KEYMAP, get_character
def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->Optional[Any]:
def decorator(UpperCAmelCase__ : List[str] ):
A__ : Union[str, Any] = getattr(UpperCAmelCase__, """handle_key""", [] )
handle += [key]
setattr(UpperCAmelCase__, """handle_key""", UpperCAmelCase__ )
return func
return decorator
def _lowerCAmelCase ( *UpperCAmelCase__ : List[str] ) ->List[Any]:
def decorator(UpperCAmelCase__ : List[Any] ):
A__ : Optional[int] = getattr(UpperCAmelCase__, """handle_key""", [] )
handle += keys
setattr(UpperCAmelCase__, """handle_key""", UpperCAmelCase__ )
return func
return decorator
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __new__( cls : Tuple , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = super().__new__(cls , snake_case , snake_case , snake_case )
if not hasattr(snake_case , """key_handler""" ):
setattr(snake_case , """key_handler""" , {} )
setattr(snake_case , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
A__ : Tuple = getattr(snake_case , """handle_key""" , [] )
for key in handled_keys:
A__ : str = value
return new_cls
@staticmethod
def _UpperCamelCase ( cls : str ):
'''simple docstring'''
A__ : Tuple = get_character()
if char != KEYMAP["undefined"]:
A__ : int = ord(snake_case )
A__ : Optional[Any] = cls.key_handler.get(snake_case )
if handler:
A__ : Union[str, Any] = char
return handler(cls )
else:
return None
def _lowerCAmelCase ( cls : List[str] ) ->Tuple:
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy() )
| 351
|
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ):
'''simple docstring'''
A__ : Tuple = parent
A__ : Union[str, Any] = batch_size
A__ : List[str] = seq_length
A__ : Optional[int] = is_training
A__ : Dict = use_input_mask
A__ : Any = use_token_type_ids
A__ : Optional[Any] = use_labels
A__ : List[str] = vocab_size
A__ : Optional[int] = hidden_size
A__ : Optional[Any] = num_hidden_layers
A__ : Any = num_attention_heads
A__ : List[Any] = intermediate_size
A__ : Optional[Any] = hidden_act
A__ : Optional[int] = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : str = max_position_embeddings
A__ : List[str] = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[Any] = initializer_range
A__ : Optional[int] = num_labels
A__ : Dict = num_choices
A__ : Dict = scope
A__ : List[Any] = vocab_size - 1
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : List[Any] = None
if self.use_input_mask:
A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_labels:
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Tuple = self.get_config()
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs()
A__ : Union[str, Any] = True
return config, input_ids, input_mask, token_labels
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ):
'''simple docstring'''
A__ : Any = GPTNeoXModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case )
A__ : Optional[int] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = True
A__ : str = GPTNeoXModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ):
'''simple docstring'''
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ):
'''simple docstring'''
A__ : int = self.num_labels
A__ : int = GPTNeoXForQuestionAnswering(snake_case )
model.to(snake_case )
model.eval()
A__ : Optional[Any] = model(snake_case , attention_mask=snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ):
'''simple docstring'''
A__ : List[Any] = self.num_labels
A__ : Tuple = GPTNeoXForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Tuple = self.num_labels
A__ : Any = GPTNeoXForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ):
'''simple docstring'''
A__ : Optional[int] = True
A__ : Any = GPTNeoXForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
# first forward pass
A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ : str = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 )
A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case )
A__ : List[Any] = output_from_no_past["""hidden_states"""][0]
A__ : List[str] = model(
snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0]
# select random slice
A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : str = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ : Dict = config_and_inputs
A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': GPTNeoXModel,
'question-answering': GPTNeoXForQuestionAnswering,
'text-classification': GPTNeoXForSequenceClassification,
'text-generation': GPTNeoXForCausalLM,
'token-classification': GPTNeoXForTokenClassification,
'zero-shot': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = GPTNeoXModelTester(self )
A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ : Optional[Any] = None
self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common()
A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size )
A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Union[str, Any] = GPTNeoXModel(snake_case )
original_model.to(snake_case )
original_model.eval()
A__ : Optional[int] = original_model(snake_case ).last_hidden_state
A__ : List[str] = original_model(snake_case ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0}
A__ : Optional[int] = GPTNeoXModel(snake_case )
scaled_model.to(snake_case )
scaled_model.eval()
A__ : List[str] = scaled_model(snake_case ).last_hidden_state
A__ : Tuple = scaled_model(snake_case ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(snake_case )
A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 )
A__ : Tuple = tokenizer.batch_decode(snake_case )[0]
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A_ = logging.get_logger(__name__)
A_ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
A_ = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
A_ = {'''facebook/blenderbot_small-90M''': 512}
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Tuple:
A__ : str = set()
A__ : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A__ : List[str] = char
A__ : List[str] = set(UpperCAmelCase__ )
return pairs
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = ['input_ids', 'attention_mask']
def __init__( self : Any , snake_case : Any , snake_case : Optional[int] , snake_case : List[Any]="__start__" , snake_case : str="__end__" , snake_case : str="__unk__" , snake_case : List[str]="__null__" , **snake_case : List[str] , ):
'''simple docstring'''
super().__init__(unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , pad_token=snake_case , **snake_case )
with open(snake_case , encoding="""utf-8""" ) as vocab_handle:
A__ : Tuple = json.load(snake_case )
A__ : List[str] = {v: k for k, v in self.encoder.items()}
with open(snake_case , encoding="""utf-8""" ) as merges_handle:
A__ : Union[str, Any] = merges_handle.read().split("""\n""" )[1:-1]
A__ : Optional[Any] = [tuple(merge.split() ) for merge in merges]
A__ : List[str] = dict(zip(snake_case , range(len(snake_case ) ) ) )
A__ : Optional[int] = {}
@property
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
return len(self.encoder )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A__ : Dict = re.sub("""([.,!?()])""" , r""" \1""" , snake_case )
A__ : List[str] = re.sub("""(')""" , r""" \1 """ , snake_case )
A__ : Optional[Any] = re.sub(r"""\s{2,}""" , """ """ , snake_case )
if "\n" in token:
A__ : Optional[int] = token.replace("""\n""" , """ __newln__""" )
A__ : Tuple = token.split(""" """ )
A__ : List[Any] = []
for token in tokens:
if not len(snake_case ):
continue
A__ : Optional[Any] = token.lower()
A__ : List[Any] = tuple(snake_case )
A__ : int = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
A__ : Any = get_pairs(snake_case )
if not pairs:
words.append(snake_case )
continue
while True:
A__ : Optional[Any] = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
A__ : List[Any] = bigram
A__ : Dict = []
A__ : List[str] = 0
while i < len(snake_case ):
try:
A__ : int = word.index(snake_case , snake_case )
new_word.extend(word[i:j] )
A__ : Tuple = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A__ : Any = tuple(snake_case )
A__ : Optional[int] = new_word
if len(snake_case ) == 1:
break
else:
A__ : str = get_pairs(snake_case )
A__ : Dict = """@@ """.join(snake_case )
A__ : str = word[:-4]
A__ : Dict = word
words.append(snake_case )
return " ".join(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : str ):
'''simple docstring'''
A__ : str = []
A__ : Union[str, Any] = re.findall(r"""\S+\n?""" , snake_case )
for token in words:
split_tokens.extend(list(self.bpe(snake_case ).split(""" """ ) ) )
return split_tokens
def _UpperCamelCase ( self : List[Any] , snake_case : str ):
'''simple docstring'''
A__ : Optional[Any] = token.lower()
return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) )
def _UpperCamelCase ( self : List[str] , snake_case : int ):
'''simple docstring'''
return self.decoder.get(snake_case , self.unk_token )
def _UpperCamelCase ( self : List[Any] , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = """ """.join(snake_case ).replace("""@@ """ , """""" ).strip()
return out_string
def _UpperCamelCase ( self : Tuple , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : Union[str, Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
A__ : Any = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(snake_case , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + """\n""" )
A__ : Tuple = 0
with open(snake_case , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
A__ : Tuple = token_index
writer.write(""" """.join(snake_case ) + """\n""" )
index += 1
return vocab_file, merge_file
| 352
|
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int:
A__ : defaultdict = defaultdict(UpperCAmelCase__ )
