code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" UpperCAmelCase_ = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def lowerCamelCase__ ( UpperCamelCase__ : str ) -> int: '''simple docstring''' _snake_case = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} _snake_case = 0 _snake_case = 0 while place < len(UpperCamelCase__ ): if (place + 1 < len(UpperCamelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase__ ( UpperCamelCase__ : int ) -> str: '''simple docstring''' _snake_case = [] for arabic, roman in ROMAN: ((_snake_case) , (_snake_case)) = divmod(UpperCamelCase__ , UpperCamelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
362
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class UpperCamelCase_ : def __init__( self , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> int: logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _snake_case = model _snake_case = kwargs.get('model_save_dir' , lowerCAmelCase_ ) _snake_case = kwargs.get('latest_model_name' , lowerCAmelCase_ ) def __call__( self , **lowerCAmelCase_ ) -> Tuple: _snake_case = {k: np.array(lowerCAmelCase_ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase_ , lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Tuple: if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _snake_case = 'CPUExecutionProvider' return ort.InferenceSession(lowerCAmelCase_ , providers=[provider] , sess_options=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ) -> List[Any]: _snake_case = file_name if file_name is not None else ONNX_WEIGHTS_NAME _snake_case = self.model_save_dir.joinpath(self.latest_model_name ) _snake_case = Path(lowerCAmelCase_ ).joinpath(lowerCAmelCase_ ) try: shutil.copyfile(lowerCAmelCase_ , lowerCAmelCase_ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _snake_case = self.model_save_dir.joinpath(lowerCAmelCase_ ) if src_path.exists(): _snake_case = Path(lowerCAmelCase_ ).joinpath(lowerCAmelCase_ ) try: shutil.copyfile(lowerCAmelCase_ , lowerCAmelCase_ ) except shutil.SameFileError: pass def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ , ) -> Any: if os.path.isfile(lowerCAmelCase_ ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) # saving model weights/files self._save_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Optional[int]: _snake_case = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase_ ): _snake_case = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , provider=lowerCAmelCase_ , sess_options=lowerCAmelCase_ ) _snake_case = Path(lowerCAmelCase_ ) # load model from hub else: # download model _snake_case = hf_hub_download( repo_id=lowerCAmelCase_ , filename=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , ) _snake_case = Path(lowerCAmelCase_ ).parent _snake_case = Path(lowerCAmelCase_ ).name _snake_case = OnnxRuntimeModel.load_model(lowerCAmelCase_ , provider=lowerCAmelCase_ , sess_options=lowerCAmelCase_ ) return cls(model=lowerCAmelCase_ , **lowerCAmelCase_ ) @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> str: _snake_case = None if len(str(lowerCAmelCase_ ).split('@' ) ) == 2: _snake_case , _snake_case = model_id.split('@' ) return cls._from_pretrained( model_id=lowerCAmelCase_ , revision=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , **lowerCAmelCase_ , )
363
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[str] ) -> Any: '''simple docstring''' _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in sd.keys(): _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] # pop unnecessary weights _snake_case = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) _snake_case = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _snake_case = sd.pop(UpperCamelCase__ ) _snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _snake_case = sd[key] # We split QKV in separate Q,K,V _snake_case = key.replace('.qkv_proj.' , '.q_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.k_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.v_proj.' ) _snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _snake_case , _snake_case , _snake_case = torch.split(UpperCamelCase__ , depth // 3 , dim=0 ) _snake_case = q _snake_case = k _snake_case = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None ) -> Optional[int]: '''simple docstring''' _snake_case = load_checkpoint(UpperCamelCase__ ) if config is not None: _snake_case = OPTConfig.from_pretrained(UpperCamelCase__ ) else: _snake_case = OPTConfig() _snake_case = OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") UpperCAmelCase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
364
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
0
import string def lowerCamelCase__ ( UpperCamelCase__ : str ) -> str: '''simple docstring''' _snake_case = '' for i in sequence: _snake_case = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowerCamelCase__ ( UpperCamelCase__ : str ) -> str: '''simple docstring''' _snake_case = string.ascii_letters _snake_case = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def lowerCamelCase__ ( ) -> None: '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) _snake_case = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCamelCase__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=UpperCamelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
365
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
0
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets UpperCAmelCase_ = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ UpperCAmelCase_ = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ UpperCAmelCase_ = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> str: if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , ) -> Optional[Any]: _snake_case = len(references[0] ) if any(len(lowerCAmelCase_ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) _snake_case = [[refs[i] for refs in references] for i in range(lowerCAmelCase_ )] _snake_case = TER( normalized=lowerCAmelCase_ , no_punct=lowerCAmelCase_ , asian_support=lowerCAmelCase_ , case_sensitive=lowerCAmelCase_ , ) _snake_case = sb_ter.corpus_score(lowerCAmelCase_ , lowerCAmelCase_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
366
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
0
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> str: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> str: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Tuple: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Dict: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[int]: requires_backends(self , ['sentencepiece'] ) class UpperCamelCase_ ( metaclass=_lowerCamelCase ): lowerCAmelCase_ = ['''sentencepiece'''] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[int]: requires_backends(self , ['sentencepiece'] )
367
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 1000 , lowerCAmelCase_ = None ) -> Optional[int]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution _snake_case = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. _snake_case = 4 # running values _snake_case = [] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[str]: _snake_case = num_inference_steps _snake_case = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] _snake_case = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: _snake_case = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: _snake_case = torch.sin(steps * math.pi / 2 ) ** 2 _snake_case = (1.0 - self.betas**2) ** 0.5 _snake_case = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] _snake_case = timesteps.to(lowerCAmelCase_ ) _snake_case = [] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) _snake_case = (self.timesteps == timestep).nonzero().item() _snake_case = timestep_index + 1 _snake_case = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: _snake_case = self.ets[-1] elif len(self.ets ) == 2: _snake_case = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: _snake_case = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: _snake_case = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) _snake_case = self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> torch.FloatTensor: return sample def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.alphas[timestep_index] _snake_case = self.betas[timestep_index] _snake_case = self.alphas[prev_timestep_index] _snake_case = self.betas[prev_timestep_index] _snake_case = (sample - sigma * ets) / max(lowerCAmelCase_ , 1E-8 ) _snake_case = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ) -> Optional[Any]: return self.config.num_train_timesteps
368
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase_ ( _lowerCamelCase ): """simple docstring""" lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 224} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Dict: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='size' , default_to_square=lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' , default_to_square=lowerCAmelCase_ ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
369
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRContextEncoderTokenizer class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRQuestionEncoderTokenizer _lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowercase = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_lowerCamelCase ) class UpperCamelCase_ : def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: _snake_case = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] _snake_case = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] _snake_case = len(lowerCAmelCase_ ) _snake_case = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages assert len(lowerCAmelCase_ ) == len( lowerCAmelCase_ ), F'''There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.''' _snake_case = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] _snake_case = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] _snake_case = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: _snake_case = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _snake_case = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 4 , ) -> List[DPRSpanPrediction]: _snake_case = reader_input['input_ids'] _snake_case , _snake_case , _snake_case = reader_output[:3] _snake_case = len(lowerCAmelCase_ ) _snake_case = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) _snake_case = [] for doc_id in sorted_docs: _snake_case = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _snake_case = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _snake_case = sequence_ids.index(self.pad_token_id ) else: _snake_case = len(lowerCAmelCase_ ) _snake_case = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> List[DPRSpanPrediction]: _snake_case = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _snake_case = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) _snake_case = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' _snake_case = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = DPRReaderTokenizer
370
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
0
import os import numpy import onnx def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ) -> Tuple: '''simple docstring''' _snake_case = a.name _snake_case = b.name _snake_case = '' _snake_case = '' _snake_case = a == b _snake_case = name_a _snake_case = name_b return res def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ) -> Tuple: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' _snake_case = list(model.graph.initializer ) _snake_case = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case = inits[i].name _snake_case = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _snake_case = os.path.dirname(UpperCamelCase__ ) _snake_case = os.path.basename(UpperCamelCase__ ) _snake_case = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) _snake_case = list(model.graph.initializer ) _snake_case = set() _snake_case = {} _snake_case = [] _snake_case = 0 for i in range(len(UpperCamelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCamelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCamelCase__ ) dup_set.add(UpperCamelCase__ ) _snake_case = inits[j].data_type _snake_case = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , UpperCamelCase__ ) total_reduced_size += mem_size _snake_case = inits[i].name _snake_case = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCamelCase__ ) else: _snake_case = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) _snake_case = sorted(UpperCamelCase__ ) _remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = 'optimized_' + model_file_name _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) onnx.save(UpperCamelCase__ , UpperCamelCase__ ) return new_model
371
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
0
def lowerCamelCase__ ( UpperCamelCase__ : int ) -> str: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) _snake_case = len(bin(UpperCamelCase__ )[3:] ) _snake_case = bin(abs(UpperCamelCase__ ) - (1 << binary_number_length) )[3:] _snake_case = ( ( '1' + '0' * (binary_number_length - len(UpperCamelCase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
350
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
0
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ UpperCAmelCase_ = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ UpperCAmelCase_ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ ) ), }
351
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
0
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
352
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = params _snake_case = np.array(lowerCAmelCase_ ) _snake_case = np.array([len(lowerCAmelCase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase_ ) -> Tuple: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Optional[Any]: return len(self.lengths ) def lowerCAmelCase ( self ) -> Tuple: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.params.max_model_input_size _snake_case = self.lengths > max_len logger.info(F'''Splitting {sum(lowerCAmelCase_ )} too long sequences.''' ) def divide_chunks(lowerCAmelCase_ , lowerCAmelCase_ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ )] _snake_case = [] _snake_case = [] if self.params.mlm: _snake_case , _snake_case = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: _snake_case , _snake_case = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _snake_case = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _snake_case = np.insert(lowerCAmelCase_ , 0 , lowerCAmelCase_ ) if sub_s[-1] != sep_id: _snake_case = np.insert(lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase_ ) new_tok_ids.extend(lowerCAmelCase_ ) new_lengths.extend([len(lowerCAmelCase_ ) for l in sub_seqs] ) _snake_case = np.array(lowerCAmelCase_ ) _snake_case = np.array(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = len(self ) _snake_case = self.lengths > 11 _snake_case = self.token_ids[indices] _snake_case = self.lengths[indices] _snake_case = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def lowerCAmelCase ( self ) -> Optional[Any]: if "unk_token" not in self.params.special_tok_ids: return else: _snake_case = self.params.special_tok_ids['unk_token'] _snake_case = len(self ) _snake_case = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _snake_case = (unk_occs / self.lengths) < 0.5 _snake_case = self.token_ids[indices] _snake_case = self.lengths[indices] _snake_case = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def lowerCAmelCase ( self ) -> List[Any]: if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _snake_case = [t[0] for t in batch] _snake_case = [t[1] for t in batch] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) # Max for paddings _snake_case = max(lowerCAmelCase_ ) # Pad token ids if self.params.mlm: _snake_case = self.params.special_tok_ids['pad_token'] else: _snake_case = self.params.special_tok_ids['unk_token'] _snake_case = [list(t.astype(lowerCAmelCase_ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase_ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase_ ) assert all(len(lowerCAmelCase_ ) == max_seq_len_ for t in tk_ ) _snake_case = torch.tensor(tk_ ) # (bs, max_seq_len_) _snake_case = torch.tensor(lowerCAmelCase_ ) # (bs) return tk_t, lg_t
353
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
354
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
0
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
355
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
0
UpperCAmelCase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: '''simple docstring''' assert len(str(UpperCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _snake_case = year // 100 _snake_case = (5 * (century % 4) + 2) % 7 _snake_case = year % 100 _snake_case = centurian % 12 _snake_case = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _snake_case = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) _snake_case = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
356
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase_ ( unittest.TestCase , _lowerCamelCase ): def lowerCAmelCase ( self ) -> str: _snake_case = load_tool('text-to-speech' ) self.tool.setup() def lowerCAmelCase ( self ) -> Any: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _snake_case = self.tool('hey' ) _snake_case = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def lowerCAmelCase ( self ) -> Tuple: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _snake_case = self.tool('hey' ) _snake_case = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
357
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
0
def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> int: '''simple docstring''' _snake_case = 0 _snake_case = len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _snake_case = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None _snake_case = sorted_collection[point] if current_item == item: return point else: if point < left: _snake_case = left _snake_case = point elif point > right: _snake_case = right _snake_case = point else: if item < current_item: _snake_case = point - 1 else: _snake_case = point + 1 return None def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> Dict: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _snake_case = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys UpperCAmelCase_ = 0 if debug == 1: UpperCAmelCase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") UpperCAmelCase_ = 67 UpperCAmelCase_ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("""Not found""")
358
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase_ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' inspect_dataset(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = path + '.py' assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> Tuple: '''simple docstring''' inspect_metric(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = path + '.py' assert script_name in os.listdir(UpperCamelCase__ ) assert "__pycache__" not in os.listdir(UpperCamelCase__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : str ) -> Optional[int]: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): get_dataset_config_info(UpperCamelCase__ , config_name=UpperCamelCase__ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' _snake_case = get_dataset_config_names(UpperCamelCase__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' _snake_case = get_dataset_infos(UpperCamelCase__ ) assert list(infos.keys() ) == expected_configs _snake_case = expected_configs[0] assert expected_config in infos _snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ) -> List[Any]: '''simple docstring''' _snake_case = get_dataset_infos(UpperCamelCase__ ) assert expected_config in infos _snake_case = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' with pytest.raises(UpperCamelCase__ ): get_dataset_split_names(UpperCamelCase__ , config_name=UpperCamelCase__ )
359
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
360
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
0
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
361
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''image_processor''', '''tokenizer'''] lowerCAmelCase_ = '''LayoutLMv2ImageProcessor''' lowerCAmelCase_ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Optional[Any]: if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor _snake_case = self.image_processor(images=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) _snake_case = features['words'] _snake_case = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) # add pixel values _snake_case = features.pop('pixel_values' ) if return_overflowing_tokens is True: _snake_case = self.get_overflowing_images(lowerCAmelCase_ , encoded_inputs['overflow_to_sample_mapping'] ) _snake_case = images return encoded_inputs def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F''' {len(lowerCAmelCase_ )} and {len(lowerCAmelCase_ )}''' ) return images_with_overflow def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def lowerCAmelCase ( self ) -> List[str]: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase ( self ) -> Optional[Any]: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase_ , ) return self.image_processor_class @property def lowerCAmelCase ( self ) -> Any: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase_ , ) return self.image_processor