A__ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ):
if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1:
continue
A__ : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'{solution() = }')
| 296
| 0
|
"""simple docstring"""
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
A_ = logging.get_logger(__name__)
A_ = {
'''tensor(bool)''': np.bool_,
'''tensor(int8)''': np.inta,
'''tensor(uint8)''': np.uinta,
'''tensor(int16)''': np.intaa,
'''tensor(uint16)''': np.uintaa,
'''tensor(int32)''': np.intaa,
'''tensor(uint32)''': np.uintaa,
'''tensor(int64)''': np.intaa,
'''tensor(uint64)''': np.uintaa,
'''tensor(float16)''': np.floataa,
'''tensor(float)''': np.floataa,
'''tensor(double)''': np.floataa,
}
class __SCREAMING_SNAKE_CASE :
def __init__( self : Any , snake_case : str=None , **snake_case : Tuple ):
'''simple docstring'''
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" )
A__ : Optional[Any] = model
A__ : Optional[int] = kwargs.get("""model_save_dir""" , snake_case )
A__ : str = kwargs.get("""latest_model_name""" , snake_case )
def __call__( self : str , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : List[Any] = {k: np.array(snake_case ) for k, v in kwargs.items()}
return self.model.run(snake_case , snake_case )
@staticmethod
def _UpperCamelCase ( snake_case : Union[str, Path] , snake_case : str=None , snake_case : Any=None ):
'''simple docstring'''
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" )
A__ : List[Any] = """CPUExecutionProvider"""
return ort.InferenceSession(snake_case , providers=[provider] , sess_options=snake_case )
def _UpperCamelCase ( self : Tuple , snake_case : Union[str, Path] , snake_case : Optional[str] = None , **snake_case : Dict ):
'''simple docstring'''
A__ : Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
A__ : Optional[Any] = self.model_save_dir.joinpath(self.latest_model_name )
A__ : Optional[Any] = Path(snake_case ).joinpath(snake_case )
try:
shutil.copyfile(snake_case , snake_case )
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
A__ : List[str] = self.model_save_dir.joinpath(snake_case )
if src_path.exists():
A__ : Tuple = Path(snake_case ).joinpath(snake_case )
try:
shutil.copyfile(snake_case , snake_case )
except shutil.SameFileError:
pass
def _UpperCamelCase ( self : List[Any] , snake_case : Union[str, os.PathLike] , **snake_case : Optional[int] , ):
'''simple docstring'''
if os.path.isfile(snake_case ):
logger.error(F'Provided path ({save_directory}) should be a directory, not a file' )
return
os.makedirs(snake_case , exist_ok=snake_case )
# saving model weights/files
self._save_pretrained(snake_case , **snake_case )
@classmethod
def _UpperCamelCase ( cls : List[str] , snake_case : Union[str, Path] , snake_case : Optional[Union[bool, str, None]] = None , snake_case : Optional[Union[str, None]] = None , snake_case : bool = False , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional["ort.SessionOptions"] = None , **snake_case : str , ):
'''simple docstring'''
A__ : Optional[Any] = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(snake_case ):
A__ : Dict = OnnxRuntimeModel.load_model(
os.path.join(snake_case , snake_case ) , provider=snake_case , sess_options=snake_case )
A__ : Any = Path(snake_case )
# load model from hub
else:
# download model
A__ : Union[str, Any] = hf_hub_download(
repo_id=snake_case , filename=snake_case , use_auth_token=snake_case , revision=snake_case , cache_dir=snake_case , force_download=snake_case , )
A__ : List[Any] = Path(snake_case ).parent
A__ : Optional[int] = Path(snake_case ).name
A__ : Any = OnnxRuntimeModel.load_model(snake_case , provider=snake_case , sess_options=snake_case )
return cls(model=snake_case , **snake_case )
@classmethod
def _UpperCamelCase ( cls : Optional[int] , snake_case : Union[str, Path] , snake_case : bool = True , snake_case : Optional[str] = None , snake_case : Optional[str] = None , **snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : Dict = None
if len(str(snake_case ).split("""@""" ) ) == 2:
A__ : str = model_id.split("""@""" )
return cls._from_pretrained(
model_id=snake_case , revision=snake_case , cache_dir=snake_case , force_download=snake_case , use_auth_token=snake_case , **snake_case , )
| 353
|
"""simple docstring"""
import os
from distutils.util import strtobool
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]:
for e in env_keys:
A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) )
if val >= 0:
return val
return default
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]:
A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int...
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int:
A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) )
return value
| 296
| 0
|
"""simple docstring"""
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Optional[int]:
random.seed(UpperCAmelCase__ )
np.random.seed(UpperCAmelCase__ )
torch.manual_seed(UpperCAmelCase__ )
torch.cuda.manual_seed_all(UpperCAmelCase__ )
# ^^ safe to call this function even if cuda is not available
class __SCREAMING_SNAKE_CASE :
def __init__( self : Any , snake_case : Iterable[torch.nn.Parameter] , snake_case : float = 0.9999 , snake_case : float = 0.0 , snake_case : int = 0 , snake_case : bool = False , snake_case : Union[float, int] = 1.0 , snake_case : Union[float, int] = 2 / 3 , snake_case : Optional[Any] = None , snake_case : Dict[str, Any] = None , **snake_case : Tuple , ):
'''simple docstring'''
if isinstance(snake_case , torch.nn.Module ):
A__ : Any = (
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , snake_case , standard_warn=snake_case , )
A__ : int = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
A__ : Any = True
if kwargs.get("""max_value""" , snake_case ) is not None:
A__ : Union[str, Any] = """The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , snake_case , standard_warn=snake_case )
A__ : Tuple = kwargs["""max_value"""]
if kwargs.get("""min_value""" , snake_case ) is not None:
A__ : List[str] = """The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , snake_case , standard_warn=snake_case )
A__ : List[str] = kwargs["""min_value"""]
A__ : Any = list(snake_case )
A__ : Optional[Any] = [p.clone().detach() for p in parameters]
if kwargs.get("""device""" , snake_case ) is not None:
A__ : str = """The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , snake_case , standard_warn=snake_case )
self.to(device=kwargs["""device"""] )
A__ : List[str] = None
A__ : Union[str, Any] = decay
A__ : Tuple = min_decay
A__ : Tuple = update_after_step
A__ : Optional[Any] = use_ema_warmup
A__ : List[Any] = inv_gamma
A__ : Optional[int] = power
A__ : Optional[Any] = 0
A__ : int = None # set in `step()`
A__ : int = model_cls
A__ : Any = model_config
@classmethod
def _UpperCamelCase ( cls : str , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = model_cls.load_config(snake_case , return_unused_kwargs=snake_case )
A__ : Union[str, Any] = model_cls.from_pretrained(snake_case )
A__ : List[Any] = cls(model.parameters() , model_cls=snake_case , model_config=model.config )
ema_model.load_state_dict(snake_case )
return ema_model
def _UpperCamelCase ( self : int , snake_case : Optional[Any] ):
'''simple docstring'''
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
A__ : List[Any] = self.model_cls.from_config(self.model_config )
A__ : List[str] = self.state_dict()
state_dict.pop("""shadow_params""" , snake_case )
model.register_to_config(**snake_case )
self.copy_to(model.parameters() )
model.save_pretrained(snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : Any = max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
A__ : Optional[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
A__ : Optional[int] = (1 + step) / (10 + step)
A__ : Dict = min(snake_case , self.decay )
# make sure decay is not smaller than min_decay
A__ : Dict = max(snake_case , self.min_decay )
return cur_decay_value
@torch.no_grad()
def _UpperCamelCase ( self : Optional[int] , snake_case : Iterable[torch.nn.Parameter] ):
'''simple docstring'''
if isinstance(snake_case , torch.nn.Module ):
A__ : Any = (
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , snake_case , standard_warn=snake_case , )
A__ : Dict = parameters.parameters()
A__ : str = list(snake_case )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
A__ : str = self.get_decay(self.optimization_step )
A__ : Any = decay
A__ : str = 1 - decay
A__ : List[str] = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , snake_case ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
A__ : int = deepspeed.zero.GatheredParameters(snake_case , modifier_rank=snake_case )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(snake_case )
def _UpperCamelCase ( self : Tuple , snake_case : Iterable[torch.nn.Parameter] ):
'''simple docstring'''
A__ : Tuple = list(snake_case )
for s_param, param in zip(self.shadow_params , snake_case ):
param.data.copy_(s_param.to(param.device ).data )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Any=None , snake_case : List[Any]=None ):
'''simple docstring'''
A__ : str = [
p.to(device=snake_case , dtype=snake_case ) if p.is_floating_point() else p.to(device=snake_case )
for p in self.shadow_params
]
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Iterable[torch.nn.Parameter] ):
'''simple docstring'''
A__ : int = [param.detach().cpu().clone() for param in parameters]
def _UpperCamelCase ( self : int , snake_case : Iterable[torch.nn.Parameter] ):
'''simple docstring'''
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , snake_case ):
param.data.copy_(c_param.data )
# Better memory-wise.
A__ : Any = None
def _UpperCamelCase ( self : Union[str, Any] , snake_case : dict ):
'''simple docstring'''
A__ : int = copy.deepcopy(snake_case )
A__ : str = state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
A__ : Tuple = state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , snake_case ):
raise ValueError("""Invalid min_decay""" )
A__ : List[Any] = state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , snake_case ):
raise ValueError("""Invalid optimization_step""" )
A__ : Optional[Any] = state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , snake_case ):
raise ValueError("""Invalid update_after_step""" )
A__ : Optional[int] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , snake_case ):
raise ValueError("""Invalid use_ema_warmup""" )
A__ : List[Any] = state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
A__ : Optional[int] = state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
A__ : str = state_dict.get("""shadow_params""" , snake_case )
if shadow_params is not None:
A__ : Optional[Any] = shadow_params
if not isinstance(self.shadow_params , snake_case ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(snake_case , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 354
|
"""simple docstring"""
import cva
import numpy as np
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ):
'''simple docstring'''
if k in (0.04, 0.06):
A__ : Optional[int] = k
A__ : int = window_size
else:
raise ValueError("""invalid k value""" )
def __str__( self : List[Any] ):
'''simple docstring'''
return str(self.k )
def _UpperCamelCase ( self : int , snake_case : str ):
'''simple docstring'''
A__ : List[str] = cva.imread(snake_case , 0 )
A__ , A__ : Union[str, Any] = img.shape
A__ : list[list[int]] = []
A__ : Optional[Any] = img.copy()
A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB )
A__ , A__ : List[Any] = np.gradient(snake_case )
A__ : List[Any] = dx**2
A__ : Any = dy**2
A__ : Dict = dx * dy
A__ : Any = 0.04
A__ : Optional[Any] = self.window_size // 2
for y in range(snake_case , h - offset ):
for x in range(snake_case , w - offset ):
A__ : List[str] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Tuple = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : Optional[int] = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
A__ : int = (wxx * wyy) - (wxy**2)
A__ : Any = wxx + wyy
A__ : List[str] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A_ = HarrisCorner(0.04, 3)
A_ , A_ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 296
| 0
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_layoutlmva import LayoutLMvaImageProcessor
A_ = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Union[str, Any] , *snake_case : Tuple , **snake_case : Optional[int] ):
'''simple docstring'''
warnings.warn(
"""The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use LayoutLMv2ImageProcessor instead.""" , snake_case , )
super().__init__(*snake_case , **snake_case )
| 355
|
"""simple docstring"""
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
A_ = logging.get_logger(__name__)
A_ = Dict[str, Any]
A_ = List[Prediction]
@add_end_docstrings(UpperCamelCase )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ):
'''simple docstring'''
super().__init__(*snake_case , **snake_case )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self , """vision""" )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ):
'''simple docstring'''
A__ : Dict = {}
if "threshold" in kwargs:
A__ : int = kwargs["""threshold"""]
return {}, {}, postprocess_kwargs
def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ):
'''simple docstring'''
return super().__call__(*snake_case , **snake_case )
def _UpperCamelCase ( self : str , snake_case : int ):
'''simple docstring'''
A__ : List[str] = load_image(snake_case )
A__ : int = torch.IntTensor([[image.height, image.width]] )
A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" )
if self.tokenizer is not None:
A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" )
A__ : List[str] = target_size
return inputs
def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ):
'''simple docstring'''
A__ : str = model_inputs.pop("""target_size""" )
A__ : Dict = self.model(**snake_case )
A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} )
if self.tokenizer is not None:
A__ : str = model_inputs["""bbox"""]
return model_outputs
def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ):
'''simple docstring'''
A__ : Any = model_outputs["""target_size"""]
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ : Tuple = target_size[0].tolist()
def unnormalize(snake_case : Optional[int] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1000),
(height * bbox[1] / 1000),
(width * bbox[2] / 1000),
(height * bbox[3] / 1000),
] ) )
A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )]
A__ : Tuple = ["""score""", """label""", """box"""]
A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case )
A__ : str = raw_annotations[0]
A__ : str = raw_annotation["""scores"""]
A__ : List[Any] = raw_annotation["""labels"""]
A__ : int = raw_annotation["""boxes"""]
A__ : str = scores.tolist()
A__ : Any = [self.model.config.idalabel[label.item()] for label in labels]
A__ : int = [self._get_bounding_box(snake_case ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ : str = ["""score""", """label""", """box"""]
A__ : Dict = [
dict(zip(snake_case , snake_case ) )
for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] )
]
return annotation
def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ):
'''simple docstring'''
if self.framework != "pt":
raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" )
A__ , A__ , A__ , A__ : Any = box.int().tolist()
A__ : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0 ) ->int:
A__ : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6
A__ : Tuple = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 356
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/table-transformer-detection''': (
'''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json'''
),
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'table-transformer'
snake_case_ = ['past_key_values']
snake_case_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ):
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(snake_case , snake_case ):
A__ : Optional[int] = backbone_config.get("""model_type""" )
A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
A__ : List[str] = config_class.from_dict(snake_case )
# set timm attributes to None
A__ , A__ , A__ : str = None, None, None
A__ : Tuple = use_timm_backbone
A__ : str = backbone_config
A__ : str = num_channels
A__ : List[Any] = num_queries
A__ : Optional[Any] = d_model
A__ : Tuple = encoder_ffn_dim
A__ : Union[str, Any] = encoder_layers
A__ : List[Any] = encoder_attention_heads
A__ : Optional[int] = decoder_ffn_dim
A__ : Any = decoder_layers
A__ : int = decoder_attention_heads
A__ : Any = dropout
A__ : Dict = attention_dropout
A__ : Dict = activation_dropout
A__ : Tuple = activation_function
A__ : List[str] = init_std
A__ : List[str] = init_xavier_std
A__ : Any = encoder_layerdrop
A__ : Optional[Any] = decoder_layerdrop
A__ : Union[str, Any] = encoder_layers
A__ : Dict = auxiliary_loss
A__ : List[Any] = position_embedding_type
A__ : Optional[Any] = backbone
A__ : str = use_pretrained_backbone
A__ : Union[str, Any] = dilation
# Hungarian matcher
A__ : Tuple = class_cost
A__ : Optional[Any] = bbox_cost
A__ : Dict = giou_cost
# Loss coefficients
A__ : Any = mask_loss_coefficient
A__ : str = dice_loss_coefficient
A__ : str = bbox_loss_coefficient
A__ : Union[str, Any] = giou_loss_coefficient
A__ : List[str] = eos_coefficient
super().__init__(is_encoder_decoder=snake_case , **snake_case )
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
return self.d_model
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = version.parse('1.11' )
@property
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return 1e-5
@property
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return 12
| 296
| 0
|
"""simple docstring"""
def _lowerCAmelCase ( UpperCAmelCase__ : float ) ->float:
return 1_0 - x * x
def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float:
# Bolzano theory in order to find if there is a root between a and b
if equation(UpperCAmelCase__ ) * equation(UpperCAmelCase__ ) >= 0:
raise ValueError("""Wrong space!""" )
A__ : Dict = a
while (b - a) >= 0.01:
# Find middle point
A__ : Union[str, Any] = (a + b) / 2
# Check if middle point is root
if equation(UpperCAmelCase__ ) == 0.0:
break
# Decide the side to repeat the steps
if equation(UpperCAmelCase__ ) * equation(UpperCAmelCase__ ) < 0:
A__ : int = c
else:
A__ : List[Any] = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 357
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'Salesforce/blip-image-captioning-base'
snake_case_ = (
'This is a tool that generates a description of an image. It takes an input named `image` which should be the '
'image to caption, and returns a text that contains the description in English.'
)
snake_case_ = 'image_captioner'
snake_case_ = AutoModelForVisionaSeq
snake_case_ = ['image']
snake_case_ = ['text']
def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["""vision"""] )
super().__init__(*snake_case , **snake_case )
def _UpperCamelCase ( self : int , snake_case : "Image" ):
'''simple docstring'''
return self.pre_processor(images=snake_case , return_tensors="""pt""" )
def _UpperCamelCase ( self : int , snake_case : List[Any] ):
'''simple docstring'''
return self.model.generate(**snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
| 296
| 0
|
"""simple docstring"""
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaProcessor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''):
A_ = True
from torch.cuda.amp import autocast
A_ = logging.getLogger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None ) ->Tuple:
return field(default_factory=lambda: default, metadata=UpperCAmelCase__ )
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
snake_case_ = field(
default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} )
snake_case_ = field(
default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} )
snake_case_ = field(
default=0.1 , metadata={
'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.'
} , )
snake_case_ = field(
default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , )
snake_case_ = field(
default=0.0_5 , metadata={
'help': (
'Propability of each feature vector along the time axis to be chosen as the start of the vector'
'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature'
'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.'
)
} , )
snake_case_ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} )
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
snake_case_ = field(
default='train+validation' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
snake_case_ = field(
default=UpperCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , )
snake_case_ = field(
default=UpperCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
snake_case_ = field(
default=UpperCamelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of validation examples to this '
'value if set.'