362
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
0
"""simple docstring""" import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
363
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } UpperCAmelCase_ = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = BertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Any: _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
364
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
0
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
365
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
366
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ) -> Optional[int]: '''simple docstring''' _snake_case = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token') ) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings') ) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias') ) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight') ) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int=False ) -> Any: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _snake_case = '' else: _snake_case = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Dict: '''simple docstring''' _snake_case = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' _snake_case = dct.pop(UpperCamelCase__ ) _snake_case = val def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=False ) -> Union[str, Any]: '''simple docstring''' _snake_case = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=UpperCamelCase__ , ) _snake_case = ViTHybridConfig(backbone_config=UpperCamelCase__ , image_size=384 , num_labels=1_000 ) _snake_case = False # load original model from timm _snake_case = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _snake_case = timm_model.state_dict() if base_model: remove_classification_head_(UpperCamelCase__ ) _snake_case = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _snake_case = ViTHybridModel(UpperCamelCase__ ).eval() else: _snake_case = ViTHybridForImageClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # create image processor _snake_case = create_transform(**resolve_data_config({} , model=UpperCamelCase__ ) ) _snake_case = transform.transforms _snake_case = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } _snake_case = ViTHybridImageProcessor( do_resize=UpperCamelCase__ , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=UpperCamelCase__ , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=UpperCamelCase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _snake_case = prepare_img() _snake_case = transform(UpperCamelCase__ ).unsqueeze(0 ) _snake_case = processor(UpperCamelCase__ , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) # verify logits with torch.no_grad(): _snake_case = model(UpperCamelCase__ ) _snake_case = outputs.logits print('Predicted class:' , logits.argmax(-1 ).item() ) if base_model: _snake_case = timm_model.forward_features(UpperCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: _snake_case = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : def __init__( self , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=6.0 , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_="fp4" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = load_in_abit _snake_case = load_in_abit _snake_case = llm_inta_threshold _snake_case = llm_inta_skip_modules _snake_case = llm_inta_enable_fpaa_cpu_offload _snake_case = llm_inta_has_fpaa_weight _snake_case = bnb_abit_quant_type _snake_case = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _snake_case = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): _snake_case = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def lowerCAmelCase ( self ) -> Tuple: if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def lowerCAmelCase ( self ) -> Optional[Any]: return self.load_in_abit or self.load_in_abit def lowerCAmelCase ( self ) -> str: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: _snake_case = cls(**lowerCAmelCase_ ) _snake_case = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: _snake_case = self.to_dict() _snake_case = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '\n' writer.write(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> str: return F'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCAmelCase ( self , lowerCAmelCase_ = True ) -> str: if use_diff is True: _snake_case = self.to_diff_dict() else: _snake_case = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = self.to_dict() # get the default config dict _snake_case = BitsAndBytesConfig().to_dict() _snake_case = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _snake_case = value return serializable_config_dict
368
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
0
from math import pi def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
369
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase = 16 _lowercase = 32 def lowerCamelCase__ ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : int = 16 ) -> Optional[int]: '''simple docstring''' _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ : Any ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( UpperCamelCase__ , padding='longest' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _lowercase = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ) -> List[Any]: '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase__ ) == "1": _snake_case = 2 # New Code # _snake_case = int(args.gradient_accumulation_steps ) # Initialize accelerator _snake_case = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCamelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) _snake_case = evaluate.load('glue' , 'mrpc' ) set_seed(UpperCamelCase__ ) _snake_case , _snake_case = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase__ ): _snake_case = model(**UpperCamelCase__ ) _snake_case = output.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Dict: '''simple docstring''' _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=UpperCamelCase__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _snake_case = parser.parse_args() _snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
370
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } _snake_case = tempfile.mkdtemp() _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) # load decoder from hub _snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.get_tokenizer() _snake_case = self.get_feature_extractor() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowerCAmelCase_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = floats_list((3, 1000) ) _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor(lowerCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = 'This is a test string' _snake_case = processor(text=lowerCAmelCase_ ) _snake_case = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> List[Any]: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _snake_case = processor.decode(lowerCAmelCase_ ) _snake_case = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _snake_case = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _snake_case = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as p: _snake_case = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 15 _snake_case = -20.0 _snake_case = -4.0 _snake_case = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] _snake_case = [d[0][2] for d in decoded_decoder_out] _snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 2.0 _snake_case = 5.0 _snake_case = -20.0 _snake_case = True _snake_case = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = floats_list((3, 1000) ) _snake_case = processor_wavaveca(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor_auto(lowerCAmelCase_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _snake_case = self._get_dummy_logits() _snake_case = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _snake_case = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self ) -> List[Any]: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits()[0] _snake_case = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits() _snake_case = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self ) -> int: import torch _snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=lowerCAmelCase_ ) _snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) _snake_case = iter(lowerCAmelCase_ ) _snake_case = next(lowerCAmelCase_ ) _snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) _snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): _snake_case = model(lowerCAmelCase_ ).logits.cpu().numpy() _snake_case = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , lowerCAmelCase_ ) self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , output.text ) # output times _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'start_time' ) ) _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'end_time' ) ) # fmt: off _snake_case = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) _snake_case = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
371
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : float | Decimal, UpperCAmelCase__ : float = 1_0**-1_0 ) ->float: A__ : Any = a while True: A__ : Tuple = Decimal(UpperCAmelCase__ ) - ( Decimal(eval(UpperCAmelCase__ ) ) / Decimal(eval(str(diff(UpperCAmelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(UpperCAmelCase__ ) ) < precision: # noqa: S307 return float(UpperCAmelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = CycleDiffusionPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } snake_case_ = PipelineTesterMixin.required_optional_params - {'latents'} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) A__ : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A__ : Any = CLIPTextModel(snake_case ) A__ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : str=0 ): '''simple docstring''' A__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A__ : Tuple = image / 2 + 0.5 if str(snake_case ).startswith("""mps""" ): A__ : List[Any] = torch.manual_seed(snake_case ) else: A__ : Union[str, Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A__ : Dict = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Union[str, Any] = self.get_dummy_components() A__ : List[Any] = CycleDiffusionPipeline(**snake_case ) A__ : Dict = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : Optional[int] = self.get_dummy_inputs(snake_case ) A__ : List[Any] = pipe(**snake_case ) A__ : Optional[Any] = output.images A__ : str = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A__ : List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case , """half""" ): A__ : str = module.half() A__ : Dict = CycleDiffusionPipeline(**snake_case ) A__ : Optional[Any] = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : Optional[Any] = self.get_dummy_inputs(snake_case ) A__ : Tuple = pipe(**snake_case ) A__ : Union[str, Any] = output.images A__ : Tuple = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A__ : Any = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def _UpperCamelCase ( self : str ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def _UpperCamelCase ( self : Any ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _UpperCamelCase ( self : Any ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A__ : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) A__ : List[Any] = init_image.resize((512, 512) ) A__ : List[str] = """CompVis/stable-diffusion-v1-4""" A__ : str = DDIMScheduler.from_pretrained(snake_case , subfolder="""scheduler""" ) A__ : Dict = CycleDiffusionPipeline.from_pretrained( snake_case , scheduler=snake_case , safety_checker=snake_case , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A__ : Dict = """A black colored car""" A__ : Optional[Any] = """A blue colored car""" A__ : List[Any] = torch.manual_seed(0 ) A__ : Tuple = pipe( prompt=snake_case , source_prompt=snake_case , image=snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case , output_type="""np""" , ) A__ : List[str] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) A__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) A__ : str = init_image.resize((512, 512) ) A__ : Tuple = """CompVis/stable-diffusion-v1-4""" A__ : Optional[int] = DDIMScheduler.from_pretrained(snake_case , subfolder="""scheduler""" ) A__ : Any = CycleDiffusionPipeline.from_pretrained(snake_case , scheduler=snake_case , safety_checker=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() A__ : Dict = """A black colored car""" A__ : Any = """A blue colored car""" A__ : Any = torch.manual_seed(0 ) A__ : Union[str, Any] = pipe( prompt=snake_case , source_prompt=snake_case , image=snake_case , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case , output_type="""np""" , ) A__ : Any = output.images assert np.abs(image - expected_image ).max() < 2e-2
296
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _lowerCAmelCase ( UpperCAmelCase__ : Any ) ->Tuple: A__ : Any = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 1_8, 2] A__ : List[str] = True if """large""" in model_name or """huge""" in model_name else False A__ : List[Any] = True if """large""" in model_name or """huge""" in model_name else False A__ : int = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: A__ : List[Any] = [3, 3, 3, 3] A__ : Optional[int] = [5, 5, 5, 5] elif "fl4" in model_name: A__ : int = [4, 4, 4, 4] A__ : Tuple = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: A__ : List[str] = [3, 3, 3, 3] if "lrf" in model_name: A__ : Any = [3, 3, 3, 3] else: A__ : Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: A__ : List[Any] = 9_6 elif "small" in model_name: A__ : int = 9_6 elif "base" in model_name: A__ : Any = 1_2_8 elif "large" in model_name: A__ : int = 1_9_2 elif "xlarge" in model_name: A__ : Any = 2_5_6 elif "huge" in model_name: A__ : str = 3_5_2 # set label information A__ : str = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: A__ : Union[str, Any] = """imagenet-22k-id2label.json""" else: A__ : Any = """imagenet-1k-id2label.json""" A__ : Optional[Any] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Union[str, Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : List[str] = {v: k for k, v in idalabel.items()} A__ : Any = FocalNetConfig( embed_dim=UpperCAmelCase__, depths=UpperCAmelCase__, focal_levels=UpperCAmelCase__, focal_windows=UpperCAmelCase__, use_conv_embed=UpperCAmelCase__, idalabel=UpperCAmelCase__, labelaid=UpperCAmelCase__, use_post_layernorm=UpperCAmelCase__, use_layerscale=UpperCAmelCase__, ) return config def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Optional[int]: if "patch_embed.proj" in name: A__ : Union[str, Any] = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A__ : Union[str, Any] = name.replace("""patch_embed.norm""", """embeddings.norm""" ) if "layers" in name: A__ : Any = """encoder.""" + name if "encoder.layers" in name: A__ : Any = name.replace("""encoder.layers""", """encoder.stages""" ) if "downsample.proj" in name: A__ : Union[str, Any] = name.replace("""downsample.proj""", """downsample.projection""" ) if "blocks" in name: A__ : Any = name.replace("""blocks""", """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: A__ : Optional[int] = name.replace("""modulation.f""", """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: A__ : str = name.replace("""modulation.h""", """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: A__ : int = name.replace("""modulation.proj""", """modulation.projection_out""" ) if name == "norm.weight": A__ : List[str] = """layernorm.weight""" if name == "norm.bias": A__ : Any = """layernorm.bias""" if "head" in name: A__ : List[Any] = name.replace("""head""", """classifier""" ) else: A__ : int = """focalnet.""" + name return name def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[int]=False ) ->int: # fmt: off A__ : Optional[Any] = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on A__ : Optional[Any] = model_name_to_url[model_name] print("""Checkpoint URL: """, UpperCAmelCase__ ) A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): A__ : Any = state_dict.pop(UpperCAmelCase__ ) A__ : Optional[int] = val A__ : Any = get_focalnet_config(UpperCAmelCase__ ) A__ : str = FocalNetForImageClassification(UpperCAmelCase__ ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase__ ) # verify conversion A__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Union[str, Any] = BitImageProcessor( do_resize=UpperCAmelCase__, size={"""shortest_edge""": 2_5_6}, resample=PILImageResampling.BILINEAR, do_center_crop=UpperCAmelCase__, crop_size=2_2_4, do_normalize=UpperCAmelCase__, image_mean=UpperCAmelCase__, image_std=UpperCAmelCase__, ) A__ : Any = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) A__ : Optional[int] = processor(images=UpperCAmelCase__, return_tensors="""pt""" ) A__ : Optional[int] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) A__ : int = image_transforms(UpperCAmelCase__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values, UpperCAmelCase__, atol=1e-4 ) A__ : List[Any] = model(**UpperCAmelCase__ ) A__ : List[Any] = outputs.logits.argmax(-1 ).item() print("""Predicted class:""", model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""", outputs.logits[0, :3] ) if model_name == "focalnet-tiny": A__ : Optional[Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": A__ : Dict = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": A__ : Any = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": A__ : Any = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": A__ : Optional[Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": A__ : str = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3], UpperCAmelCase__, atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print(f'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(f'{model_name}' ) processor.push_to_hub(f'{model_name}' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) A_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
296
"""simple docstring""" from collections import defaultdict from math import gcd def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int: A__ : defaultdict = defaultdict(UpperCAmelCase__ ) A__ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ): if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1: continue A__ : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
296