)
} , )
snake_case_ = list_field(
default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , )
@dataclass
class __SCREAMING_SNAKE_CASE :
snake_case_ = 42
snake_case_ = True
snake_case_ = None
snake_case_ = None
snake_case_ = None
snake_case_ = None
def __call__( self : int , snake_case : List[Dict[str, Union[List[int], torch.Tensor]]] ):
'''simple docstring'''
A__ : Any = [{"""input_values""": feature["""input_values"""]} for feature in features]
A__ : Optional[int] = [{"""input_ids""": feature["""labels"""]} for feature in features]
A__ : Optional[Any] = self.processor.pad(
snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
A__ : List[str] = self.processor.pad(
labels=snake_case , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , )
# replace padding with -100 to ignore loss correctly
A__ : Optional[Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 )
A__ : Dict = labels
return batch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def _UpperCamelCase ( self : Optional[Any] , snake_case : nn.Module , snake_case : Dict[str, Union[torch.Tensor, Any]] ):
'''simple docstring'''
model.train()
A__ : Optional[int] = self._prepare_inputs(snake_case )
if self.use_amp:
with autocast():
A__ : Optional[Any] = self.compute_loss(snake_case , snake_case )
else:
A__ : str = self.compute_loss(snake_case , snake_case )
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
A__ : str = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
A__ : Dict = loss.sum() / (inputs["""labels"""] >= 0).sum()
else:
raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' )
if self.args.gradient_accumulation_steps > 1:
A__ : str = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(snake_case ).backward()
elif self.use_apex:
with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(snake_case )
else:
loss.backward()
return loss.detach()
def _lowerCAmelCase ( ) ->Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A__ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A__ : int = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A__ : Optional[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A__ : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""", UpperCAmelCase__ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets:
A__ : List[Any] = datasets.load_dataset(
"""common_voice""", data_args.dataset_config_name, split=data_args.train_split_name )
A__ : Optional[int] = datasets.load_dataset("""common_voice""", data_args.dataset_config_name, split="""test""" )
# Create and save tokenizer
A__ : List[str] = f'[{"".join(data_args.chars_to_ignore )}]'
def remove_special_characters(UpperCAmelCase__ : Dict ):
A__ : Optional[Any] = re.sub(UpperCAmelCase__, """""", batch["""sentence"""] ).lower() + """ """
return batch
A__ : Any = train_dataset.map(UpperCAmelCase__, remove_columns=["""sentence"""] )
A__ : List[Any] = eval_dataset.map(UpperCAmelCase__, remove_columns=["""sentence"""] )
def extract_all_chars(UpperCAmelCase__ : Dict ):
A__ : Any = """ """.join(batch["""text"""] )
A__ : Optional[Any] = list(set(UpperCAmelCase__ ) )
return {"vocab": [vocab], "all_text": [all_text]}
A__ : str = train_dataset.map(
UpperCAmelCase__, batched=UpperCAmelCase__, batch_size=-1, keep_in_memory=UpperCAmelCase__, remove_columns=train_dataset.column_names, )
A__ : int = train_dataset.map(
UpperCAmelCase__, batched=UpperCAmelCase__, batch_size=-1, keep_in_memory=UpperCAmelCase__, remove_columns=eval_dataset.column_names, )
A__ : int = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) )
A__ : str = {v: k for k, v in enumerate(UpperCAmelCase__ )}
A__ : Optional[Any] = vocab_dict[""" """]
del vocab_dict[" "]
A__ : List[str] = len(UpperCAmelCase__ )
A__ : Any = len(UpperCAmelCase__ )
with open("""vocab.json""", """w""" ) as vocab_file:
json.dump(UpperCAmelCase__, UpperCAmelCase__ )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A__ : List[Any] = WavaVecaCTCTokenizer(
"""vocab.json""", unk_token="""[UNK]""", pad_token="""[PAD]""", word_delimiter_token="""|""", )
A__ : int = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0.0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__ )
A__ : Optional[Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ )
A__ : int = WavaVecaForCTC.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction="""mean""", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), )
if data_args.max_train_samples is not None:
A__ : Tuple = min(len(UpperCAmelCase__ ), data_args.max_train_samples )
A__ : Optional[int] = train_dataset.select(range(UpperCAmelCase__ ) )
if data_args.max_val_samples is not None:
A__ : List[Any] = eval_dataset.select(range(data_args.max_val_samples ) )
A__ : int = torchaudio.transforms.Resample(4_8_0_0_0, 1_6_0_0_0 )
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(UpperCAmelCase__ : Any ):
A__ : Dict = torchaudio.load(batch["""path"""] )
A__ : Union[str, Any] = resampler(UpperCAmelCase__ ).squeeze().numpy()
A__ : Any = 1_6_0_0_0
A__ : Any = batch["""text"""]
return batch
A__ : Any = train_dataset.map(
UpperCAmelCase__, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, )
A__ : Optional[Any] = eval_dataset.map(
UpperCAmelCase__, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, )
def prepare_dataset(UpperCAmelCase__ : List[Any] ):
# check that all files have the correct sampling rate
assert (
len(set(batch["""sampling_rate"""] ) ) == 1
), f'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.'
A__ : Any = processor(
audio=batch["""speech"""], text=batch["""target_text"""], sampling_rate=batch["""sampling_rate"""][0] )
batch.update(UpperCAmelCase__ )
return batch
A__ : Optional[int] = train_dataset.map(
UpperCAmelCase__, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=UpperCAmelCase__, num_proc=data_args.preprocessing_num_workers, )
A__ : int = eval_dataset.map(
UpperCAmelCase__, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=UpperCAmelCase__, num_proc=data_args.preprocessing_num_workers, )
# Metric
A__ : Optional[int] = datasets.load_metric("""wer""" )
def compute_metrics(UpperCAmelCase__ : List[str] ):
A__ : str = pred.predictions
A__ : List[Any] = np.argmax(UpperCAmelCase__, axis=-1 )
A__ : Dict = processor.tokenizer.pad_token_id
A__ : Optional[int] = processor.batch_decode(UpperCAmelCase__ )
# we do not want to group tokens when computing the metrics
A__ : Tuple = processor.batch_decode(pred.label_ids, group_tokens=UpperCAmelCase__ )
A__ : int = wer_metric.compute(predictions=UpperCAmelCase__, references=UpperCAmelCase__ )
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
A__ : Any = DataCollatorCTCWithPadding(processor=UpperCAmelCase__, padding=UpperCAmelCase__ )
# Initialize our Trainer
A__ : Any = CTCTrainer(
model=UpperCAmelCase__, data_collator=UpperCAmelCase__, args=UpperCAmelCase__, compute_metrics=UpperCAmelCase__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A__ : Optional[Any] = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path ):
A__ : Any = model_args.model_name_or_path
else:
A__ : int = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank ):
processor.save_pretrained(training_args.output_dir )
A__ : List[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase__ )
trainer.save_model()
A__ : int = train_result.metrics
A__ : List[str] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ )
)
A__ : List[Any] = min(UpperCAmelCase__, len(UpperCAmelCase__ ) )
trainer.log_metrics("""train""", UpperCAmelCase__ )
trainer.save_metrics("""train""", UpperCAmelCase__ )
trainer.save_state()
# Evaluation
A__ : str = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
A__ : Dict = trainer.evaluate()
A__ : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase__ )
A__ : str = min(UpperCAmelCase__, len(UpperCAmelCase__ ) )
trainer.log_metrics("""eval""", UpperCAmelCase__ )
trainer.save_metrics("""eval""", UpperCAmelCase__ )
return results
if __name__ == "__main__":
main()
| 358
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : List[Any] ):
'''simple docstring'''
super().__init__()
A__ : int = nn.Linear(3 , 4 )
A__ : Union[str, Any] = nn.BatchNormad(4 )
A__ : Union[str, Any] = nn.Linear(4 , 5 )
def _UpperCamelCase ( self : str , snake_case : List[str] ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case ) ) )
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : int = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , model.state_dict() )
A__ : List[str] = os.path.join(snake_case , """index.json""" )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
A__ : List[str] = os.path.join(snake_case , F'{key}.dat' )
self.assertTrue(os.path.isfile(snake_case ) )
# TODO: add tests on the fact weights are properly loaded
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
A__ : str = torch.randn(2 , 3 , dtype=snake_case )
with TemporaryDirectory() as tmp_dir:
A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} )
A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" )
self.assertTrue(os.path.isfile(snake_case ) )
self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} )
A__ : str = load_offloaded_weight(snake_case , index["""weight"""] )
self.assertTrue(torch.equal(snake_case , snake_case ) )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : str = ModelForTest()
A__ : Union[str, Any] = model.state_dict()
A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k}
A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k}
A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(snake_case , snake_case )
# Duplicates are removed
A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case )
# Every key is there with the right value
self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(snake_case , weight_map[key] ) )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} )
A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] )
self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
| 296
| 0
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ = logging.get_logger(__name__)
A_ = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
snake_case_ = 'focalnet'
def __init__( self : Union[str, Any] , snake_case : Tuple=224 , snake_case : Tuple=4 , snake_case : List[Any]=3 , snake_case : int=96 , snake_case : List[Any]=False , snake_case : List[Any]=[192, 384, 768, 768] , snake_case : Union[str, Any]=[2, 2, 6, 2] , snake_case : str=[2, 2, 2, 2] , snake_case : Tuple=[3, 3, 3, 3] , snake_case : List[str]="gelu" , snake_case : Any=4.0 , snake_case : Any=0.0 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=False , snake_case : Any=1e-4 , snake_case : Dict=False , snake_case : Optional[Any]=False , snake_case : Dict=False , snake_case : Optional[Any]=0.02 , snake_case : Dict=1e-5 , snake_case : Optional[int]=32 , snake_case : int=None , snake_case : List[Any]=None , **snake_case : Any , ):
'''simple docstring'''
super().__init__(**snake_case )
A__ : Tuple = image_size
A__ : Dict = patch_size
A__ : Tuple = num_channels
A__ : str = embed_dim
A__ : Union[str, Any] = use_conv_embed
A__ : Union[str, Any] = hidden_sizes
A__ : int = depths
A__ : str = focal_levels
A__ : str = focal_windows
A__ : Union[str, Any] = hidden_act
A__ : Any = mlp_ratio
A__ : Any = hidden_dropout_prob
A__ : str = drop_path_rate
A__ : Dict = use_layerscale
A__ : str = layerscale_value
A__ : Optional[Any] = use_post_layernorm
A__ : Any = use_post_layernorm_in_modulation
A__ : Optional[int] = normalize_modulator
A__ : Dict = initializer_range
A__ : str = layer_norm_eps
A__ : int = encoder_stride
A__ : List[Any] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )]
A__ : str = get_aligned_output_features_output_indices(
out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
| 359
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ):
'''simple docstring'''
A__ : int = parent
A__ : Union[str, Any] = batch_size
A__ : Optional[int] = seq_length
A__ : List[Any] = is_training
A__ : List[str] = use_input_mask
A__ : Optional[Any] = use_token_type_ids
A__ : List[Any] = use_labels
A__ : Union[str, Any] = vocab_size
A__ : List[Any] = hidden_size
A__ : Any = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Optional[int] = intermediate_size
A__ : Any = hidden_act
A__ : Tuple = hidden_dropout_prob
A__ : Dict = attention_probs_dropout_prob
A__ : Optional[int] = max_position_embeddings
A__ : Tuple = type_vocab_size
A__ : Union[str, Any] = type_sequence_label_size
A__ : List[str] = initializer_range
A__ : Any = num_labels
A__ : Any = num_choices
A__ : int = scope
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Tuple = None
if self.use_input_mask:
A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Union[str, Any] = None
if self.use_token_type_ids:
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : int = None
A__ : int = None
A__ : List[str] = None
if self.use_labels:
A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
A__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case )
A__ : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ):
'''simple docstring'''
A__ : List[str] = BioGptForCausalLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ):
'''simple docstring'''
A__ : Union[str, Any] = BioGptModel(config=snake_case )
model.to(snake_case )
model.eval()
# create attention mask
A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
A__ : Any = self.seq_length // 2
A__ : str = 0
# first forward pass
A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1
A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
A__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , )
# get two different outputs
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""]
# select random slice
A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
A__ : Any = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ):
'''simple docstring'''
A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval()
A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case )
# first forward pass
A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case )
A__ , A__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ : int = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""]
A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[
"""last_hidden_state"""
]
# select random slice
A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM(snake_case )
model.to(snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
A__ : Optional[Any] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ):
'''simple docstring'''
A__ : int = BioGptModel(snake_case )
A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = self.num_labels
A__ : int = BioGptForTokenClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : str = config_and_inputs
A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case_ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case_ = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case_ = False
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : List[str] = BioGptModelTester(self )
A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : str = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case )
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case )
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = """left"""
# Define PAD Token = EOS Token = 50256
A__ : Optional[int] = tokenizer.eos_token
A__ : Dict = model.config.eos_token_id
# use different length sentences to test batching
A__ : Union[str, Any] = [
"""Hello, my dog is a little""",
"""Today, I""",
]
A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case )
A__ : str = inputs["""input_ids"""].to(snake_case )
A__ : Dict = model.generate(
input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , )
A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Any = model.generate(input_ids=snake_case )
A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case )
A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings )
A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case )
A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case )
A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case )
A__ : Optional[int] = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(snake_case , snake_case )
self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] )
@slow
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def _UpperCamelCase ( self : str ):
'''simple docstring'''
A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[int] = 3
A__ : List[Any] = input_dict["""input_ids"""]
A__ : Dict = input_ids.ne(1 ).to(snake_case )
A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common()
A__ : Any = 3
A__ : List[Any] = """multi_label_classification"""
A__ : Dict = input_dict["""input_ids"""]
A__ : Tuple = input_ids.ne(1 ).to(snake_case )
A__ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
A__ : Tuple = BioGptForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] )
A__ : Dict = model(snake_case )[0]
A__ : Tuple = 4_2384
A__ : str = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : str = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(snake_case )
torch.manual_seed(0 )
A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case )
A__ : Optional[int] = model.generate(
**snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , )
A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case )
A__ : List[str] = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(snake_case , snake_case )
| 296
| 0
|
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str:
A__ : List[str] = SwinConfig(image_size=1_9_2 )
if "base" in model_name:
A__ : Optional[Any] = 6
A__ : Union[str, Any] = 1_2_8
A__ : Dict = (2, 2, 1_8, 2)
A__ : Optional[int] = (4, 8, 1_6, 3_2)
elif "large" in model_name:
A__ : Any = 1_2
A__ : str = 1_9_2
A__ : List[str] = (2, 2, 1_8, 2)
A__ : Any = (6, 1_2, 2_4, 4_8)
else:
raise ValueError("""Model not supported, only supports base and large variants""" )
A__ : Optional[int] = window_size
A__ : Optional[int] = embed_dim
A__ : Dict = depths
A__ : List[str] = num_heads
return config
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Optional[int]:
if "encoder.mask_token" in name:
A__ : Dict = name.replace("""encoder.mask_token""", """embeddings.mask_token""" )
if "encoder.patch_embed.proj" in name:
A__ : List[str] = name.replace("""encoder.patch_embed.proj""", """embeddings.patch_embeddings.projection""" )
if "encoder.patch_embed.norm" in name:
A__ : Union[str, Any] = name.replace("""encoder.patch_embed.norm""", """embeddings.norm""" )
if "attn.proj" in name:
A__ : List[Any] = name.replace("""attn.proj""", """attention.output.dense""" )
if "attn" in name:
A__ : List[str] = name.replace("""attn""", """attention.self""" )
if "norm1" in name:
A__ : Tuple = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : Optional[Any] = name.replace("""norm2""", """layernorm_after""" )
if "mlp.fc1" in name:
A__ : str = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : str = name.replace("""mlp.fc2""", """output.dense""" )
if name == "encoder.norm.weight":
A__ : List[str] = """layernorm.weight"""
if name == "encoder.norm.bias":
A__ : Dict = """layernorm.bias"""
if "decoder" in name:
pass
else:
A__ : Tuple = """swin.""" + name
return name
def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any] ) ->Tuple:
for key in orig_state_dict.copy().keys():
A__ : str = orig_state_dict.pop(UpperCAmelCase__ )
if "attn_mask" in key:
pass
elif "qkv" in key:
A__ : Optional[Any] = key.split(""".""" )
A__ : Union[str, Any] = int(key_split[2] )
A__ : Tuple = int(key_split[4] )
A__ : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
A__ : Optional[Any] = val[:dim, :]
A__ : int = val[
dim : dim * 2, :
]
A__ : Union[str, Any] = val[-dim:, :]
else:
A__ : List[Any] = val[
:dim
]
A__ : List[str] = val[
dim : dim * 2
]
A__ : int = val[
-dim:
]
else:
A__ : Optional[Any] = val
return orig_state_dict
def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ) ->List[Any]:
A__ : Tuple = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""model"""]
A__ : List[Any] = get_swin_config(UpperCAmelCase__ )
A__ : Tuple = SwinForMaskedImageModeling(UpperCAmelCase__ )
model.eval()
A__ : Dict = convert_state_dict(UpperCAmelCase__, UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : Tuple = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} )
A__ : str = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
A__ : List[Any] = image_processor(images=UpperCAmelCase__, return_tensors="""pt""" )
with torch.no_grad():
A__ : Optional[Any] = model(**UpperCAmelCase__ ).logits
print(outputs.keys() )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print(f'Pushing model and image processor for {model_name} to hub' )
model.push_to_hub(f'microsoft/{model_name}' )
image_processor.push_to_hub(f'microsoft/{model_name}' )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''swin-base-simmim-window6-192''',
type=str,
choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''],
help='''Name of the Swin SimMIM model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''',
default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''',
type=str,
help='''Path to the original PyTorch checkpoint (.pth file).''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
A_ = parser.parse_args()
convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 360
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
A_ = logging.get_logger(__name__)
A_ = {'''vocab_file''': '''spiece.model'''}
A_ = {
'''vocab_file''': {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''',
}
}
A_ = {
'''xlnet-base-cased''': None,
'''xlnet-large-cased''': None,
}
# Segments (not really needed)
A_ = 0
A_ = 1
A_ = 2
A_ = 3
A_ = 4
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = VOCAB_FILES_NAMES
snake_case_ = PRETRAINED_VOCAB_FILES_MAP
snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ = 'left'
def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ):
'''simple docstring'''
A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token
A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , )
A__ : str = 3
A__ : str = do_lower_case
A__ : Optional[Any] = remove_space
A__ : List[Any] = keep_accents
A__ : Union[str, Any] = vocab_file
A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(snake_case )
@property
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
return len(self.sp_model )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ):
'''simple docstring'''
A__ : int = self.__dict__.copy()
A__ : int = None
return state
def __setstate__( self : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : int = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
A__ : Optional[int] = {}
A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ):
'''simple docstring'''
if self.remove_space:
A__ : Optional[Any] = """ """.join(inputs.strip().split() )
else:
A__ : Dict = inputs
A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
A__ : Any = unicodedata.normalize("""NFKD""" , snake_case )