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A_ = logging.getLogger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Dict=2, UpperCAmelCase__ : Tuple=3, UpperCAmelCase__ : List[Any]=1_6, UpperCAmelCase__ : int = 1_0, UpperCAmelCase__ : int = 2 ) ->int: def get_dataset(UpperCAmelCase__ : Optional[Any] ): A__ : Dict = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(UpperCAmelCase__, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) A__ : Union[str, Any] = get_dataset(UpperCAmelCase__ ) A__ : Optional[Any] = get_dataset(UpperCAmelCase__ ) A__ : List[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) A__ : Optional[Any] = DataLoader(UpperCAmelCase__, shuffle=UpperCAmelCase__, batch_size=UpperCAmelCase__, num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=None ) ->List[str]: A__ : int = [] for epoch in range(UpperCAmelCase__ ): # Train quickly model.train() for batch in dataloader: A__ , A__ : str = batch A__ : List[str] = model(UpperCAmelCase__ ) A__ : List[Any] = torch.nn.functional.mse_loss(UpperCAmelCase__, UpperCAmelCase__ ) accelerator.backward(UpperCAmelCase__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) A__ : Dict = nn.Parameter(torch.randn(1 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : int ): '''simple docstring''' return x * self.a + self.b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[Any] = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Union[str, Any] = dummy_dataloaders() A__ : int = ProjectConfiguration(total_limit=1 , project_dir=snake_case , automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Optional[Any] = Accelerator(project_config=snake_case ) A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCamelCase ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Union[str, Any] = DummyModel() A__ : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : str = dummy_dataloaders() # Train baseline A__ : Optional[Any] = Accelerator() A__ , A__ , A__ , A__ : List[Any] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial A__ : Dict = os.path.join(snake_case , """initial""" ) accelerator.save_state(snake_case ) ((A__) , (A__)) : int = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() A__ : Optional[int] = train(3 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Union[str, Any] = model.a.item(), model.b.item() A__ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : Tuple = DummyModel() A__ : Tuple = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : Any = dummy_dataloaders() A__ : int = Accelerator() A__ , A__ , A__ , A__ : Tuple = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(snake_case ) ((A__) , (A__)) : Optional[Any] = model.a.item(), model.b.item() A__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : Union[str, Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything A__ : int = os.path.join(snake_case , """checkpoint""" ) accelerator.save_state(snake_case ) # Load everything back in and make sure all states work accelerator.load_state(snake_case ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : int = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : int = DummyModel() A__ : Any = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[str] = dummy_dataloaders() A__ : Tuple = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : str = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ : List[str] = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() A__ : Tuple = train(3 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Tuple = model.a.item(), model.b.item() A__ : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) A__ : str = DummyModel() A__ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ , A__ : List[Any] = dummy_dataloaders() A__ : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=snake_case ) A__ : List[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case ) accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) ((A__) , (A__)) : Any = model.a.item(), model.b.item() A__ : int = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) A__ : List[Any] = train(2 , snake_case , snake_case , snake_case , snake_case ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , snake_case , snake_case , snake_case , snake_case ) ((A__) , (A__)) : Any = model.a.item(), model.b.item() A__ : Any = optimizer.state_dict() self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Dict = torch.tensor([1, 2, 3] ) A__ : Tuple = torch.tensor([2, 3, 4] ) A__ : Union[str, Any] = DummyModel() A__ : Optional[Any] = torch.optim.Adam(net.parameters() ) A__ : str = Accelerator() with self.assertRaises(snake_case ) as ve: accelerator.register_for_checkpointing(snake_case , snake_case , snake_case , snake_case ) A__ : str = str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : List[Any] = DummyModel() A__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) A__ : Optional[Any] = torch.optim.lr_scheduler.StepLR(snake_case , step_size=1 , gamma=0.99 ) A__ , A__ : Optional[int] = dummy_dataloaders() A__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case ) # Train baseline A__ : Dict = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ , A__ , A__ , A__ , A__ : str = accelerator.prepare( snake_case , snake_case , snake_case , snake_case , snake_case ) # Save initial accelerator.save_state() A__ : int = scheduler.state_dict() train(3 , snake_case , snake_case , snake_case , snake_case , snake_case ) self.assertNotEqual(snake_case , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(snake_case , scheduler.state_dict() ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) A__ : Optional[int] = DummyModel() A__ : Optional[Any] = ProjectConfiguration(automatic_checkpoint_naming=snake_case , total_limit=2 ) # Train baseline A__ : Optional[Any] = Accelerator(project_dir=snake_case , project_config=snake_case ) A__ : Dict = accelerator.prepare(snake_case ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(snake_case , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = ["""torchrun""", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": A_ = '''/tmp/accelerate/state_checkpointing''' A_ = DummyModel() A_ = torch.optim.Adam(params=model.parameters(), lr=1e-3) A_ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A_ , A_ = dummy_dataloaders() A_ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A_ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A_ , A_ , A_ , A_ , A_ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A_ , A_ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert param_device.type == accelerator.device.type A_ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: A_ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
296
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): A_ = True from torch.cuda.amp import autocast A_ = logging.getLogger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any]=None, UpperCAmelCase__ : Optional[int]=None ) ->Tuple: return field(default_factory=lambda: default, metadata=UpperCAmelCase__ ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) snake_case_ = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) snake_case_ = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) snake_case_ = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) snake_case_ = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) snake_case_ = field( default=0.0_5 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) snake_case_ = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = field( default=UpperCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) snake_case_ = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) snake_case_ = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = 42 snake_case_ = True snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None def __call__( self : int , snake_case : List[Dict[str, Union[List[int], torch.Tensor]]] ): '''simple docstring''' A__ : Any = [{"""input_values""": feature["""input_values"""]} for feature in features] A__ : Optional[int] = [{"""input_ids""": feature["""labels"""]} for feature in features] A__ : Optional[Any] = self.processor.pad( snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) A__ : List[str] = self.processor.pad( labels=snake_case , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly A__ : Optional[Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) A__ : Dict = labels return batch class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def _UpperCamelCase ( self : Optional[Any] , snake_case : nn.Module , snake_case : Dict[str, Union[torch.Tensor, Any]] ): '''simple docstring''' model.train() A__ : Optional[int] = self._prepare_inputs(snake_case ) if self.use_amp: with autocast(): A__ : Optional[Any] = self.compute_loss(snake_case , snake_case ) else: A__ : str = self.compute_loss(snake_case , snake_case ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": A__ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A__ : Dict = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: A__ : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(snake_case ).backward() elif self.use_apex: with amp.scale_loss(snake_case , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(snake_case ) else: loss.backward() return loss.detach() def _lowerCAmelCase ( ) ->Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ : int = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A__ : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""", UpperCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: A__ : List[Any] = datasets.load_dataset( """common_voice""", data_args.dataset_config_name, split=data_args.train_split_name ) A__ : Optional[int] = datasets.load_dataset("""common_voice""", data_args.dataset_config_name, split="""test""" ) # Create and save tokenizer A__ : List[str] = f'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(UpperCAmelCase__ : Dict ): A__ : Optional[Any] = re.sub(UpperCAmelCase__, """""", batch["""sentence"""] ).lower() + """ """ return batch A__ : Any = train_dataset.map(UpperCAmelCase__, remove_columns=["""sentence"""] ) A__ : List[Any] = eval_dataset.map(UpperCAmelCase__, remove_columns=["""sentence"""] ) def extract_all_chars(UpperCAmelCase__ : Dict ): A__ : Any = """ """.join(batch["""text"""] ) A__ : Optional[Any] = list(set(UpperCAmelCase__ ) ) return {"vocab": [vocab], "all_text": [all_text]} A__ : str = train_dataset.map( UpperCAmelCase__, batched=UpperCAmelCase__, batch_size=-1, keep_in_memory=UpperCAmelCase__, remove_columns=train_dataset.column_names, ) A__ : int = train_dataset.map( UpperCAmelCase__, batched=UpperCAmelCase__, batch_size=-1, keep_in_memory=UpperCAmelCase__, remove_columns=eval_dataset.column_names, ) A__ : int = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) A__ : str = {v: k for k, v in enumerate(UpperCAmelCase__ )} A__ : Optional[Any] = vocab_dict[""" """] del vocab_dict[" "] A__ : List[str] = len(UpperCAmelCase__ ) A__ : Any = len(UpperCAmelCase__ ) with open("""vocab.json""", """w""" ) as vocab_file: json.dump(UpperCAmelCase__, UpperCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ : List[Any] = WavaVecaCTCTokenizer( """vocab.json""", unk_token="""[UNK]""", pad_token="""[PAD]""", word_delimiter_token="""|""", ) A__ : int = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0.0, do_normalize=UpperCAmelCase__, return_attention_mask=UpperCAmelCase__ ) A__ : Optional[Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase__, tokenizer=UpperCAmelCase__ ) A__ : int = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction="""mean""", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: A__ : Tuple = min(len(UpperCAmelCase__ ), data_args.max_train_samples ) A__ : Optional[int] = train_dataset.select(range(UpperCAmelCase__ ) ) if data_args.max_val_samples is not None: A__ : List[Any] = eval_dataset.select(range(data_args.max_val_samples ) ) A__ : int = torchaudio.transforms.Resample(4_8_0_0_0, 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(UpperCAmelCase__ : Any ): A__ , A__ : Dict = torchaudio.load(batch["""path"""] ) A__ : Union[str, Any] = resampler(UpperCAmelCase__ ).squeeze().numpy() A__ : Any = 1_6_0_0_0 A__ : Any = batch["""text"""] return batch A__ : Any = train_dataset.map( UpperCAmelCase__, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) A__ : Optional[Any] = eval_dataset.map( UpperCAmelCase__, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(UpperCAmelCase__ : List[Any] ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), f'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' A__ : Any = processor( audio=batch["""speech"""], text=batch["""target_text"""], sampling_rate=batch["""sampling_rate"""][0] ) batch.update(UpperCAmelCase__ ) return batch A__ : Optional[int] = train_dataset.map( UpperCAmelCase__, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=UpperCAmelCase__, num_proc=data_args.preprocessing_num_workers, ) A__ : int = eval_dataset.map( UpperCAmelCase__, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=UpperCAmelCase__, num_proc=data_args.preprocessing_num_workers, ) # Metric A__ : Optional[int] = datasets.load_metric("""wer""" ) def compute_metrics(UpperCAmelCase__ : List[str] ): A__ : str = pred.predictions A__ : List[Any] = np.argmax(UpperCAmelCase__, axis=-1 ) A__ : Dict = processor.tokenizer.pad_token_id A__ : Optional[int] = processor.batch_decode(UpperCAmelCase__ ) # we do not want to group tokens when computing the metrics A__ : Tuple = processor.batch_decode(pred.label_ids, group_tokens=UpperCAmelCase__ ) A__ : int = wer_metric.compute(predictions=UpperCAmelCase__, references=UpperCAmelCase__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator A__ : Any = DataCollatorCTCWithPadding(processor=UpperCAmelCase__, padding=UpperCAmelCase__ ) # Initialize our Trainer A__ : Any = CTCTrainer( model=UpperCAmelCase__, data_collator=UpperCAmelCase__, args=UpperCAmelCase__, compute_metrics=UpperCAmelCase__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: A__ : Optional[Any] = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): A__ : Any = model_args.model_name_or_path else: A__ : int = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) A__ : List[Any] = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) trainer.save_model() A__ : int = train_result.metrics A__ : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) A__ : List[Any] = min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) trainer.log_metrics("""train""", UpperCAmelCase__ ) trainer.save_metrics("""train""", UpperCAmelCase__ ) trainer.save_state() # Evaluation A__ : str = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) A__ : Dict = trainer.evaluate() A__ : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(UpperCAmelCase__ ) A__ : str = min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) trainer.log_metrics("""eval""", UpperCAmelCase__ ) trainer.save_metrics("""eval""", UpperCAmelCase__ ) return results if __name__ == "__main__": main()
296
"""simple docstring""" import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): A__ : Optional[int] = k A__ : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def _UpperCamelCase ( self : int , snake_case : str ): '''simple docstring''' A__ : List[str] = cva.imread(snake_case , 0 ) A__ , A__ : Union[str, Any] = img.shape A__ : list[list[int]] = [] A__ : Optional[Any] = img.copy() A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ : List[Any] = np.gradient(snake_case ) A__ : List[Any] = dx**2 A__ : Any = dy**2 A__ : Dict = dx * dy A__ : Any = 0.04 A__ : Optional[Any] = self.window_size // 2 for y in range(snake_case , h - offset ): for x in range(snake_case , w - offset ): A__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : int = (wxx * wyy) - (wxy**2) A__ : Any = wxx + wyy A__ : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ , A_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
296
1
"""simple docstring""" import pprint import requests A_ = '''https://zenquotes.io/api''' def _lowerCAmelCase ( ) ->list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def _lowerCAmelCase ( ) ->list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": A_ = random_quotes() pprint.pprint(response)
296
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = logging.get_logger(__name__) A_ = Dict[str, Any] A_ = List[Prediction] @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = {} if "threshold" in kwargs: A__ : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*snake_case , **snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : List[str] = load_image(snake_case ) A__ : int = torch.IntTensor([[image.height, image.width]] ) A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) A__ : List[str] = target_size return inputs def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : str = model_inputs.pop("""target_size""" ) A__ : Dict = self.model(**snake_case ) A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A__ : str = model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ): '''simple docstring''' A__ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ : Tuple = target_size[0].tolist() def unnormalize(snake_case : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A__ : Tuple = ["""score""", """label""", """box"""] A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case ) A__ : str = raw_annotations[0] A__ : str = raw_annotation["""scores"""] A__ : List[Any] = raw_annotation["""labels"""] A__ : int = raw_annotation["""boxes"""] A__ : str = scores.tolist() A__ : Any = [self.model.config.idalabel[label.item()] for label in labels] A__ : int = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ : str = ["""score""", """label""", """box"""] A__ : Dict = [ dict(zip(snake_case , snake_case ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A__ , A__ , A__ , A__ : Any = box.int().tolist() A__ : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
296
1
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
1
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->bool: A__ : Tuple = str(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 9 and set(UpperCAmelCase__ ) == set("""123456789""" ) def _lowerCAmelCase ( ) ->int | None: for base_num in range(9_9_9_9, 4_9_9_9, -1 ): A__ : Optional[int] = 1_0_0_0_0_2 * base_num if is_9_pandigital(UpperCAmelCase__ ): return candidate for base_num in range(3_3_3, 9_9, -1 ): A__ : Any = 1_0_0_2_0_0_3 * base_num if is_9_pandigital(UpperCAmelCase__ ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
296
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm A_ = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Union[str, Any] , **snake_case : List[Any] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A__ : Optional[int] = deprecated_arg[3:] setattr(self , snake_case , not kwargs.pop(snake_case ) ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) A__ : Dict = kwargs.pop("""torchscript""" , self.torchscript ) A__ : List[str] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) A__ : int = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**snake_case ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Trace the models using torchscript'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) snake_case_ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def _UpperCamelCase ( self : int ): '''simple docstring''' requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: A__ : List[Any] = torch.device("""cpu""" ) A__ : Any = 0 elif is_torch_tpu_available(): A__ : int = xm.xla_device() A__ : Union[str, Any] = 0 else: A__ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ : Dict = torch.cuda.device_count() return device, n_gpu @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def _UpperCamelCase ( self : int ): '''simple docstring''' requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.n_gpu > 0
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" import math import sys def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: A__ : int = """""" try: with open(UpperCAmelCase__, """rb""" ) as binary_file: A__ : Any = binary_file.read() for dat in data: A__ : Union[str, Any] = f'{dat:08b}' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: A__ : Dict = {"""0""": """0""", """1""": """1"""} A__ , A__ : str = """""", """""" A__ : Union[str, Any] = len(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A__ : Optional[Any] = lexicon[curr_string] result += last_match_id A__ : List[Any] = last_match_id + """0""" if math.loga(UpperCAmelCase__ ).is_integer(): A__ : Optional[int] = {} for curr_key in list(UpperCAmelCase__ ): A__ : List[Any] = lexicon.pop(UpperCAmelCase__ ) A__ : int = new_lex A__ : List[Any] = last_match_id + """1""" index += 1 A__ : List[Any] = """""" return result def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str ) ->None: A__ : Dict = 8 try: with open(UpperCAmelCase__, """wb""" ) as opened_file: A__ : Tuple = [ to_write[i : i + byte_length] for i in range(0, len(UpperCAmelCase__ ), UpperCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCAmelCase__, 2 ).to_bytes(1, byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: A__ : List[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 A__ : Optional[Any] = data_bits[counter:] A__ : List[Any] = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str ) ->None: A__ : Any = read_file_binary(UpperCAmelCase__ ) A__ : Any = remove_prefix(UpperCAmelCase__ ) A__ : Union[str, Any] = decompress_data(UpperCAmelCase__ ) write_file_binary(UpperCAmelCase__, UpperCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
296