A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] )
if self.do_lower_case:
A__ : Any = outputs.lower()
return outputs
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ):
'''simple docstring'''
A__ : Dict = self.preprocess_text(snake_case )
A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case )
A__ : Optional[int] = []
for piece in pieces:
if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
A__ : int = cur_pieces[1:]
else:
A__ : Any = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(snake_case )
else:
new_pieces.append(snake_case )
return new_pieces
def _UpperCamelCase ( self : List[str] , snake_case : Tuple ):
'''simple docstring'''
return self.sp_model.PieceToId(snake_case )
def _UpperCamelCase ( self : List[str] , snake_case : Any ):
'''simple docstring'''
return self.sp_model.IdToPiece(snake_case )
def _UpperCamelCase ( self : Optional[int] , snake_case : Any ):
'''simple docstring'''
A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip()
return out_string
def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ):
'''simple docstring'''
A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case )
A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
A__ : Any = []
A__ : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
A__ : str = []
sub_texts.append(snake_case )
else:
current_sub_text.append(snake_case )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(snake_case ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
A__ : Dict = """""".join(snake_case )
A__ : int = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
A__ : Tuple = self.clean_up_tokenization(snake_case )
return clean_text
else:
return text
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Tuple = [self.sep_token_id]
A__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case )
if token_ids_a is not None:
return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1]
return ([0] * len(snake_case )) + [1, 1]
def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ):
'''simple docstring'''
A__ : Any = [self.sep_token_id]
A__ : int = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
A__ : List[Any] = os.path.join(
snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(snake_case , """wb""" ) as fi:
A__ : Optional[Any] = self.sp_model.serialized_model_proto()
fi.write(snake_case )
return (out_vocab_file,)
| 296
| 0
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ =logging.get_logger(__name__)
A_ ={
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = 'convbert'
def __init__( self : Optional[int] , snake_case : Optional[Any]=3_0522 , snake_case : List[Any]=768 , snake_case : Tuple=12 , snake_case : Any=12 , snake_case : str=3072 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : int=0.1 , snake_case : Dict=512 , snake_case : Optional[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : str=1 , snake_case : Optional[Any]=0 , snake_case : str=2 , snake_case : int=768 , snake_case : Union[str, Any]=2 , snake_case : Optional[int]=9 , snake_case : Optional[int]=1 , snake_case : str=None , **snake_case : List[Any] , ):
'''simple docstring'''
super().__init__(
pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , )
A__ : Dict = vocab_size
A__ : Dict = hidden_size
A__ : int = num_hidden_layers
A__ : Any = num_attention_heads
A__ : Dict = intermediate_size
A__ : Union[str, Any] = hidden_act
A__ : List[Any] = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Optional[Any] = max_position_embeddings
A__ : Dict = type_vocab_size
A__ : Optional[int] = initializer_range
A__ : Union[str, Any] = layer_norm_eps
A__ : str = embedding_size
A__ : int = head_ratio
A__ : Optional[Any] = conv_kernel_size
A__ : List[str] = num_groups
A__ : Union[str, Any] = classifier_dropout
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
@property
def _UpperCamelCase ( self : str ):
'''simple docstring'''
if self.task == "multiple-choice":
A__ : str = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
A__ : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
("""token_type_ids""", dynamic_axis),
] )
| 361
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
| 0
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
A_ = '''src/transformers'''
# Matches is_xxx_available()
A_ = re.compile(r'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
A_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
A_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
A_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
A_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
A_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
A_ = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
A_ = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
A_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
A_ = re.compile(r'''^\s*try:''')
# Catches a line with else:
A_ = re.compile(r'''^\s*else:''')
def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->Union[str, Any]:
if _re_test_backend.search(UpperCAmelCase__ ) is None:
return None
A__ : Tuple = [b[0] for b in _re_backend.findall(UpperCAmelCase__ )]
backends.sort()
return "_and_".join(UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : Union[str, Any] = f.readlines()
A__ : List[str] = 0
while line_index < len(UpperCAmelCase__ ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(UpperCAmelCase__ ):
return None
# First grab the objects without a specific backend in _import_structure
A__ : List[Any] = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
A__ : Optional[Any] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(UpperCAmelCase__ ):
A__ : Optional[int] = _re_one_line_import_struct.search(UpperCAmelCase__ ).groups()[0]
A__ : int = re.findall("""\[([^\]]+)\]""", UpperCAmelCase__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
A__ : Optional[Any] = _re_import_struct_key_value.search(UpperCAmelCase__ )
if single_line_import_search is not None:
A__ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCAmelCase__ ) > 0]
objects.extend(UpperCAmelCase__ )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
A__ : str = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
A__ : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ : List[str] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ : Tuple = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
A__ : Any = lines[line_index]
if _re_import_struct_add_one.search(UpperCAmelCase__ ) is not None:
objects.append(_re_import_struct_add_one.search(UpperCAmelCase__ ).groups()[0] )
elif _re_import_struct_add_many.search(UpperCAmelCase__ ) is not None:
A__ : Optional[int] = _re_import_struct_add_many.search(UpperCAmelCase__ ).groups()[0].split(""", """ )
A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0]
objects.extend(UpperCAmelCase__ )
elif _re_between_brackets.search(UpperCAmelCase__ ) is not None:
A__ : Any = _re_between_brackets.search(UpperCAmelCase__ ).groups()[0].split(""", """ )
A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0]
objects.extend(UpperCAmelCase__ )
elif _re_quote_object.search(UpperCAmelCase__ ) is not None:
objects.append(_re_quote_object.search(UpperCAmelCase__ ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 1_2 + """\"""" ):
objects.append(line[1_3:-3] )
line_index += 1
A__ : str = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
A__ : Union[str, Any] = []
while (
line_index < len(UpperCAmelCase__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
A__ : Optional[Any] = lines[line_index]
A__ : List[str] = _re_import.search(UpperCAmelCase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
A__ : List[Any] = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(UpperCAmelCase__ ):
# If the line is an if is_backend_available, we grab all objects associated.
A__ : Dict = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
A__ : List[Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
A__ : Optional[int] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
A__ : int = lines[line_index]
A__ : List[Any] = _re_import.search(UpperCAmelCase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
A__ : Tuple = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->List[str]:
def find_duplicates(UpperCAmelCase__ : str ):
return [k for k, v in collections.Counter(UpperCAmelCase__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
A__ : int = []
for key in import_dict_objects.keys():
A__ : Tuple = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' )
A__ : Optional[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
A__ : List[Any] = """base imports""" if key == """none""" else f'{key} backend'
errors.append(f'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def _lowerCAmelCase ( ) ->Optional[Any]:
A__ : str = []
for root, _, files in os.walk(UpperCAmelCase__ ):
if "__init__.py" in files:
A__ : str = os.path.join(UpperCAmelCase__, """__init__.py""" )
A__ : Tuple = parse_init(UpperCAmelCase__ )
if objects is not None:
A__ : str = analyze_results(*UpperCAmelCase__ )
if len(UpperCAmelCase__ ) > 0:
A__ : Any = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append("""\n""".join(UpperCAmelCase__ ) )
if len(UpperCAmelCase__ ) > 0:
raise ValueError("""\n\n""".join(UpperCAmelCase__ ) )
def _lowerCAmelCase ( ) ->Optional[int]:
A__ : List[Any] = []
for path, directories, files in os.walk(UpperCAmelCase__ ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(UpperCAmelCase__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(UpperCAmelCase__ ) / folder).glob("""*.py""" ) ) ) == 0:
continue
A__ : Any = str((Path(UpperCAmelCase__ ) / folder).relative_to(UpperCAmelCase__ ) )
A__ : Optional[int] = short_path.replace(os.path.sep, """.""" )
submodules.append(UpperCAmelCase__ )
for fname in files:
if fname == "__init__.py":
continue
A__ : Union[str, Any] = str((Path(UpperCAmelCase__ ) / fname).relative_to(UpperCAmelCase__ ) )
A__ : Any = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(UpperCAmelCase__ )
return submodules
A_ = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _lowerCAmelCase ( ) ->Optional[int]:
# This is to make sure the transformers module imported is the one in the repo.
A__ : Dict = importlib.util.spec_from_file_location(
"""transformers""", os.path.join(UpperCAmelCase__, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], )
A__ : Any = spec.loader.load_module()
A__ : Optional[Any] = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(f'- {module}' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registered in the main init of Transformers:\n"""
f'{list_of_modules}\n'
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 362
|
"""simple docstring"""
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
A_ = '''src/diffusers'''
A_ = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
A_ = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
A_ = spec.loader.load_module()
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any:
return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]:
A__ : Any = object_name.split(""".""" )
A__ : int = 0
# First let's find the module where our object lives.
A__ : str = parts[i]
while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ):
i += 1
if i < len(UpperCAmelCase__ ):
A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] )
if i >= len(UpperCAmelCase__ ):
raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' )
with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : List[Any] = f.readlines()
# Now let's find the class / func in the code!
A__ : Optional[Any] = """"""
A__ : Any = 0
for name in parts[i + 1 :]:
while (
line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
raise ValueError(f' {object_name} does not match any function or class in {module}.' )
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
A__ : List[Any] = line_index
while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : List[Any] = lines[start_index:line_index]
return "".join(UpperCAmelCase__ )
A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
A_ = re.compile(r'''<FILL\s+[^>]*>''')
def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]:
A__ : Dict = code.split("""\n""" )
A__ : List[Any] = 0
while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0:
idx += 1
if idx < len(UpperCAmelCase__ ):
return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0]
return ""
def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int:
A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0
if has_indent:
A__ : Union[str, Any] = f'class Bla:\n{code}'
A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ )
A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ )
A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ )
return result[len("""class Bla:\n""" ) :] if has_indent else result
def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]:
with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
A__ : int = f.readlines()
A__ : Dict = []
A__ : List[str] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(UpperCAmelCase__ ):
A__ : Dict = _re_copy_warning.search(lines[line_index] )
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
A__ , A__ , A__ : Dict = search.groups()
A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ )
A__ : int = get_indent(UpperCAmelCase__ )
A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2
A__ : Tuple = theoretical_indent
A__ : Optional[Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
A__ : Tuple = True
while line_index < len(UpperCAmelCase__ ) and should_continue:
line_index += 1
if line_index >= len(UpperCAmelCase__ ):
break
A__ : Optional[int] = lines[line_index]
A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1] ) <= 1:
line_index -= 1
A__ : Dict = lines[start_index:line_index]
A__ : Tuple = """""".join(UpperCAmelCase__ )
# Remove any nested `Copied from` comments to avoid circular copies
A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None]
A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ )
# Before comparing, use the `replace_pattern` on the original code.
if len(UpperCAmelCase__ ) > 0:
A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" )
A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
A__ , A__ , A__ : Union[str, Any] = pattern.groups()
A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
if option.strip() == "all-casing":
A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ )
A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ )
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code )
A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index] )
if overwrite:
A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
A__ : Tuple = start_index + 1
if overwrite and len(UpperCAmelCase__ ) > 0:
# Warn the user a file has been modified.
print(f'Detected changes, rewriting {filename}.' )
with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(UpperCAmelCase__ )
return diffs
def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any:
A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ )
A__ : str = []
for filename in all_files:
A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ )
diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs]
if not overwrite and len(UpperCAmelCase__ ) > 0:
A__ : Any = """\n""".join(UpperCAmelCase__ )
raise Exception(
"""Found the following copy inconsistencies:\n"""
+ diff
+ """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
A_ = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 296
| 0
|
"""simple docstring"""
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
A_ = logging.get_logger(__name__)
# General docstring
A_ = '''PoolFormerConfig'''
# Base docstring
A_ = '''sail/poolformer_s12'''
A_ = [1, 512, 7, 7]
# Image classification docstring
A_ = '''sail/poolformer_s12'''
A_ = '''tabby, tabby cat'''
A_ = [
'''sail/poolformer_s12''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : bool = False ) ->Union[str, Any]:
if drop_prob == 0.0 or not training:
return input
A__ : Optional[int] = 1 - drop_prob
A__ : Optional[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
A__ : Optional[Any] = keep_prob + torch.rand(UpperCAmelCase__, dtype=input.dtype, device=input.device )
random_tensor.floor_() # binarize
A__ : int = input.div(UpperCAmelCase__ ) * random_tensor
return output
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[Any] , snake_case : Optional[float] = None ):
'''simple docstring'''
super().__init__()
A__ : int = drop_prob
def _UpperCamelCase ( self : List[Any] , snake_case : torch.Tensor ):
'''simple docstring'''
return drop_path(snake_case , self.drop_prob , self.training )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
return "p={}".format(self.drop_prob )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Dict=None ):
'''simple docstring'''
super().__init__()
A__ : str = patch_size if isinstance(snake_case , collections.abc.Iterable ) else (patch_size, patch_size)
A__ : Any = stride if isinstance(snake_case , collections.abc.Iterable ) else (stride, stride)
A__ : Dict = padding if isinstance(snake_case , collections.abc.Iterable ) else (padding, padding)
A__ : List[str] = nn.Convad(snake_case , snake_case , kernel_size=snake_case , stride=snake_case , padding=snake_case )
A__ : int = norm_layer(snake_case ) if norm_layer else nn.Identity()
def _UpperCamelCase ( self : int , snake_case : Dict ):
'''simple docstring'''
A__ : Tuple = self.projection(snake_case )
A__ : List[Any] = self.norm(snake_case )
return embeddings
class __SCREAMING_SNAKE_CASE ( nn.GroupNorm ):
def __init__( self : str , snake_case : str , **snake_case : Optional[Any] ):
'''simple docstring'''
super().__init__(1 , snake_case , **snake_case )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : int , snake_case : Dict ):
'''simple docstring'''
super().__init__()
A__ : Optional[int] = nn.AvgPoolad(snake_case , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ):
'''simple docstring'''
return self.pool(snake_case ) - hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[Any] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] ):
'''simple docstring'''
super().__init__()
A__ : Any = nn.Convad(snake_case , snake_case , 1 )
A__ : Dict = nn.Convad(snake_case , snake_case , 1 )
A__ : List[Any] = PoolFormerDropPath(snake_case )
if isinstance(config.hidden_act , snake_case ):
A__ : Optional[int] = ACTaFN[config.hidden_act]
else:
A__ : int = config.hidden_act
def _UpperCamelCase ( self : Optional[int] , snake_case : Tuple ):
'''simple docstring'''
A__ : Dict = self.conva(snake_case )
A__ : Union[str, Any] = self.act_fn(snake_case )
A__ : Dict = self.drop(snake_case )
A__ : Tuple = self.conva(snake_case )
A__ : Dict = self.drop(snake_case )
return hidden_states
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Union[str, Any] , snake_case : Any , snake_case : int , snake_case : Tuple , snake_case : List[Any] , snake_case : List[str] , snake_case : Dict ):
'''simple docstring'''
super().__init__()
A__ : Any = PoolFormerPooling(snake_case )
A__ : Tuple = PoolFormerOutput(snake_case , snake_case , snake_case , snake_case )
A__ : Dict = PoolFormerGroupNorm(snake_case )
A__ : Any = PoolFormerGroupNorm(snake_case )
# Useful for training neural nets
A__ : Dict = PoolFormerDropPath(snake_case ) if drop_path > 0.0 else nn.Identity()
A__ : str = config.use_layer_scale
if config.use_layer_scale:
A__ : Tuple = nn.Parameter(
config.layer_scale_init_value * torch.ones((snake_case) ) , requires_grad=snake_case )
A__ : int = nn.Parameter(
config.layer_scale_init_value * torch.ones((snake_case) ) , requires_grad=snake_case )
def _UpperCamelCase ( self : int , snake_case : Union[str, Any] ):
'''simple docstring'''
if self.use_layer_scale:
A__ : List[str] = self.pooling(self.before_norm(snake_case ) )
A__ : Union[str, Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
A__ : Tuple = hidden_states + self.drop_path(snake_case )
A__ : Dict = ()
A__ : List[Any] = self.output(self.after_norm(snake_case ) )
A__ : List[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
A__ : int = hidden_states + self.drop_path(snake_case )
A__ : Union[str, Any] = (output,) + outputs
return outputs
else:
A__ : Tuple = self.drop_path(self.pooling(self.before_norm(snake_case ) ) )
# First residual connection
A__ : str = pooling_output + hidden_states
A__ : Any = ()
# Second residual connection inside the PoolFormerOutput block
A__ : Dict = self.drop_path(self.output(self.after_norm(snake_case ) ) )
A__ : List[Any] = hidden_states + layer_output
A__ : Any = (output,) + outputs
return outputs
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[int] , snake_case : Optional[int] ):
'''simple docstring'''
super().__init__()
A__ : Optional[Any] = config
# stochastic depth decay rule
A__ : Dict = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
A__ : Optional[int] = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
A__ : Union[str, Any] = nn.ModuleList(snake_case )
# Transformer blocks
A__ : Dict = []
A__ : Union[str, Any] = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
A__ : List[Any] = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
snake_case , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(snake_case ) )
A__ : List[str] = nn.ModuleList(snake_case )
def _UpperCamelCase ( self : Any , snake_case : Tuple , snake_case : Optional[int]=False , snake_case : Any=True ):
'''simple docstring'''
A__ : Optional[Any] = () if output_hidden_states else None
A__ : str = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
A__ : List[Any] = layers
# Get patch embeddings from hidden_states
A__ : Optional[int] = embedding_layer(snake_case )
# Send the embeddings through the blocks
for _, blk in enumerate(snake_case ):
A__ : List[Any] = blk(snake_case )
A__ : Union[str, Any] = layer_outputs[0]
if output_hidden_states:
A__ : Union[str, Any] = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
snake_case_ = PoolFormerConfig
snake_case_ = 'poolformer'
snake_case_ = 'pixel_values'
snake_case_ = True
def _UpperCamelCase ( self : Optional[Any] , snake_case : Union[str, Any] ):
'''simple docstring'''
if isinstance(snake_case , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(snake_case , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=False ):
'''simple docstring'''
if isinstance(snake_case , snake_case ):
A__ : Union[str, Any] = value
A_ = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
A_ = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
'''
@add_start_docstrings(
'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Optional[Any] , snake_case : Optional[Any] ):
'''simple docstring'''
super().__init__(snake_case )
A__ : Optional[int] = config
A__ : int = PoolFormerEncoder(snake_case )
# Initialize weights and apply final processing
self.post_init()
def _UpperCamelCase ( self : str ):
'''simple docstring'''
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , ):
'''simple docstring'''
A__ : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
A__ : str = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
A__ : Optional[int] = self.encoder(
snake_case , output_hidden_states=snake_case , return_dict=snake_case , )
A__ : Tuple = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=snake_case , hidden_states=encoder_outputs.hidden_states , )
class __SCREAMING_SNAKE_CASE ( nn.Module ):
def __init__( self : Optional[int] , snake_case : Optional[int] ):
'''simple docstring'''
super().__init__()
A__ : Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : Tuple = self.dense(snake_case )
return output
@add_start_docstrings(
'\n PoolFormer Model transformer with an image classification head on top\n ' , UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( UpperCamelCase ):
def __init__( self : Dict , snake_case : Dict ):
'''simple docstring'''