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str: A__ : List[str] = SwinConfig(image_size=1_9_2 ) if "base" in model_name: A__ : Optional[Any] = 6 A__ : Union[str, Any] = 1_2_8 A__ : Dict = (2, 2, 1_8, 2) A__ : Optional[int] = (4, 8, 1_6, 3_2) elif "large" in model_name: A__ : Any = 1_2 A__ : str = 1_9_2 A__ : List[str] = (2, 2, 1_8, 2) A__ : Any = (6, 1_2, 2_4, 4_8) else: raise ValueError("""Model not supported, only supports base and large variants""" ) A__ : Optional[int] = window_size A__ : Optional[int] = embed_dim A__ : Dict = depths A__ : List[str] = num_heads return config def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->Optional[int]: if "encoder.mask_token" in name: A__ : Dict = name.replace("""encoder.mask_token""", """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: A__ : List[str] = name.replace("""encoder.patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: A__ : Union[str, Any] = name.replace("""encoder.patch_embed.norm""", """embeddings.norm""" ) if "attn.proj" in name: A__ : List[Any] = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name: A__ : List[str] = name.replace("""attn""", """attention.self""" ) if "norm1" in name: A__ : Tuple = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : Optional[Any] = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: A__ : str = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : str = name.replace("""mlp.fc2""", """output.dense""" ) if name == "encoder.norm.weight": A__ : List[str] = """layernorm.weight""" if name == "encoder.norm.bias": A__ : Dict = """layernorm.bias""" if "decoder" in name: pass else: A__ : Tuple = """swin.""" + name return name def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : List[Any] ) ->Tuple: for key in orig_state_dict.copy().keys(): A__ : str = orig_state_dict.pop(UpperCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: A__ : Optional[Any] = key.split(""".""" ) A__ : Union[str, Any] = int(key_split[2] ) A__ : Tuple = int(key_split[4] ) A__ : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ : Optional[Any] = val[:dim, :] A__ : int = val[ dim : dim * 2, : ] A__ : Union[str, Any] = val[-dim:, :] else: A__ : List[Any] = val[ :dim ] A__ : List[str] = val[ dim : dim * 2 ] A__ : int = val[ -dim: ] else: A__ : Optional[Any] = val return orig_state_dict def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ) ->List[Any]: A__ : Tuple = torch.load(UpperCAmelCase__, map_location="""cpu""" )["""model"""] A__ : List[Any] = get_swin_config(UpperCAmelCase__ ) A__ : Tuple = SwinForMaskedImageModeling(UpperCAmelCase__ ) model.eval() A__ : Dict = convert_state_dict(UpperCAmelCase__, UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Tuple = ViTImageProcessor(size={"""height""": 1_9_2, """width""": 1_9_2} ) A__ : str = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) A__ : List[Any] = image_processor(images=UpperCAmelCase__, return_tensors="""pt""" ) with torch.no_grad(): A__ : Optional[Any] = model(**UpperCAmelCase__ ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) A_ = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Dict=None ) ->str: return field(default_factory=lambda: default, metadata=UpperCAmelCase__ ) @dataclass class __SCREAMING_SNAKE_CASE : snake_case_ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) snake_case_ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Use FP16 to accelerate inference.'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Benchmark training of model'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Verbose memory tracing'} ) snake_case_ = field( default=UpperCamelCase , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Trace memory line by line'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save result to a CSV file'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Save all print statements in a log file'} ) snake_case_ = field(default=UpperCamelCase , metadata={'help': 'Whether to print environment information'} ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) snake_case_ = field( default=F"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) snake_case_ = field( default=F"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) snake_case_ = field( default=F"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) snake_case_ = field( default=F"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) snake_case_ = field( default=F"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , ) snake_case_ = field( default=F"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) snake_case_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) snake_case_ = field( default=UpperCamelCase , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' warnings.warn( F'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , snake_case , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _UpperCamelCase ( self : int ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
296
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ = 16 A_ = 32 def _lowerCAmelCase ( UpperCAmelCase__ : Accelerator, UpperCAmelCase__ : int = 1_6 ) ->Tuple: A__ : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ : str = load_dataset("""glue""", """mrpc""" ) def tokenize_function(UpperCAmelCase__ : Any ): # max_length=None => use the model max length (it's actually the default) A__ : Dict = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=UpperCAmelCase__, max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : Tuple = datasets.map( UpperCAmelCase__, batched=UpperCAmelCase__, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : Union[str, Any] = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(UpperCAmelCase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : int = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": A__ : List[str] = 8 else: A__ : Dict = None return tokenizer.pad( UpperCAmelCase__, padding="""longest""", max_length=UpperCAmelCase__, pad_to_multiple_of=UpperCAmelCase__, return_tensors="""pt""", ) # Instantiate dataloaders. A__ : List[str] = DataLoader( tokenized_datasets["""train"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=UpperCAmelCase__ ) A__ : List[str] = DataLoader( tokenized_datasets["""validation"""], shuffle=UpperCAmelCase__, collate_fn=UpperCAmelCase__, batch_size=UpperCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : Dict ) ->Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", UpperCAmelCase__ ) == "1": A__ : Union[str, Any] = 2 # Initialize accelerator A__ : Dict = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Optional[Any] = config["""lr"""] A__ : Dict = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Any = int(config["""batch_size"""] ) A__ : int = evaluate.load("""glue""", """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCAmelCase__ ) def inner_training_loop(UpperCAmelCase__ : Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Any = model.to(accelerator.device ) # Instantiate optimizer A__ : Optional[Any] = AdamW(params=model.parameters(), lr=UpperCAmelCase__ ) A__ , A__ : Optional[int] = get_dataloaders(UpperCAmelCase__, UpperCAmelCase__ ) # Instantiate scheduler A__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__, num_warmup_steps=1_0_0, num_training_steps=(len(UpperCAmelCase__ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Any = accelerator.prepare( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ : Any = model(**UpperCAmelCase__ ) A__ : Any = outputs.loss accelerator.backward(UpperCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : Union[str, Any] = model(**UpperCAmelCase__ ) A__ : int = outputs.logits.argmax(dim=-1 ) A__ , A__ : Any = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__, references=UpperCAmelCase__, ) A__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', UpperCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCAmelCase ( ) ->Optional[Any]: A__ : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=UpperCAmelCase__, default=UpperCAmelCase__, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) A__ : Union[str, Any] = parser.parse_args() A__ : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(UpperCAmelCase__, UpperCAmelCase__ ) if __name__ == "__main__": main()
296
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Tuple: A__ : Tuple = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple ) ->str: A__ : Optional[Any] = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _lowerCAmelCase ( UpperCAmelCase__ : Any ) ->List[str]: A__ : List[str] = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', """stage2.cls_token""") ) return token def _lowerCAmelCase ( ) ->Tuple: A__ : str = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : str ) ->Any: A__ : Any = """imagenet-1k-id2label.json""" A__ : Optional[int] = 1_0_0_0 A__ : int = """huggingface/label-files""" A__ : Optional[int] = num_labels A__ : List[Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[str] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : str = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : Tuple = CvtConfig(num_labels=UpperCAmelCase__, idalabel=UpperCAmelCase__, labelaid=UpperCAmelCase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""", 1 )[-1][4:6] == "13": A__ : List[Any] = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""", 1 )[-1][4:6] == "21": A__ : Any = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ : Optional[Any] = [2, 2, 2_0] A__ : Union[str, Any] = [3, 1_2, 1_6] A__ : List[str] = [1_9_2, 7_6_8, 1_0_2_4] A__ : Optional[int] = CvtForImageClassification(UpperCAmelCase__ ) A__ : str = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) A__ : str = image_size A__ : int = torch.load(UpperCAmelCase__, map_location=torch.device("""cpu""" ) ) A__ : Dict = OrderedDict() A__ : Dict = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ : int = list_of_state_dict + cls_token(UpperCAmelCase__ ) A__ : Dict = list_of_state_dict + embeddings(UpperCAmelCase__ ) for cnt in range(config.depth[idx] ): A__ : Any = list_of_state_dict + attention(UpperCAmelCase__, UpperCAmelCase__ ) A__ : str = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCAmelCase__ ) for i in range(len(UpperCAmelCase__ ) ): A__ : Dict = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) image_processor.save_pretrained(UpperCAmelCase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
296
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ = object() # For specifying empty leaf dict `{}` A_ = object() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ): for rule, replacement in rules: if _match(UpperCAmelCase__, UpperCAmelCase__ ): return replacement return val return replace def _lowerCAmelCase ( ) ->Tuple: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : Union[str, Any] = _get_partition_rules() A__ : int = _replacement_rules(UpperCAmelCase__ ) A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
296
1
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path A_ = '''src/transformers''' # Matches is_xxx_available() A_ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} A_ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available A_ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") A_ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", A_ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], A_ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo A_ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: A_ = re.compile(r'''^\s*try:''') # Catches a line with else: A_ = re.compile(r'''^\s*else:''') def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->Union[str, Any]: if _re_test_backend.search(UpperCAmelCase__ ) is None: return None A__ : Tuple = [b[0] for b in _re_backend.findall(UpperCAmelCase__ )] backends.sort() return "_and_".join(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : List[str] = 0 while line_index < len(UpperCAmelCase__ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure A__ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: A__ : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase__ ): A__ : Optional[int] = _re_one_line_import_struct.search(UpperCAmelCase__ ).groups()[0] A__ : int = re.findall("""\[([^\]]+)\]""", UpperCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue A__ : Optional[Any] = _re_import_struct_key_value.search(UpperCAmelCase__ ) if single_line_import_search is not None: A__ : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 A__ : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): A__ : Any = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase__ ) is not None: A__ : Optional[int] = _re_import_struct_add_many.search(UpperCAmelCase__ ).groups()[0].split(""", """ ) A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_between_brackets.search(UpperCAmelCase__ ) is not None: A__ : Any = _re_between_brackets.search(UpperCAmelCase__ ).groups()[0].split(""", """ ) A__ : Tuple = [obj[1:-1] for obj in imports if len(UpperCAmelCase__ ) > 0] objects.extend(UpperCAmelCase__ ) elif _re_quote_object.search(UpperCAmelCase__ ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase__ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 1_2 + """\"""" ): objects.append(line[1_3:-3] ) line_index += 1 A__ : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Union[str, Any] = [] while ( line_index < len(UpperCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): A__ : Optional[Any] = lines[line_index] A__ : List[str] = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : List[Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. A__ : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): A__ : int = lines[line_index] A__ : List[Any] = _re_import.search(UpperCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 A__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->List[str]: def find_duplicates(UpperCAmelCase__ : str ): return [k for k, v in collections.Counter(UpperCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : int = [] for key in import_dict_objects.keys(): A__ : Tuple = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'Duplicate _import_structure definitions for: {duplicate_imports}' ) A__ : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : List[Any] = """base imports""" if key == """none""" else f'{key} backend' errors.append(f'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _lowerCAmelCase ( ) ->Optional[Any]: A__ : str = [] for root, _, files in os.walk(UpperCAmelCase__ ): if "__init__.py" in files: A__ : str = os.path.join(UpperCAmelCase__, """__init__.py""" ) A__ : Tuple = parse_init(UpperCAmelCase__ ) if objects is not None: A__ : str = analyze_results(*UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: A__ : Any = f'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("""\n""".join(UpperCAmelCase__ ) ) if len(UpperCAmelCase__ ) > 0: raise ValueError("""\n\n""".join(UpperCAmelCase__ ) ) def _lowerCAmelCase ( ) ->Optional[int]: A__ : List[Any] = [] for path, directories, files in os.walk(UpperCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(UpperCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase__ ) / folder).glob("""*.py""" ) ) ) == 0: continue A__ : Any = str((Path(UpperCAmelCase__ ) / folder).relative_to(UpperCAmelCase__ ) ) A__ : Optional[int] = short_path.replace(os.path.sep, """.""" ) submodules.append(UpperCAmelCase__ ) for fname in files: if fname == "__init__.py": continue A__ : Union[str, Any] = str((Path(UpperCAmelCase__ ) / fname).relative_to(UpperCAmelCase__ ) ) A__ : Any = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(UpperCAmelCase__ ) return submodules A_ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _lowerCAmelCase ( ) ->Optional[int]: # This is to make sure the transformers module imported is the one in the repo. A__ : Dict = importlib.util.spec_from_file_location( """transformers""", os.path.join(UpperCAmelCase__, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A__ : Any = spec.loader.load_module() A__ : Optional[Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(f'- {module}' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'{list_of_modules}\n' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
296
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file A_ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def _lowerCAmelCase ( UpperCAmelCase__ : Tuple=None ) ->Dict: if subparsers is not None: A__ : Tuple = subparsers.add_parser("""tpu-config""", description=_description ) else: A__ : Optional[int] = argparse.ArgumentParser("""Accelerate tpu-config command""", description=_description ) # Core arguments A__ : Dict = parser.add_argument_group( """Config Arguments""", """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""", type=UpperCAmelCase__, default=UpperCAmelCase__, help="""Path to the config file to use for accelerate.""", ) config_args.add_argument( """--tpu_name""", default=UpperCAmelCase__, help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""", ) config_args.add_argument( """--tpu_zone""", default=UpperCAmelCase__, help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""", ) A__ : int = parser.add_argument_group("""TPU Arguments""", """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""", action="""store_true""", help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""", ) pod_args.add_argument( """--command_file""", default=UpperCAmelCase__, help="""The path to the file containing the commands to run on the pod on startup.""", ) pod_args.add_argument( """--command""", action="""append""", nargs="""+""", help="""A command to run on the pod. Can be passed multiple times.""", ) pod_args.add_argument( """--install_accelerate""", action="""store_true""", help="""Whether to install accelerate on the pod. Defaults to False.""", ) pod_args.add_argument( """--accelerate_version""", default="""latest""", help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""", ) pod_args.add_argument( """--debug""", action="""store_true""", help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) ->Dict: A__ : List[str] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase__ ): A__ : Any = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A__ : str = defaults.command_file if not args.command and defaults.commands is not None: A__ : Union[str, Any] = defaults.commands if not args.tpu_name: A__ : Optional[Any] = defaults.tpu_name if not args.tpu_zone: A__ : Optional[Any] = defaults.tpu_zone if args.accelerate_version == "dev": A__ : int = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": A__ : Optional[Any] = """accelerate -U""" elif isinstance(parse(args.accelerate_version ), UpperCAmelCase__ ): A__ : Optional[Any] = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file, """r""" ) as f: A__ : Optional[Any] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], UpperCAmelCase__ ): A__ : Optional[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A__ : Optional[Any] = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command A__ : Dict = """; """.join(UpperCAmelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A__ : str = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(UpperCAmelCase__ )}' ) return subprocess.run(UpperCAmelCase__ ) print("""Successfully setup pod.""" ) def _lowerCAmelCase ( ) ->Dict: A__ : int = tpu_command_parser() A__ : List[str] = parser.parse_args() tpu_command_launcher(UpperCAmelCase__ )
296
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case , ) super().__init__(args=snake_case , **snake_case )
296
1
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , snake_case : List[Any] , snake_case : Any=14 , snake_case : str=7 , snake_case : Any=True , snake_case : int=True , snake_case : Tuple=True , snake_case : Any=True , snake_case : str=True , snake_case : Dict=99 , snake_case : List[str]=32 , snake_case : Dict=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : Dict="gelu" , snake_case : Dict=0.1 , snake_case : List[Any]=0.1 , snake_case : Optional[int]=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : str=0.02 , snake_case : List[str]=3 , snake_case : int=4 , snake_case : Tuple=None , ): '''simple docstring''' A__ : List[str] = parent A__ : str = batch_size A__ : List[str] = seq_length A__ : List[Any] = is_training A__ : Dict = use_token_type_ids A__ : int = use_input_mask A__ : Any = use_labels A__ : Union[str, Any] = use_mc_token_ids A__ : Dict = vocab_size A__ : Any = hidden_size A__ : str = num_hidden_layers A__ : Union[str, Any] = num_attention_heads A__ : int = intermediate_size A__ : Union[str, Any] = hidden_act A__ : Union[str, Any] = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[Any] = max_position_embeddings A__ : int = type_vocab_size A__ : Optional[int] = type_sequence_label_size A__ : Optional[int] = initializer_range A__ : Dict = num_labels A__ : Dict = num_choices A__ : Any = scope A__ : Tuple = self.vocab_size - 1 def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : str = None if self.use_token_type_ids: A__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Optional[Any] = None if self.use_mc_token_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) A__ : str = None A__ : Union[str, Any] = None A__ : Union[str, Any] = None if self.use_labels: A__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Tuple = self.get_config() A__ : List[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCamelCase ( self : Any ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : List[str] , snake_case : int , snake_case : int , snake_case : str , *snake_case : Dict ): '''simple docstring''' A__ : Optional[Any] = CTRLModel(config=snake_case ) model.to(snake_case ) model.eval() model(snake_case , token_type_ids=snake_case , head_mask=snake_case ) model(snake_case , token_type_ids=snake_case ) A__ : str = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _UpperCamelCase ( self : Tuple , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : str , snake_case : Union[str, Any] , snake_case : Optional[int] , *snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = CTRLLMHeadModel(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Tuple = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def _UpperCamelCase ( self : Dict , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Any , *snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[int] = self.num_labels A__ : int = CTRLForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () snake_case_ = (CTRLLMHeadModel,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = True snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : List[Any] , snake_case : int , snake_case : List[str] , snake_case : Dict , snake_case : int , snake_case : int ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = CTRLModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , n_embd=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' pass @slow def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[int] = CTRLModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def _UpperCamelCase ( self : str ): '''simple docstring''' pass @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[Any] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(snake_case ) A__ : Dict = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=snake_case ) # Legal the president is A__ : Optional[Any] = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a A__ : int = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() , snake_case )