super().__init__(snake_case )
A__ : List[str] = config.num_labels
A__ : Optional[int] = PoolFormerModel(snake_case )
# Final norm
A__ : Any = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
A__ : Any = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _UpperCamelCase ( self : List[Any] , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.LongTensor] = None , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , ):
'''simple docstring'''
A__ : int = return_dict if return_dict is not None else self.config.use_return_dict
A__ : Any = self.poolformer(
snake_case , output_hidden_states=snake_case , return_dict=snake_case , )
A__ : List[str] = outputs[0]
A__ : Dict = self.classifier(self.norm(snake_case ).mean([-2, -1] ) )
A__ : List[str] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
A__ : str = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
A__ : Tuple = """single_label_classification"""
else:
A__ : int = """multi_label_classification"""
if self.config.problem_type == "regression":
A__ : Any = MSELoss()
if self.num_labels == 1:
A__ : str = loss_fct(logits.squeeze() , labels.squeeze() )
else:
A__ : str = loss_fct(snake_case , snake_case )
elif self.config.problem_type == "single_label_classification":
A__ : Optional[Any] = CrossEntropyLoss()
A__ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
A__ : Union[str, Any] = BCEWithLogitsLoss()
A__ : Tuple = loss_fct(snake_case , snake_case )
if not return_dict:
A__ : Union[str, Any] = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
| 363
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
A_ = {
'''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = ['''LlamaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
'''LlamaForCausalLM''',
'''LlamaModel''',
'''LlamaPreTrainedModel''',
'''LlamaForSequenceClassification''',
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 296
| 0
|
"""simple docstring"""
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
A_ = '''\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
'''
A_ = '''\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
'''
A_ = '''
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLSum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric(\'rouge\')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
[\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']
>>> print(results["rouge1"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results["rouge1"].mid.fmeasure)
1.0
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def _UpperCamelCase ( self : str , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : Union[str, Any]=None , snake_case : Dict=True , snake_case : List[str]=False ):
'''simple docstring'''
if rouge_types is None:
A__ : int = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
A__ : List[str] = rouge_scorer.RougeScorer(rouge_types=snake_case , use_stemmer=snake_case )
if use_aggregator:
A__ : Any = scoring.BootstrapAggregator()
else:
A__ : str = []
for ref, pred in zip(snake_case , snake_case ):
A__ : Tuple = scorer.score(snake_case , snake_case )
if use_aggregator:
aggregator.add_scores(snake_case )
else:
scores.append(snake_case )
if use_aggregator:
A__ : Optional[int] = aggregator.aggregate()
else:
A__ : Union[str, Any] = {}
for key in scores[0]:
A__ : int = [score[key] for score in scores]
return result
| 364
|
"""simple docstring"""
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
A_ = object()
# For specifying empty leaf dict `{}`
A_ = object()
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict:
A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) )
for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ):
A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )]
if matches and all(UpperCAmelCase__ ):
return True
return False
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict:
def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ):
for rule, replacement in rules:
if _match(UpperCAmelCase__, UpperCAmelCase__ ):
return replacement
return val
return replace
def _lowerCAmelCase ( ) ->Tuple:
return [
# embeddings
(("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )),
(("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )),
(("mlp", "c_fc", "bias"), P("""mp""" )),
(("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any:
A__ : Union[str, Any] = _get_partition_rules()
A__ : int = _replacement_rules(UpperCAmelCase__ )
A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )}
A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(UpperCAmelCase__ ) )
| 296
| 0
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def __init__( self : List[str] , snake_case : Optional[Any] , snake_case : str=7 , snake_case : Tuple=3 , snake_case : List[Any]=18 , snake_case : Any=30 , snake_case : Optional[Any]=400 , snake_case : Any=True , snake_case : List[Any]=None , snake_case : Optional[Any]=True , snake_case : int=None , snake_case : int=True , snake_case : List[str]=[0.5, 0.5, 0.5] , snake_case : Optional[int]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
A__ : Any = size if size is not None else {"""shortest_edge""": 18}
A__ : Dict = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
A__ : Dict = parent
A__ : Optional[Any] = batch_size
A__ : Tuple = num_channels
A__ : List[Any] = image_size
A__ : List[Any] = min_resolution
A__ : List[str] = max_resolution
A__ : Optional[int] = do_resize
A__ : Optional[int] = size
A__ : Optional[int] = do_center_crop
A__ : Optional[int] = crop_size
A__ : Tuple = do_normalize
A__ : Union[str, Any] = image_mean
A__ : Union[str, Any] = image_std
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = LevitImageProcessor if is_vision_available() else None
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : List[str] = LevitImageProcessingTester(self )
@property
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case , """image_mean""" ) )
self.assertTrue(hasattr(snake_case , """image_std""" ) )
self.assertTrue(hasattr(snake_case , """do_normalize""" ) )
self.assertTrue(hasattr(snake_case , """do_resize""" ) )
self.assertTrue(hasattr(snake_case , """do_center_crop""" ) )
self.assertTrue(hasattr(snake_case , """size""" ) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
A__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
pass
def _UpperCamelCase ( self : Optional[Any] ):
'''simple docstring'''
A__ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , Image.Image )
# Test not batched input
A__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : Optional[Any] = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , np.ndarray )
# Test not batched input
A__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : Union[str, Any] = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , torch.Tensor )
# Test not batched input
A__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
A__ : Dict = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 365
|
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class __SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ):
'''simple docstring'''
A__ : Union[str, Any] = parent
A__ : Optional[Any] = batch_size
A__ : Dict = seq_length
A__ : str = is_training
A__ : Tuple = use_input_mask
A__ : Dict = use_token_type_ids
A__ : Dict = use_labels
A__ : int = vocab_size
A__ : List[str] = hidden_size
A__ : Union[str, Any] = num_hidden_layers
A__ : int = num_attention_heads
A__ : List[str] = intermediate_size
A__ : int = hidden_act
A__ : str = hidden_dropout_prob
A__ : Tuple = attention_probs_dropout_prob
A__ : Any = max_position_embeddings
A__ : Optional[int] = type_vocab_size
A__ : int = type_sequence_label_size
A__ : Optional[Any] = initializer_range
A__ : int = num_labels
A__ : Optional[int] = num_choices
A__ : Optional[int] = scope
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ : Any = None
if self.use_input_mask:
A__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
A__ : Optional[int] = None
if self.use_token_type_ids:
A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A__ : Dict = None
A__ : List[str] = None
A__ : Union[str, Any] = None
if self.use_labels:
A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ : Any = ids_tensor([self.batch_size] , self.num_choices )
A__ : Optional[int] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCamelCase ( self : List[str] ):
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Any = self.get_config()
A__ : List[str] = 300
return config
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Tuple = self.prepare_config_and_inputs()
A__ : List[str] = True
A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ):
'''simple docstring'''
A__ : List[str] = MraModel(config=snake_case )
model.to(snake_case )
model.eval()
A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
A__ : List[str] = model(snake_case , token_type_ids=snake_case )
A__ : Union[str, Any] = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ):
'''simple docstring'''
A__ : Dict = True
A__ : Optional[Any] = MraModel(snake_case )
model.to(snake_case )
model.eval()
A__ : Union[str, Any] = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , )
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , )
A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM(config=snake_case )
model.to(snake_case )
model.eval()
A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : Dict = MraForQuestionAnswering(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Optional[Any] = MraForSequenceClassification(snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : str = self.num_labels
A__ : Union[str, Any] = MraForTokenClassification(config=snake_case )
model.to(snake_case )
model.eval()
A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ):
'''simple docstring'''
A__ : List[str] = self.num_choices
A__ : str = MraForMultipleChoice(config=snake_case )
model.to(snake_case )
model.eval()
A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A__ : str = model(
snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : List[str] = self.prepare_config_and_inputs()
(
(
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) , (
A__
) ,
) : Dict = config_and_inputs
A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ):
snake_case_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = ()
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Optional[Any] = MraModelTester(self )
A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A__ : List[str] = type
self.model_tester.create_and_check_model(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*snake_case )
def _UpperCamelCase ( self : Optional[int] ):
'''simple docstring'''
A__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def _UpperCamelCase ( self : int ):
'''simple docstring'''
A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def _UpperCamelCase ( self : Any ):
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : str = MraModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@unittest.skip(reason="""MRA does not output attentions""" )
def _UpperCamelCase ( self : Tuple ):
'''simple docstring'''
return
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@slow
def _UpperCamelCase ( self : Union[str, Any] ):
'''simple docstring'''
A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Any = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : List[Any] = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , snake_case )
A__ : int = torch.tensor(
[[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : List[Any] ):
'''simple docstring'''
A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" )
A__ : Tuple = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Dict = 5_0265
A__ : List[str] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : List[Any] = torch.tensor(
[[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
@slow
def _UpperCamelCase ( self : Dict ):
'''simple docstring'''
A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" )
A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A__ : List[Any] = model(snake_case )[0]
A__ : Union[str, Any] = 5_0265
A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , snake_case )
A__ : Optional[int] = torch.tensor(
[[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
| 296
| 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.