296
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 A_ = get_tests_dir('''fixtures/dummy-config.json''') class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = 0 def _UpperCamelCase ( self : Any ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Optional[int] = AutoConfig.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Tuple = AutoConfig.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A__ : Optional[int] = os.path.join(snake_case , """fake-roberta""" ) os.makedirs(snake_case , exist_ok=snake_case ) with open(os.path.join(snake_case , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) A__ : Tuple = AutoConfig.from_pretrained(snake_case ) self.assertEqual(type(snake_case ) , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' try: AutoConfig.register("""custom""" , snake_case ) # Wrong model type will raise an error with self.assertRaises(snake_case ): AutoConfig.register("""model""" , snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case ): AutoConfig.register("""bert""" , snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API A__ : List[Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case ) A__ : Union[str, Any] = AutoConfig.from_pretrained(snake_case ) self.assertIsInstance(snake_case , snake_case ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case , """bert-base is not a local folder and is not a valid model identifier""" ): A__ : str = AutoConfig.from_pretrained("""bert-base""" ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( snake_case , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A__ : Dict = AutoConfig.from_pretrained(snake_case , revision="""aaaaaa""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( snake_case , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): A__ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' with self.assertRaises(snake_case ): A__ : Tuple = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case ): A__ : str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=snake_case ) A__ : Optional[int] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=snake_case ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(snake_case ) A__ : Union[str, Any] = AutoConfig.from_pretrained(snake_case , trust_remote_code=snake_case ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'new-model' try: AutoConfig.register("""new-model""" , snake_case ) # If remote code is not set, the default is to use local A__ : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. A__ : Optional[int] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=snake_case ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub A__ : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=snake_case ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
296
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
1
"""simple docstring""" import os import string import sys A_ = 1 << 8 A_ = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } A_ = KEYMAP['''up'''] A_ = KEYMAP['''left'''] if sys.platform == "win32": A_ = [] A_ = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): A_ = ord(str(i)) def _lowerCAmelCase ( ) ->Optional[Any]: if os.name == "nt": import msvcrt A__ : Dict = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase__ ) == 0: # Read the keystroke A__ : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): A__ : List[str] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: A__ : Tuple = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(UpperCAmelCase__ ) if ord(UpperCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) A__ : Tuple = chr(KEYMAP["""esc"""] ) except KeyError: A__ : str = cha[1] else: A__ : Union[str, Any] = ch.decode(UpperCAmelCase__ ) else: A__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty A__ : Any = sys.stdin.fileno() A__ : Tuple = termios.tcgetattr(UpperCAmelCase__ ) try: tty.setraw(UpperCAmelCase__ ) A__ : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase__, termios.TCSADRAIN, UpperCAmelCase__ ) return ch def _lowerCAmelCase ( ) ->Any: A__ : str = get_raw_chars() if ord(UpperCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase__ ) == KEYMAP["esc"]: A__ : List[Any] = get_raw_chars() if ord(UpperCAmelCase__ ) == KEYMAP["mod_int"]: A__ : Any = get_raw_chars() if ord(UpperCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = ['image_processor', 'tokenizer'] snake_case_ = 'AutoImageProcessor' snake_case_ = 'AutoTokenizer' def __init__( self : List[Any] , snake_case : str=None , snake_case : Dict=None , **snake_case : List[Any] ): '''simple docstring''' A__ : Dict = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , snake_case , ) A__ : List[Any] = kwargs.pop("""feature_extractor""" ) A__ : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(snake_case , snake_case ) A__ : Optional[Any] = self.image_processor A__ : int = False def __call__( self : Optional[Any] , *snake_case : str , **snake_case : Dict ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case ) A__ : List[str] = kwargs.pop("""images""" , snake_case ) A__ : Any = kwargs.pop("""text""" , snake_case ) if len(snake_case ) > 0: A__ : Tuple = args[0] A__ : Dict = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: A__ : Dict = self.image_processor(snake_case , *snake_case , **snake_case ) if text is not None: A__ : Optional[int] = self.tokenizer(snake_case , **snake_case ) if text is None: return inputs elif images is None: return encodings else: A__ : Optional[Any] = encodings["""input_ids"""] return inputs def _UpperCamelCase ( self : List[str] , *snake_case : List[Any] , **snake_case : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case , **snake_case ) def _UpperCamelCase ( self : Optional[Any] , *snake_case : Optional[int] , **snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.decode(*snake_case , **snake_case ) @contextmanager def _UpperCamelCase ( self : Tuple ): '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) A__ : str = True A__ : List[str] = self.tokenizer yield A__ : List[Any] = self.image_processor A__ : List[Any] = False def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : Dict=False , snake_case : Optional[Any]=None ): '''simple docstring''' if added_vocab is None: A__ : str = self.tokenizer.get_added_vocab() A__ : Optional[int] = {} while tokens: A__ : List[Any] = re.search(r"""<s_(.*?)>""" , snake_case , re.IGNORECASE ) if start_token is None: break A__ : Tuple = start_token.group(1 ) A__ : Dict = re.search(rF'</s_{key}>' , snake_case , re.IGNORECASE ) A__ : str = start_token.group() if end_token is None: A__ : Union[str, Any] = tokens.replace(snake_case , """""" ) else: A__ : Dict = end_token.group() A__ : List[str] = re.escape(snake_case ) A__ : str = re.escape(snake_case ) A__ : Dict = re.search(F'{start_token_escaped}(.*?){end_token_escaped}' , snake_case , re.IGNORECASE ) if content is not None: A__ : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node A__ : Optional[int] = self.tokenajson(snake_case , is_inner_value=snake_case , added_vocab=snake_case ) if value: if len(snake_case ) == 1: A__ : Optional[Any] = value[0] A__ : str = value else: # leaf nodes A__ : Optional[Any] = [] for leaf in content.split(r"""<sep/>""" ): A__ : Optional[int] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": A__ : Any = leaf[1:-2] # for categorical special tokens output[key].append(snake_case ) if len(output[key] ) == 1: A__ : Any = output[key][0] A__ : List[str] = tokens[tokens.find(snake_case ) + len(snake_case ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=snake_case , added_vocab=snake_case ) if len(snake_case ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _UpperCamelCase ( self : int ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , snake_case , ) return self.image_processor_class @property def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , snake_case , ) return self.image_processor
296
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] A__ : Optional[int] = (low + high) // 2 A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]: A__ , A__ : Dict = float("""-inf""" ), -1 A__ , A__ : Optional[Any] = float("""-inf""" ), -1 A__ : int | float = 0 for i in range(UpperCAmelCase__, low - 1, -1 ): summ += arr[i] if summ > left_sum: A__ : Optional[int] = summ A__ : Union[str, Any] = i A__ : Optional[Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: A__ : int = summ A__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float: A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] A__ : Any = time.time() max_subarray(UpperCAmelCase__, 0, input_size - 1 ) A__ : List[Any] = time.time() return end - start def _lowerCAmelCase ( ) ->None: A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ): print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ ) plt.plot(UpperCAmelCase__, UpperCAmelCase__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
296
1
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : List[str] , snake_case : Callable , snake_case : Optional[Features] = None , snake_case : str = None , snake_case : bool = False , snake_case : bool = False , snake_case : Optional[dict] = None , snake_case : Optional[int] = None , **snake_case : Optional[int] , ): '''simple docstring''' super().__init__( features=snake_case , cache_dir=snake_case , keep_in_memory=snake_case , streaming=snake_case , num_proc=snake_case , **snake_case , ) A__ : List[Any] = Generator( cache_dir=snake_case , features=snake_case , generator=snake_case , gen_kwargs=snake_case , **snake_case , ) def _UpperCamelCase ( self : Any ): '''simple docstring''' if self.streaming: A__ : List[str] = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: A__ : Tuple = None A__ : List[str] = None A__ : List[str] = None A__ : Any = None self.builder.download_and_prepare( download_config=snake_case , download_mode=snake_case , verification_mode=snake_case , base_path=snake_case , num_proc=self.num_proc , ) A__ : Optional[Any] = self.builder.as_dataset( split="""train""" , verification_mode=snake_case , in_memory=self.keep_in_memory ) return dataset
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Optional[Any]: return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): @staticmethod def _UpperCamelCase ( snake_case : ArgumentParser ): '''simple docstring''' A__ : List[str] = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=snake_case , default=snake_case , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=snake_case , help="""Name of the model to download""" ) download_parser.set_defaults(func=snake_case ) def __init__( self : Dict , snake_case : str , snake_case : str , snake_case : bool , snake_case : bool ): '''simple docstring''' A__ : List[str] = model A__ : Tuple = cache A__ : Any = force A__ : Union[str, Any] = trust_remote_code def _UpperCamelCase ( self : Any ): '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
296
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0_0_0_0 ) ->int: A__ : Optional[Any] = 1 A__ : List[Any] = 1 A__ : List[Any] = {1: 1} for inputa in range(2, UpperCAmelCase__ ): A__ : List[str] = 0 A__ : Optional[int] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: A__ : List[str] = (3 * number) + 1 counter += 1 if inputa not in counters: A__ : str = counter if counter > pre_counter: A__ : str = inputa A__ : Tuple = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
296
"""simple docstring""" from collections import defaultdict from math import gcd def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int: A__ : defaultdict = defaultdict(UpperCAmelCase__ ) A__ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ): if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1: continue A__ : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
296
1
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'xlm-prophetnet' snake_case_ = ['past_key_values'] snake_case_ = { 'num_attention_heads': 'num_encoder_attention_heads', } def __init__( self : Optional[int] , snake_case : Optional[float] = 0.1 , snake_case : Optional[Union[str, Callable]] = "gelu" , snake_case : Optional[int] = 3_0522 , snake_case : Optional[int] = 1024 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[int] = 4096 , snake_case : Optional[int] = 12 , snake_case : Optional[int] = 16 , snake_case : Optional[float] = 0.1 , snake_case : Optional[float] = 0.1 , snake_case : Optional[int] = 512 , snake_case : Optional[float] = 0.02 , snake_case : Optional[bool] = True , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 2 , snake_case : Optional[int] = 32 , snake_case : Optional[int] = 128 , snake_case : Optional[bool] = False , snake_case : Optional[float] = 0.0 , snake_case : Optional[bool] = True , snake_case : Optional[int] = 0 , snake_case : Optional[int] = 1 , snake_case : Optional[int] = 2 , **snake_case : Optional[Any] , ): '''simple docstring''' A__ : Union[str, Any] = vocab_size A__ : Dict = hidden_size A__ : List[Any] = encoder_ffn_dim A__ : int = num_encoder_layers A__ : str = num_encoder_attention_heads A__ : Tuple = decoder_ffn_dim A__ : str = num_decoder_layers A__ : Union[str, Any] = num_decoder_attention_heads A__ : int = max_position_embeddings A__ : str = init_std # Normal(0, this parameter) A__ : Optional[int] = activation_function # parameters for xlmprophetnet A__ : List[str] = ngram A__ : Tuple = num_buckets A__ : List[Any] = relative_max_distance A__ : Dict = disable_ngram_loss A__ : Any = eps # 3 Types of Dropout A__ : str = attention_dropout A__ : Any = activation_dropout A__ : str = dropout A__ : Optional[Any] = use_cache super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_start_token_id=snake_case , **snake_case , ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _UpperCamelCase ( self : str , snake_case : Tuple ): '''simple docstring''' raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
296
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'convbert' def __init__( self : Optional[int] , snake_case : Optional[Any]=3_0522 , snake_case : List[Any]=768 , snake_case : Tuple=12 , snake_case : Any=12 , snake_case : str=3072 , snake_case : Optional[int]="gelu" , snake_case : Any=0.1 , snake_case : int=0.1 , snake_case : Dict=512 , snake_case : Optional[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Optional[int]=1e-12 , snake_case : str=1 , snake_case : Optional[Any]=0 , snake_case : str=2 , snake_case : int=768 , snake_case : Union[str, Any]=2 , snake_case : Optional[int]=9 , snake_case : Optional[int]=1 , snake_case : str=None , **snake_case : List[Any] , ): '''simple docstring''' super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case , ) A__ : Dict = vocab_size A__ : Dict = hidden_size A__ : int = num_hidden_layers A__ : Any = num_attention_heads A__ : Dict = intermediate_size A__ : Union[str, Any] = hidden_act A__ : List[Any] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Optional[Any] = max_position_embeddings A__ : Dict = type_vocab_size A__ : Optional[int] = initializer_range A__ : Union[str, Any] = layer_norm_eps A__ : str = embedding_size A__ : int = head_ratio A__ : Optional[Any] = conv_kernel_size A__ : List[str] = num_groups A__ : Union[str, Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): @property def _UpperCamelCase ( self : str ): '''simple docstring''' if self.task == "multiple-choice": A__ : str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
296
"""simple docstring""" import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): A__ : Optional[int] = k A__ : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def _UpperCamelCase ( self : int , snake_case : str ): '''simple docstring''' A__ : List[str] = cva.imread(snake_case , 0 ) A__ , A__ : Union[str, Any] = img.shape A__ : list[list[int]] = [] A__ : Optional[Any] = img.copy() A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ : List[Any] = np.gradient(snake_case ) A__ : List[Any] = dx**2 A__ : Any = dy**2 A__ : Dict = dx * dy A__ : Any = 0.04 A__ : Optional[Any] = self.window_size // 2 for y in range(snake_case , h - offset ): for x in range(snake_case , w - offset ): A__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : int = (wxx * wyy) - (wxy**2) A__ : Any = wxx + wyy A__ : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ , A_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
296
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A_ = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def _lowerCAmelCase ( UpperCAmelCase__ : str ) ->str: if "://" in dataset_path: A__ : int = dataset_path.split("""://""" )[1] return dataset_path def _lowerCAmelCase ( UpperCAmelCase__ : fsspec.AbstractFileSystem ) ->bool: if fs is not None and fs.protocol != "file": return True else: return False def _lowerCAmelCase ( UpperCAmelCase__ : fsspec.AbstractFileSystem, UpperCAmelCase__ : str, UpperCAmelCase__ : str ) ->Any: A__ : Union[str, Any] = not is_remote_filesystem(UpperCAmelCase__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(UpperCAmelCase__ ), fs._strip_protocol(UpperCAmelCase__ ) ) else: fs.mv(UpperCAmelCase__, UpperCAmelCase__, recursive=UpperCAmelCase__ ) def _lowerCAmelCase ( ) ->None: if hasattr(fsspec.asyn, """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: A__ : int = None A__ : List[str] = None A__ : Tuple = threading.Lock()
296
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = logging.get_logger(__name__) A_ = Dict[str, Any] A_ = List[Prediction] @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = {} if "threshold" in kwargs: A__ : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*snake_case , **snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : List[str] = load_image(snake_case ) A__ : int = torch.IntTensor([[image.height, image.width]] ) A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) A__ : List[str] = target_size return inputs def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : str = model_inputs.pop("""target_size""" ) A__ : Dict = self.model(**snake_case ) A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A__ : str = model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ): '''simple docstring''' A__ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ : Tuple = target_size[0].tolist() def unnormalize(snake_case : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A__ : Tuple = ["""score""", """label""", """box"""] A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case ) A__ : str = raw_annotations[0] A__ : str = raw_annotation["""scores"""] A__ : List[Any] = raw_annotation["""labels"""] A__ : int = raw_annotation["""boxes"""] A__ : str = scores.tolist() A__ : Any = [self.model.config.idalabel[label.item()] for label in labels] A__ : int = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ : str = ["""score""", """label""", """box"""] A__ : Dict = [ dict(zip(snake_case , snake_case ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A__ , A__ , A__ , A__ : Any = box.int().tolist() A__ : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
296
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
1
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = logging.get_logger(__name__) A_ = Dict[str, Any] A_ = List[Prediction] @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = {} if "threshold" in kwargs: A__ : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*snake_case , **snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : List[str] = load_image(snake_case ) A__ : int = torch.IntTensor([[image.height, image.width]] ) A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) A__ : List[str] = target_size return inputs def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : str = model_inputs.pop("""target_size""" ) A__ : Dict = self.model(**snake_case ) A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A__ : str = model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ): '''simple docstring''' A__ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ : Tuple = target_size[0].tolist() def unnormalize(snake_case : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A__ : Tuple = ["""score""", """label""", """box"""] A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case ) A__ : str = raw_annotations[0] A__ : str = raw_annotation["""scores"""] A__ : List[Any] = raw_annotation["""labels"""] A__ : int = raw_annotation["""boxes"""] A__ : str = scores.tolist() A__ : Any = [self.model.config.idalabel[label.item()] for label in labels] A__ : int = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ : str = ["""score""", """label""", """box"""] A__ : Dict = [ dict(zip(snake_case , snake_case ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A__ , A__ , A__ , A__ : Any = box.int().tolist() A__ : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
296
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : list[int] ) ->list[list[int]]: A__ : Union[str, Any] = [] if len(UpperCAmelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCAmelCase__ ) ): A__ : str = nums.pop(0 ) A__ : Any = permute(UpperCAmelCase__ ) for perm in permutations: perm.append(UpperCAmelCase__ ) result.extend(UpperCAmelCase__ ) nums.append(UpperCAmelCase__ ) return result def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->str: def backtrack(UpperCAmelCase__ : Optional[Any] ): if start == len(UpperCAmelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A__ , A__ : Optional[int] = nums[i], nums[start] backtrack(start + 1 ) A__ , A__ : Union[str, Any] = nums[i], nums[start] # backtrack A__ : Union[str, Any] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function A_ = permutea([1, 2, 3]) print(res) doctest.testmod()
296
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} A_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } A_ = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] snake_case_ = GPTaTokenizer def __init__( self : Dict , snake_case : int=None , snake_case : Optional[Any]=None , snake_case : Union[str, Any]=None , snake_case : Union[str, Any]="<|endoftext|>" , snake_case : Dict="<|endoftext|>" , snake_case : int="<|endoftext|>" , snake_case : Tuple=False , **snake_case : str , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , unk_token=snake_case , bos_token=snake_case , eos_token=snake_case , add_prefix_space=snake_case , **snake_case , ) A__ : str = kwargs.pop("""add_bos_token""" , snake_case ) A__ : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , snake_case ) != add_prefix_space: A__ : List[str] = getattr(snake_case , pre_tok_state.pop("""type""" ) ) A__ : List[str] = add_prefix_space A__ : Dict = pre_tok_class(**snake_case ) A__ : List[Any] = add_prefix_space def _UpperCamelCase ( self : Optional[Any] , *snake_case : Optional[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Optional[Any] = kwargs.get("""is_split_into_words""" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def _UpperCamelCase ( self : List[Any] , *snake_case : Union[str, Any] , **snake_case : Dict ): '''simple docstring''' A__ : Tuple = kwargs.get("""is_split_into_words""" , snake_case ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' A__ : Optional[Any] = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def _UpperCamelCase ( self : Optional[Any] , snake_case : "Conversation" ): '''simple docstring''' A__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: A__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
296
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0 ) ->int: A__ : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 A__ : Tuple = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
296
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int | float | str ) ->tuple[int, int]: try: A__ : Dict = float(UpperCAmelCase__ ) except ValueError: raise ValueError("""Please enter a valid number""" ) A__ : int = decimal - int(UpperCAmelCase__ ) if fractional_part == 0: return int(UpperCAmelCase__ ), 1 else: A__ : int = len(str(UpperCAmelCase__ ).split(""".""" )[1] ) A__ : Optional[Any] = int(decimal * (1_0**number_of_frac_digits) ) A__ : Any = 1_0**number_of_frac_digits A__ , A__ : Union[str, Any] = denominator, numerator while True: A__ : List[str] = dividend % divisor if remainder == 0: break A__ , A__ : Tuple = divisor, remainder A__ , A__ : Optional[int] = numerator / divisor, denominator / divisor return int(UpperCAmelCase__ ), int(UpperCAmelCase__ ) if __name__ == "__main__": print(F'{decimal_to_fraction(2) = }') print(F'{decimal_to_fraction(89.0) = }') print(F'{decimal_to_fraction("67") = }') print(F'{decimal_to_fraction("45.0") = }') print(F'{decimal_to_fraction(1.5) = }') print(F'{decimal_to_fraction("6.25") = }') print(F'{decimal_to_fraction("78td") = }')
296
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ = object() # For specifying empty leaf dict `{}` A_ = object() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ): for rule, replacement in rules: if _match(UpperCAmelCase__, UpperCAmelCase__ ): return replacement return val return replace def _lowerCAmelCase ( ) ->Tuple: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : Union[str, Any] = _get_partition_rules() A__ : int = _replacement_rules(UpperCAmelCase__ ) A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
296
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = (DEISMultistepScheduler,) snake_case_ = (('num_inference_steps', 25),) def _UpperCamelCase ( self : Optional[int] , **snake_case : List[Any] ): '''simple docstring''' A__ : List[str] = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**snake_case ) return config def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple=0 , **snake_case : Any ): '''simple docstring''' A__ : Optional[Any] = dict(self.forward_default_kwargs ) A__ : str = kwargs.pop("""num_inference_steps""" , snake_case ) A__ : Dict = self.dummy_sample A__ : Any = 0.1 * sample A__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ : int = self.get_scheduler_config(**snake_case ) A__ : Dict = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals A__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) A__ : List[str] = scheduler_class.from_pretrained(snake_case ) new_scheduler.set_timesteps(snake_case ) # copy over dummy past residuals A__ : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ : List[str] = sample, sample for t in range(snake_case , time_step + scheduler.config.solver_order + 1 ): A__ : Union[str, Any] = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample A__ : Union[str, Any] = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self : str ): '''simple docstring''' pass def _UpperCamelCase ( self : Dict , snake_case : Dict=0 , **snake_case : int ): '''simple docstring''' A__ : str = dict(self.forward_default_kwargs ) A__ : Optional[Any] = kwargs.pop("""num_inference_steps""" , snake_case ) A__ : Optional[Any] = self.dummy_sample A__ : str = 0.1 * sample A__ : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ : List[Any] = self.get_scheduler_config() A__ : Optional[int] = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals (must be after setting timesteps) A__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) A__ : Optional[int] = scheduler_class.from_pretrained(snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case ) # copy over dummy past residual (must be after setting timesteps) A__ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] A__ : Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample A__ : List[str] = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _UpperCamelCase ( self : Dict , snake_case : Optional[int]=None , **snake_case : Optional[int] ): '''simple docstring''' if scheduler is None: A__ : List[str] = self.scheduler_classes[0] A__ : int = self.get_scheduler_config(**snake_case ) A__ : List[Any] = scheduler_class(**snake_case ) A__ : Optional[int] = self.scheduler_classes[0] A__ : List[Any] = self.get_scheduler_config(**snake_case ) A__ : int = scheduler_class(**snake_case ) A__ : Optional[Any] = 10 A__ : List[Any] = self.dummy_model() A__ : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): A__ : Optional[Any] = model(snake_case , snake_case ) A__ : Any = scheduler.step(snake_case , snake_case , snake_case ).prev_sample return sample def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[int] = dict(self.forward_default_kwargs ) A__ : int = kwargs.pop("""num_inference_steps""" , snake_case ) for scheduler_class in self.scheduler_classes: A__ : int = self.get_scheduler_config() A__ : List[Any] = scheduler_class(**snake_case ) A__ : Optional[Any] = self.dummy_sample A__ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case , """set_timesteps""" ): scheduler.set_timesteps(snake_case ) elif num_inference_steps is not None and not hasattr(snake_case , """set_timesteps""" ): A__ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] A__ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] A__ : str = scheduler.timesteps[5] A__ : Optional[int] = scheduler.timesteps[6] A__ : Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample A__ : Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Optional[int] = DEISMultistepScheduler(**self.get_scheduler_config() ) A__ : List[str] = self.full_loop(scheduler=snake_case ) A__ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 A__ : str = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ : List[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ : Union[str, Any] = UniPCMultistepScheduler.from_config(scheduler.config ) A__ : List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) A__ : List[str] = self.full_loop(scheduler=snake_case ) A__ : List[str] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def _UpperCamelCase ( self : str ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' self.check_over_configs(thresholding=snake_case ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , algorithm_type="""deis""" , solver_order=snake_case , solver_type=snake_case , ) def _UpperCamelCase ( self : str ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , algorithm_type=snake_case , ) A__ : Tuple = self.full_loop( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , algorithm_type=snake_case , ) assert not torch.isnan(snake_case ).any(), "Samples have nan numbers" def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=snake_case ) self.check_over_configs(lower_order_final=snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=snake_case , time_step=0 ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.full_loop() A__ : Union[str, Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.full_loop(prediction_type="""v_prediction""" ) A__ : Union[str, Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Tuple = self.scheduler_classes[0] A__ : List[Any] = self.get_scheduler_config(thresholding=snake_case , dynamic_thresholding_ratio=0 ) A__ : Union[str, Any] = scheduler_class(**snake_case ) A__ : List[Any] = 10 A__ : Dict = self.dummy_model() A__ : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): A__ : Optional[int] = model(snake_case , snake_case ) A__ : str = scheduler.step(snake_case , snake_case , snake_case ).prev_sample assert sample.dtype == torch.floataa
296
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0_0 ) ->int: A__ : int = 2**power A__ : Tuple = str(UpperCAmelCase__ ) A__ : Dict = list(UpperCAmelCase__ ) A__ : Optional[Any] = 0 for i in list_num: sum_of_num += int(UpperCAmelCase__ ) return sum_of_num if __name__ == "__main__": A_ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) A_ = solution(power) print('''Sum of the digits is: ''', result)
296
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
1
"""simple docstring""" from functools import lru_cache @lru_cache def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if num < 0: raise ValueError("""Number should not be negative.""" ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case , ) super().__init__(args=snake_case , **snake_case )
296
1
"""simple docstring""" from copy import deepcopy class __SCREAMING_SNAKE_CASE : def __init__( self : str , snake_case : list[int] | None = None , snake_case : int | None = None ): '''simple docstring''' if arr is None and size is not None: A__ : Union[str, Any] = size A__ : List[str] = [0] * size elif arr is not None: self.init(snake_case ) else: raise ValueError("""Either arr or size must be specified""" ) def _UpperCamelCase ( self : int , snake_case : list[int] ): '''simple docstring''' A__ : Optional[Any] = len(snake_case ) A__ : str = deepcopy(snake_case ) for i in range(1 , self.size ): A__ : Dict = self.next_(snake_case ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): A__ : List[str] = self.next_(snake_case ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase ( snake_case : int ): '''simple docstring''' return index + (index & (-index)) @staticmethod def _UpperCamelCase ( snake_case : int ): '''simple docstring''' return index - (index & (-index)) def _UpperCamelCase ( self : Optional[int] , snake_case : int , snake_case : int ): '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value A__ : Dict = self.next_(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : int , snake_case : int ): '''simple docstring''' self.add(snake_case , value - self.get(snake_case ) ) def _UpperCamelCase ( self : List[Any] , snake_case : int ): '''simple docstring''' if right == 0: return 0 A__ : Any = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] A__ : Optional[Any] = self.prev(snake_case ) return result def _UpperCamelCase ( self : Union[str, Any] , snake_case : int , snake_case : int ): '''simple docstring''' return self.prefix(snake_case ) - self.prefix(snake_case ) def _UpperCamelCase ( self : Dict , snake_case : int ): '''simple docstring''' return self.query(snake_case , index + 1 ) def _UpperCamelCase ( self : List[Any] , snake_case : int ): '''simple docstring''' value -= self.tree[0] if value < 0: return -1 A__ : Optional[Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 A__ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
1
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) snake_case_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) A__ : Optional[int] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) A__ : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A__ : Optional[int] = CLIPTextModel(snake_case ) A__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Optional[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCamelCase ( self : Optional[int] , snake_case : List[str] , snake_case : Tuple=0 ): '''simple docstring''' if str(snake_case ).startswith("""mps""" ): A__ : List[str] = torch.manual_seed(snake_case ) else: A__ : Optional[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A__ : Tuple = 2 A__ : List[str] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ) A__ : Dict = floats_tensor(control_image.shape , rng=random.Random(snake_case ) ).to(snake_case ) A__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : int = Image.fromarray(np.uinta(snake_case ) ).convert("""RGB""" ).resize((64, 64) ) A__ : Any = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = StableDiffusionControlNetImgaImgPipeline snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} snake_case_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _UpperCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) A__ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(snake_case : str ): if isinstance(snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) A__ : Union[str, Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) A__ : Union[str, Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) A__ : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A__ : int = CLIPTextModel(snake_case ) A__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Tuple = MultiControlNetModel([controlneta, controlneta] ) A__ : List[str] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _UpperCamelCase ( self : List[Any] , snake_case : str , snake_case : Any=0 ): '''simple docstring''' if str(snake_case ).startswith("""mps""" ): A__ : Optional[int] = torch.manual_seed(snake_case ) else: A__ : List[Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A__ : Optional[int] = 2 A__ : Optional[int] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), ] A__ : Optional[int] = floats_tensor(control_image[0].shape , rng=random.Random(snake_case ) ).to(snake_case ) A__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : str = Image.fromarray(np.uinta(snake_case ) ).convert("""RGB""" ).resize((64, 64) ) A__ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : str = self.get_dummy_components() A__ : Optional[Any] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) A__ : str = 10.0 A__ : Dict = 4 A__ : Any = self.get_dummy_inputs(snake_case ) A__ : str = steps A__ : List[Any] = scale A__ : int = pipe(**snake_case )[0] A__ : Optional[int] = self.get_dummy_inputs(snake_case ) A__ : Optional[Any] = steps A__ : int = scale A__ : Optional[int] = pipe(**snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] A__ : str = self.get_dummy_inputs(snake_case ) A__ : Dict = steps A__ : Dict = scale A__ : int = pipe(**snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] A__ : str = self.get_dummy_inputs(snake_case ) A__ : List[Any] = steps A__ : Optional[int] = scale A__ : Any = pipe(**snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _UpperCamelCase ( self : int ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _UpperCamelCase ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[Any] = self.get_dummy_components() A__ : Any = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) A__ : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=snake_case , controlnet=snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) A__ : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) A__ : Optional[Any] = """evil space-punk bird""" A__ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) A__ : Optional[int] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) A__ : Union[str, Any] = pipe( snake_case , snake_case , control_image=snake_case , generator=snake_case , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) A__ : Dict = output.images[0] assert image.shape == (512, 512, 3) A__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
296
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Tuple , *snake_case : List[str] , **snake_case : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Any , *snake_case : Dict , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : int , *snake_case : Tuple , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Tuple , *snake_case : Any , **snake_case : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[Any] , *snake_case : List[str] , **snake_case : Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[str] , *snake_case : str , **snake_case : int ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Tuple , *snake_case : Any , **snake_case : Any ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Any , *snake_case : Tuple , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : str , *snake_case : List[str] , **snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : str , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Optional[int] , *snake_case : Any , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : Optional[int] , **snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Any , *snake_case : Optional[int] , **snake_case : str ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Any , *snake_case : List[str] , **snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : int , *snake_case : str , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : Dict , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[str] , *snake_case : Any , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Optional[Any] , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : str , *snake_case : Any , **snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : int , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Any , *snake_case : Dict , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : int , *snake_case : List[Any] , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : List[str] , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Optional[Any] , *snake_case : Optional[int] , **snake_case : Tuple ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[Any] , *snake_case : Dict , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : Dict , *snake_case : Optional[Any] , **snake_case : Dict ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[str] , *snake_case : Tuple , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : int , *snake_case : Tuple , **snake_case : List[str] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : str , *snake_case : List[Any] , **snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase ): snake_case_ = ['sentencepiece'] def __init__( self : List[Any] , *snake_case : Optional[int] , **snake_case : int ): '''simple docstring''' requires_backends(self , ["""sentencepiece"""] )
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
296
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] A__ : Optional[int] = (low + high) // 2 A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]: A__ , A__ : Dict = float("""-inf""" ), -1 A__ , A__ : Optional[Any] = float("""-inf""" ), -1 A__ : int | float = 0 for i in range(UpperCAmelCase__, low - 1, -1 ): summ += arr[i] if summ > left_sum: A__ : Optional[int] = summ A__ : Union[str, Any] = i A__ : Optional[Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: A__ : int = summ A__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float: A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] A__ : Any = time.time() max_subarray(UpperCAmelCase__, 0, input_size - 1 ) A__ : List[Any] = time.time() return end - start def _lowerCAmelCase ( ) ->None: A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ): print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ ) plt.plot(UpperCAmelCase__, UpperCAmelCase__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : Any ) ->Any: A__ , A__ : Optional[Any] = [], [] while len(UpperCAmelCase__ ) > 1: A__ , A__ : Dict = min(UpperCAmelCase__ ), max(UpperCAmelCase__ ) start.append(UpperCAmelCase__ ) end.append(UpperCAmelCase__ ) collection.remove(UpperCAmelCase__ ) collection.remove(UpperCAmelCase__ ) end.reverse() return start + collection + end if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : list[int], UpperCAmelCase__ : list[int] ) ->None: A__ : str = len(UpperCAmelCase__ ) print("""The following activities are selected:""" ) # The first activity is always selected A__ : Any = 0 print(UpperCAmelCase__, end=""",""" ) # Consider rest of the activities for j in range(UpperCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(UpperCAmelCase__, end=""",""" ) A__ : Tuple = j if __name__ == "__main__": import doctest doctest.testmod() A_ = [1, 3, 0, 5, 8, 5] A_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
296
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
"""simple docstring""" from collections import defaultdict from math import gcd def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int: A__ : defaultdict = defaultdict(UpperCAmelCase__ ) A__ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ): if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1: continue A__ : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
296
1
"""simple docstring""" from collections import deque def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) ->Optional[int]: A__ : List[str] = len(UpperCAmelCase__ ) A__ : List[str] = deque() A__ : List[str] = [False for _ in range(UpperCAmelCase__ )] A__ : List[Any] = [-1 for _ in range(UpperCAmelCase__ )] A__ : Any = index_of[:] def strong_connect(UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : str ): A__ : List[Any] = index # the number when this node is seen A__ : Union[str, Any] = index # lowest rank node reachable from here index += 1 stack.append(UpperCAmelCase__ ) A__ : int = True for w in g[v]: if index_of[w] == -1: A__ : Any = strong_connect(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ : Optional[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: A__ : Union[str, Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: A__ : int = [] A__ : List[str] = stack.pop() A__ : Optional[int] = False component.append(UpperCAmelCase__ ) while w != v: A__ : int = stack.pop() A__ : Union[str, Any] = False component.append(UpperCAmelCase__ ) components.append(UpperCAmelCase__ ) return index A__ : Optional[Any] = [] for v in range(UpperCAmelCase__ ): if index_of[v] == -1: strong_connect(UpperCAmelCase__, 0, UpperCAmelCase__ ) return components def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Any ) ->List[str]: A__ : str = [[] for _ in range(UpperCAmelCase__ )] for u, v in edges: g[u].append(UpperCAmelCase__ ) return g if __name__ == "__main__": # Test A_ = 7 A_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] A_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] A_ = [(u, v) for u, v in zip(source, target)] A_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
296
"""simple docstring""" import os from distutils.util import strtobool def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Optional[Any] ) ->List[str]: for e in env_keys: A__ : List[Any] = int(os.environ.get(UpperCAmelCase__, -1 ) ) if val >= 0: return val return default def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=False ) ->List[str]: A__ : List[Any] = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return strtobool(UpperCAmelCase__ ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]="no" ) ->int: A__ : str = os.environ.get(UpperCAmelCase__, str(UpperCAmelCase__ ) ) return value
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Any = len(UpperCAmelCase__ ) while cur > 1: # Find the maximum number in arr A__ : int = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A__ : List[str] = arr[mi::-1] + arr[mi + 1 : len(UpperCAmelCase__ )] # Reverse whole list A__ : Tuple = arr[cur - 1 :: -1] + arr[cur : len(UpperCAmelCase__ )] cur -= 1 return arr if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
296
"""simple docstring""" import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): A__ : Optional[int] = k A__ : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def _UpperCamelCase ( self : int , snake_case : str ): '''simple docstring''' A__ : List[str] = cva.imread(snake_case , 0 ) A__ , A__ : Union[str, Any] = img.shape A__ : list[list[int]] = [] A__ : Optional[Any] = img.copy() A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ : List[Any] = np.gradient(snake_case ) A__ : List[Any] = dx**2 A__ : Any = dy**2 A__ : Dict = dx * dy A__ : Any = 0.04 A__ : Optional[Any] = self.window_size // 2 for y in range(snake_case , h - offset ): for x in range(snake_case , w - offset ): A__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : int = (wxx * wyy) - (wxy**2) A__ : Any = wxx + wyy A__ : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ , A_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->str: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" A__ : Optional[int] = False if num < 0: A__ : int = True A__ : int = -num A__ : list[int] = [] while num > 0: binary.insert(0, num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) return "0b" + "".join(str(UpperCAmelCase__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A_ = logging.get_logger(__name__) A_ = Dict[str, Any] A_ = List[Prediction] @add_end_docstrings(UpperCamelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : str , *snake_case : Tuple , **snake_case : Tuple ): '''simple docstring''' super().__init__(*snake_case , **snake_case ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = {} if "threshold" in kwargs: A__ : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : Tuple , *snake_case : Union[str, Any] , **snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*snake_case , **snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : List[str] = load_image(snake_case ) A__ : int = torch.IntTensor([[image.height, image.width]] ) A__ : Union[str, Any] = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: A__ : str = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) A__ : List[str] = target_size return inputs def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : str = model_inputs.pop("""target_size""" ) A__ : Dict = self.model(**snake_case ) A__ : Optional[Any] = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: A__ : str = model_inputs["""bbox"""] return model_outputs def _UpperCamelCase ( self : Tuple , snake_case : Optional[int] , snake_case : int=0.9 ): '''simple docstring''' A__ : Any = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A__ , A__ : Tuple = target_size[0].tolist() def unnormalize(snake_case : Optional[int] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A__ , A__ : Optional[int] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A__ : Optional[Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A__ : List[str] = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] A__ : Tuple = ["""score""", """label""", """box"""] A__ : Any = [dict(zip(snake_case , snake_case ) ) for vals in zip(scores.tolist() , snake_case , snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A__ : Union[str, Any] = self.image_processor.post_process_object_detection(snake_case , snake_case , snake_case ) A__ : str = raw_annotations[0] A__ : str = raw_annotation["""scores"""] A__ : List[Any] = raw_annotation["""labels"""] A__ : int = raw_annotation["""boxes"""] A__ : str = scores.tolist() A__ : Any = [self.model.config.idalabel[label.item()] for label in labels] A__ : int = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A__ : str = ["""score""", """label""", """box"""] A__ : Dict = [ dict(zip(snake_case , snake_case ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def _UpperCamelCase ( self : Union[str, Any] , snake_case : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) A__ , A__ , A__ , A__ : Any = box.int().tolist() A__ : Any = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError("""Input value must be an 'int' type""" ) A__ : Tuple = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
296
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) A_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'table-transformer' snake_case_ = ['past_key_values'] snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , snake_case : int=True , snake_case : Dict=None , snake_case : Union[str, Any]=3 , snake_case : Dict=100 , snake_case : Tuple=6 , snake_case : Optional[int]=2048 , snake_case : int=8 , snake_case : Dict=6 , snake_case : Any=2048 , snake_case : str=8 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=0.0 , snake_case : List[str]=True , snake_case : Any="relu" , snake_case : str=256 , snake_case : int=0.1 , snake_case : Dict=0.0 , snake_case : str=0.0 , snake_case : Union[str, Any]=0.02 , snake_case : Union[str, Any]=1.0 , snake_case : Optional[Any]=False , snake_case : int="sine" , snake_case : Optional[Any]="resnet50" , snake_case : Optional[int]=True , snake_case : Any=False , snake_case : int=1 , snake_case : Tuple=5 , snake_case : Optional[int]=2 , snake_case : Tuple=1 , snake_case : Optional[Any]=1 , snake_case : Optional[Any]=5 , snake_case : Dict=2 , snake_case : Any=0.1 , **snake_case : Any , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A__ : Optional[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(snake_case , snake_case ): A__ : Optional[int] = backbone_config.get("""model_type""" ) A__ : Optional[int] = CONFIG_MAPPING[backbone_model_type] A__ : List[str] = config_class.from_dict(snake_case ) # set timm attributes to None A__ , A__ , A__ : str = None, None, None A__ : Tuple = use_timm_backbone A__ : str = backbone_config A__ : str = num_channels A__ : List[Any] = num_queries A__ : Optional[Any] = d_model A__ : Tuple = encoder_ffn_dim A__ : Union[str, Any] = encoder_layers A__ : List[Any] = encoder_attention_heads A__ : Optional[int] = decoder_ffn_dim A__ : Any = decoder_layers A__ : int = decoder_attention_heads A__ : Any = dropout A__ : Dict = attention_dropout A__ : Dict = activation_dropout A__ : Tuple = activation_function A__ : List[str] = init_std A__ : List[str] = init_xavier_std A__ : Any = encoder_layerdrop A__ : Optional[Any] = decoder_layerdrop A__ : Union[str, Any] = encoder_layers A__ : Dict = auxiliary_loss A__ : List[Any] = position_embedding_type A__ : Optional[Any] = backbone A__ : str = use_pretrained_backbone A__ : Union[str, Any] = dilation # Hungarian matcher A__ : Tuple = class_cost A__ : Optional[Any] = bbox_cost A__ : Dict = giou_cost # Loss coefficients A__ : Any = mask_loss_coefficient A__ : str = dice_loss_coefficient A__ : str = bbox_loss_coefficient A__ : Union[str, Any] = giou_loss_coefficient A__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCamelCase ( self : Dict ): '''simple docstring''' return self.d_model class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = version.parse('1.11' ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return 1e-5 @property def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return 12
296
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) A_ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } A_ = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Any: A__ : Optional[int] = EfficientNetConfig() A__ : str = CONFIG_MAP[model_name]["""hidden_dim"""] A__ : Union[str, Any] = CONFIG_MAP[model_name]["""width_coef"""] A__ : List[str] = CONFIG_MAP[model_name]["""depth_coef"""] A__ : Dict = CONFIG_MAP[model_name]["""image_size"""] A__ : Optional[Any] = CONFIG_MAP[model_name]["""dropout_rate"""] A__ : Union[str, Any] = CONFIG_MAP[model_name]["""dw_padding"""] A__ : List[str] = """huggingface/label-files""" A__ : Optional[int] = """imagenet-1k-id2label.json""" A__ : List[str] = 1_0_0_0 A__ : Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : str = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[Any] = idalabel A__ : List[str] = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( ) ->Tuple: A__ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : Optional[Any] = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int] ) ->List[Any]: A__ : List[str] = CONFIG_MAP[model_name]["""image_size"""] A__ : str = EfficientNetImageProcessor( size={"""height""": size, """width""": size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.4785_3944, 0.473_2864, 0.4743_4163], do_center_crop=UpperCAmelCase__, ) return preprocessor def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : List[Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] A__ : Optional[Any] = sorted(set(UpperCAmelCase__ ) ) A__ : List[str] = len(UpperCAmelCase__ ) A__ : Dict = {b: str(UpperCAmelCase__ ) for b, i in zip(UpperCAmelCase__, range(UpperCAmelCase__ ) )} A__ : Union[str, Any] = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: A__ : Tuple = block_name_mapping[b] rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) A__ : Dict = {} for item in rename_keys: if item[0] in original_param_names: A__ : Union[str, Any] = """efficientnet.""" + item[1] A__ : str = """classifier.weight""" A__ : Dict = """classifier.bias""" return key_mapping def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : str, UpperCAmelCase__ : List[str] ) ->List[str]: for key, value in tf_params.items(): if "normalization" in key: continue A__ : Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A__ : Optional[int] = torch.from_numpy(UpperCAmelCase__ ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: A__ : int = torch.from_numpy(UpperCAmelCase__ ).permute(2, 3, 0, 1 ) elif "kernel" in key: A__ : Optional[Any] = torch.from_numpy(np.transpose(UpperCAmelCase__ ) ) else: A__ : List[str] = torch.from_numpy(UpperCAmelCase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(UpperCAmelCase__ ) @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict ) ->Union[str, Any]: A__ : Dict = model_classes[model_name]( include_top=UpperCAmelCase__, weights="""imagenet""", input_tensor=UpperCAmelCase__, input_shape=UpperCAmelCase__, pooling=UpperCAmelCase__, classes=1_0_0_0, classifier_activation="""softmax""", ) A__ : str = original_model.trainable_variables A__ : str = original_model.non_trainable_variables A__ : str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A__ : Tuple = param.numpy() A__ : int = list(tf_params.keys() ) # Load HuggingFace model A__ : Optional[Any] = get_efficientnet_config(UpperCAmelCase__ ) A__ : Union[str, Any] = EfficientNetForImageClassification(UpperCAmelCase__ ).eval() A__ : Optional[int] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) A__ : List[Any] = rename_keys(UpperCAmelCase__ ) replace_params(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Initialize preprocessor and preprocess input image A__ : Optional[int] = convert_image_processor(UpperCAmelCase__ ) A__ : str = preprocessor(images=prepare_img(), return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): A__ : Optional[Any] = hf_model(**UpperCAmelCase__ ) A__ : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference A__ : Dict = False A__ : Tuple = CONFIG_MAP[model_name]["""image_size"""] A__ : Optional[Any] = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) A__ : int = image.img_to_array(UpperCAmelCase__ ) A__ : List[Any] = np.expand_dims(UpperCAmelCase__, axis=0 ) A__ : Dict = original_model.predict(UpperCAmelCase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(UpperCAmelCase__, UpperCAmelCase__, atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(UpperCAmelCase__ ): os.mkdir(UpperCAmelCase__ ) # Save converted model and image processor hf_model.save_pretrained(UpperCAmelCase__ ) preprocessor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: # Push model and image processor to hub print(f'Pushing converted {model_name} to the hub...' ) A__ : Union[str, Any] = f'efficientnet-{model_name}' preprocessor.push_to_hub(UpperCAmelCase__ ) hf_model.push_to_hub(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') A_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
296
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : float ) ->float: return 1_0 - x * x def _lowerCAmelCase ( UpperCAmelCase__ : float, UpperCAmelCase__ : float ) ->float: # Bolzano theory in order to find if there is a root between a and b if equation(UpperCAmelCase__ ) * equation(UpperCAmelCase__ ) >= 0: raise ValueError("""Wrong space!""" ) A__ : Dict = a while (b - a) >= 0.01: # Find middle point A__ : Union[str, Any] = (a + b) / 2 # Check if middle point is root if equation(UpperCAmelCase__ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCAmelCase__ ) * equation(UpperCAmelCase__ ) < 0: A__ : int = c else: A__ : List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
296
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : List[Any] ): '''simple docstring''' super().__init__() A__ : int = nn.Linear(3 , 4 ) A__ : Union[str, Any] = nn.BatchNormad(4 ) A__ : Union[str, Any] = nn.Linear(4 , 5 ) def _UpperCamelCase ( self : str , snake_case : List[str] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(snake_case ) ) ) class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : int = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , model.state_dict() ) A__ : List[str] = os.path.join(snake_case , """index.json""" ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ : List[str] = os.path.join(snake_case , F'{key}.dat' ) self.assertTrue(os.path.isfile(snake_case ) ) # TODO: add tests on the fact weights are properly loaded def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ : str = torch.randn(2 , 3 , dtype=snake_case ) with TemporaryDirectory() as tmp_dir: A__ : List[str] = offload_weight(snake_case , """weight""" , snake_case , {} ) A__ : Union[str, Any] = os.path.join(snake_case , """weight.dat""" ) self.assertTrue(os.path.isfile(snake_case ) ) self.assertDictEqual(snake_case , {"""weight""": {"""shape""": [2, 3], """dtype""": str(snake_case ).split(""".""" )[1]}} ) A__ : str = load_offloaded_weight(snake_case , index["""weight"""] ) self.assertTrue(torch.equal(snake_case , snake_case ) ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = ModelForTest() A__ : Union[str, Any] = model.state_dict() A__ : Optional[int] = {k: v for k, v in state_dict.items() if """linear2""" not in k} A__ : List[Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Dict = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) A__ : int = {k: v for k, v in state_dict.items() if """weight""" in k} A__ : Tuple = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) A__ : Optional[Any] = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(snake_case , snake_case ) # Duplicates are removed A__ : int = OffloadedWeightsLoader(state_dict=snake_case , save_folder=snake_case ) # Every key is there with the right value self.assertEqual(sorted(snake_case ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(snake_case , weight_map[key] ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} A__ : str = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1""": 0, """a.2""": 2} ) A__ : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} A__ : int = extract_submodules_state_dict(snake_case , ["""a.1""", """a.2"""] ) self.assertDictEqual(snake_case , {"""a.1.a""": 0, """a.2.a""": 2} )
296
1
"""simple docstring""" import math import unittest def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->bool: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' with self.assertRaises(snake_case ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , """Zero doesn't have any positive factors, primes must have exactly two.""" , ) self.assertFalse( is_prime(1 ) , """One only has 1 positive factor, primes must have exactly two.""" , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
296
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : str=True , snake_case : Dict=False , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : str="gelu" , snake_case : Tuple=0.1 , snake_case : Optional[int]=0.1 , snake_case : int=512 , snake_case : List[str]=16 , snake_case : str=2 , snake_case : Optional[int]=0.02 , snake_case : str=3 , snake_case : Dict=4 , snake_case : Optional[Any]=None , ): '''simple docstring''' A__ : int = parent A__ : Union[str, Any] = batch_size A__ : Optional[int] = seq_length A__ : List[Any] = is_training A__ : List[str] = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : Union[str, Any] = vocab_size A__ : List[Any] = hidden_size A__ : Any = num_hidden_layers A__ : Any = num_attention_heads A__ : Optional[int] = intermediate_size A__ : Any = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Dict = attention_probs_dropout_prob A__ : Optional[int] = max_position_embeddings A__ : Tuple = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[str] = initializer_range A__ : Any = num_labels A__ : Any = num_choices A__ : int = scope def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = None if self.use_input_mask: A__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_token_type_ids: A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : int = None A__ : int = None A__ : List[str] = None if self.use_labels: A__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case ) A__ : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[int] , snake_case : Dict , snake_case : Optional[int] , snake_case : List[str] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Tuple , snake_case : Optional[Any] , ): '''simple docstring''' A__ : List[str] = BioGptForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : str , snake_case : Tuple , snake_case : int , snake_case : Optional[Any] , snake_case : Any , *snake_case : Dict ): '''simple docstring''' A__ : Union[str, Any] = BioGptModel(config=snake_case ) model.to(snake_case ) model.eval() # create attention mask A__ : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) A__ : Any = self.seq_length // 2 A__ : str = 0 # first forward pass A__ , A__ : List[Any] = model(snake_case , attention_mask=snake_case ).to_tuple() # create hypothetical next token and extent to next_input_ids A__ : int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids A__ : List[str] = ids_tensor((1,) , snake_case ).item() + 1 A__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) A__ : int = random_other_next_tokens # append to next input_ids and attn_mask A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case )] , dim=1 , ) # get two different outputs A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Optional[int] = model(snake_case , past_key_values=snake_case , attention_mask=snake_case )["""last_hidden_state"""] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() A__ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : int , snake_case : Optional[Any] , *snake_case : str ): '''simple docstring''' A__ : Dict = BioGptModel(config=snake_case ).to(snake_case ).eval() A__ : Tuple = torch.ones(input_ids.shape , dtype=torch.long , device=snake_case ) # first forward pass A__ : Dict = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ , A__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids A__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : int = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and A__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Optional[int] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) A__ : Any = model(snake_case , attention_mask=snake_case )["""last_hidden_state"""] A__ : Union[str, Any] = model(snake_case , attention_mask=snake_case , past_key_values=snake_case )[ """last_hidden_state""" ] # select random slice A__ : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : Tuple , *snake_case : Union[str, Any] , snake_case : Union[str, Any]=False ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM(snake_case ) model.to(snake_case ) if gradient_checkpointing: model.gradient_checkpointing_enable() A__ : Optional[Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _UpperCamelCase ( self : int , snake_case : Optional[Any] , *snake_case : Optional[int] ): '''simple docstring''' A__ : int = BioGptModel(snake_case ) A__ : Union[str, Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _UpperCamelCase ( self : Any , snake_case : Dict , snake_case : Tuple , snake_case : int , snake_case : Union[str, Any] , snake_case : Dict , *snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = self.num_labels A__ : int = BioGptForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : str = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) snake_case_ = (BioGptForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = BioGptModelTester(self ) A__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : str = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case , gradient_checkpointing=snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Tuple = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) A__ : Optional[int] = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = """left""" # Define PAD Token = EOS Token = 50256 A__ : Optional[int] = tokenizer.eos_token A__ : Dict = model.config.eos_token_id # use different length sentences to test batching A__ : Union[str, Any] = [ """Hello, my dog is a little""", """Today, I""", ] A__ : List[str] = tokenizer(snake_case , return_tensors="""pt""" , padding=snake_case ) A__ : str = inputs["""input_ids"""].to(snake_case ) A__ : Dict = model.generate( input_ids=snake_case , attention_mask=inputs["""attention_mask"""].to(snake_case ) , ) A__ : Optional[int] = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Any = model.generate(input_ids=snake_case ) A__ : List[str] = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() A__ : str = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(snake_case ) A__ : Dict = model.generate(input_ids=snake_case , max_length=model.config.max_length - num_paddings ) A__ : Optional[Any] = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : List[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case ) A__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(snake_case , snake_case ) self.assertListEqual(snake_case , [non_padded_sentence, padded_sentence] ) @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Optional[Any] = BioGptModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(snake_case ) A__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Union[str, Any] = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Any = 3 A__ : List[Any] = """multi_label_classification""" A__ : Dict = input_dict["""input_ids"""] A__ : Tuple = input_ids.ne(1 ).to(snake_case ) A__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Tuple = BioGptForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[Any] = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) A__ : str = torch.tensor([[2, 4805, 9, 656, 21]] ) A__ : Dict = model(snake_case )[0] A__ : Tuple = 4_2384 A__ : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) A__ : Any = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(snake_case ) torch.manual_seed(0 ) A__ : Tuple = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(snake_case ) A__ : Optional[int] = model.generate( **snake_case , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case , ) A__ : Optional[int] = tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case ) A__ : List[str] = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(snake_case , snake_case )
296
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def _UpperCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) A__ : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = self.dummy_uncond_unet A__ : Any = KarrasVeScheduler() A__ : List[str] = KarrasVePipeline(unet=snake_case , scheduler=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : str = torch.manual_seed(0 ) A__ : Any = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" ).images A__ : List[str] = torch.manual_seed(0 ) A__ : List[Any] = pipe(num_inference_steps=2 , generator=snake_case , output_type="""numpy""" , return_dict=snake_case )[0] A__ : str = image[0, -3:, -3:, -1] A__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = """google/ncsnpp-celebahq-256""" A__ : Optional[Any] = UNetaDModel.from_pretrained(snake_case ) A__ : Optional[int] = KarrasVeScheduler() A__ : List[Any] = KarrasVePipeline(unet=snake_case , scheduler=snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) A__ : Optional[Any] = torch.manual_seed(0 ) A__ : Optional[int] = pipe(num_inference_steps=20 , generator=snake_case , output_type="""numpy""" ).images A__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A__ : Optional[int] = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
296
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A_ = logging.get_logger(__name__) A_ = {'''vocab_file''': '''spiece.model'''} A_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } A_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) A_ = 0 A_ = 1 A_ = 2 A_ = 3 A_ = 4 class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = 'left' def __init__( self : Dict , snake_case : int , snake_case : List[Any]=False , snake_case : List[str]=True , snake_case : Dict=False , snake_case : Optional[Any]="<s>" , snake_case : List[str]="</s>" , snake_case : Tuple="<unk>" , snake_case : Tuple="<sep>" , snake_case : Union[str, Any]="<pad>" , snake_case : Dict="<cls>" , snake_case : Optional[Any]="<mask>" , snake_case : Optional[int]=["<eop>", "<eod>"] , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Dict , ): '''simple docstring''' A__ : Optional[int] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token A__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) A__ : str = 3 A__ : str = do_lower_case A__ : Optional[Any] = remove_space A__ : List[Any] = keep_accents A__ : Union[str, Any] = vocab_file A__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : int = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): '''simple docstring''' A__ : int = self.__dict__.copy() A__ : int = None return state def __setstate__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ : Optional[int] = {} A__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] ): '''simple docstring''' if self.remove_space: A__ : Optional[Any] = """ """.join(inputs.strip().split() ) else: A__ : Dict = inputs A__ : str = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A__ : Any = unicodedata.normalize("""NFKD""" , snake_case ) A__ : Optional[int] = """""".join([c for c in outputs if not unicodedata.combining(snake_case )] ) if self.do_lower_case: A__ : Any = outputs.lower() return outputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : str ): '''simple docstring''' A__ : Dict = self.preprocess_text(snake_case ) A__ : Dict = self.sp_model.encode(snake_case , out_type=snake_case ) A__ : Optional[int] = [] for piece in pieces: if len(snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A__ : Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : int = cur_pieces[1:] else: A__ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(snake_case ) else: new_pieces.append(snake_case ) return new_pieces def _UpperCamelCase ( self : List[str] , snake_case : Tuple ): '''simple docstring''' return self.sp_model.PieceToId(snake_case ) def _UpperCamelCase ( self : List[str] , snake_case : Any ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' A__ : Union[str, Any] = """""".join(snake_case ).replace(snake_case , """ """ ).strip() return out_string def _UpperCamelCase ( self : int , snake_case : List[int] , snake_case : bool = False , snake_case : bool = None , snake_case : bool = True , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = kwargs.pop("""use_source_tokenizer""" , snake_case ) A__ : Any = self.convert_ids_to_tokens(snake_case , skip_special_tokens=snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A__ : Any = [] A__ : Any = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) A__ : str = [] sub_texts.append(snake_case ) else: current_sub_text.append(snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens A__ : Dict = """""".join(snake_case ) A__ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A__ : Tuple = self.clean_up_tokenization(snake_case ) return clean_text else: return text def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Tuple = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCamelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is not None: return ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1, 1] return ([0] * len(snake_case )) + [1, 1] def _UpperCamelCase ( self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None ): '''simple docstring''' A__ : Any = [self.sep_token_id] A__ : int = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCamelCase ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ : List[Any] = os.path.join( snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , """wb""" ) as fi: A__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
296
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any=1.0, UpperCAmelCase__ : Any=None, UpperCAmelCase__ : int=None ) ->Optional[int]: if rng is None: A__ : Union[str, Any] = global_rng A__ : List[str] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : List[Any] , snake_case : List[Any]=7 , snake_case : Dict=400 , snake_case : Union[str, Any]=2000 , snake_case : List[str]=2048 , snake_case : Optional[Any]=128 , snake_case : Optional[int]=1 , snake_case : str=512 , snake_case : Dict=30 , snake_case : List[Any]=4_4100 , ): '''simple docstring''' A__ : int = parent A__ : Optional[int] = batch_size A__ : Dict = min_seq_length A__ : Any = max_seq_length A__ : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : List[Any] = spectrogram_length A__ : Tuple = feature_size A__ : int = num_audio_channels A__ : Union[str, Any] = hop_length A__ : Union[str, Any] = chunk_length A__ : List[Any] = sampling_rate def _UpperCamelCase ( self : str ): '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _UpperCamelCase ( self : Optional[int] , snake_case : Optional[int]=False , snake_case : List[str]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : Dict = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = TvltFeatureExtractor def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Tuple = TvltFeatureExtractionTester(self ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case , """spectrogram_length""" ) ) self.assertTrue(hasattr(snake_case , """feature_size""" ) ) self.assertTrue(hasattr(snake_case , """num_audio_channels""" ) ) self.assertTrue(hasattr(snake_case , """hop_length""" ) ) self.assertTrue(hasattr(snake_case , """chunk_length""" ) ) self.assertTrue(hasattr(snake_case , """sampling_rate""" ) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : str = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : str = self.feature_extraction_class.from_pretrained(snake_case ) A__ : Union[str, Any] = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[str] = dict_first.pop("""mel_filters""" ) A__ : Optional[int] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : Any = self.feature_extraction_class.from_json_file(snake_case ) A__ : List[str] = feat_extract_first.to_dict() A__ : Optional[int] = feat_extract_second.to_dict() A__ : List[str] = dict_first.pop("""mel_filters""" ) A__ : Union[str, Any] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : List[Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test not batched input A__ : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A__ : Union[str, Any] = feature_extractor(snake_case , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A__ : Any = feature_extractor( snake_case , return_tensors="""np""" , sampling_rate=4_4100 , mask_audio=snake_case ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A__ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : Dict = np.asarray(snake_case ) A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[int] ): '''simple docstring''' A__ : Dict = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : int = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Tuple = self._load_datasamples(1 ) A__ : str = TvltFeatureExtractor() A__ : Dict = feature_extractor(snake_case , return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A__ : Optional[Any] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case , atol=1e-4 ) )
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Optional[int] = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) A__ : int = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A__ : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids A__ : Dict = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids A__ : Any = shift_tokens_right(snake_case , model.config.pad_token_id , model.config.decoder_start_token_id ) A__ : Any = model(snake_case , decoder_input_ids=snake_case ).logits A__ : Tuple = optax.softmax_cross_entropy(snake_case , onehot(snake_case , logits.shape[-1] ) ).mean() A__ : List[Any] = -(labels.shape[-1] * loss.item()) A__ : int = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
296
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
1
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_0_0 ) ->int: A__ : Any = 0 A__ : List[str] = 0 for i in range(1, n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
296
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = { '''configuration_llama''': ['''LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LlamaConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''LlamaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''LlamaForCausalLM''', '''LlamaModel''', '''LlamaPreTrainedModel''', '''LlamaForSequenceClassification''', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
296
1
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = FunnelTokenizer snake_case_ = FunnelTokenizerFast snake_case_ = True snake_case_ = True def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' super().setUp() A__ : int = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _UpperCamelCase ( self : List[Any] , **snake_case : List[str] ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCamelCase ( self : List[Any] , **snake_case : Any ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : Union[str, Any] = """UNwant\u00E9d,running""" A__ : Dict = """unwanted, running""" return input_text, output_text def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = self.tokenizer_class(self.vocab_file ) A__ : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , [7, 4, 5, 10, 8, 9] ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : List[Any] = self.get_tokenizers(do_lower_case=snake_case ) for tokenizer in tokenizers: A__ : Optional[Any] = tokenizer("""UNwant\u00E9d,running""" ) A__ : Dict = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) A__ : Union[str, Any] = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
296
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels A_ = object() # For specifying empty leaf dict `{}` A_ = object() def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any] ) ->Dict: A__ : Union[str, Any] = tuple((re.compile(x + """$""" ) for x in qs) ) for i in range(len(UpperCAmelCase__ ) - len(UpperCAmelCase__ ) + 1 ): A__ : Optional[Any] = [x.match(UpperCAmelCase__ ) for x, y in zip(UpperCAmelCase__, ks[i:] )] if matches and all(UpperCAmelCase__ ): return True return False def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->Dict: def replace(UpperCAmelCase__ : int, UpperCAmelCase__ : List[str] ): for rule, replacement in rules: if _match(UpperCAmelCase__, UpperCAmelCase__ ): return replacement return val return replace def _lowerCAmelCase ( ) ->Tuple: return [ # embeddings (("transformer", "wpe", "embedding"), P("""mp""", UpperCAmelCase__ )), (("transformer", "wte", "embedding"), P("""mp""", UpperCAmelCase__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(UpperCAmelCase__, """mp""" )), (("attention", "out_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(UpperCAmelCase__, """mp""" )), (("mlp", "c_fc", "bias"), P("""mp""" )), (("mlp", "c_proj", "kernel"), P("""mp""", UpperCAmelCase__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( UpperCAmelCase__ : Tuple ) ->Any: A__ : Union[str, Any] = _get_partition_rules() A__ : int = _replacement_rules(UpperCAmelCase__ ) A__ : Tuple = {k: _unmatched for k in flatten_dict(UpperCAmelCase__ )} A__ : Optional[int] = {k: replace(UpperCAmelCase__, UpperCAmelCase__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(UpperCAmelCase__ ) )
296
1
"""simple docstring""" from pathlib import Path import fire def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->Optional[Any]: A__ : Optional[int] = Path(UpperCAmelCase__ ) A__ : Optional[Any] = Path(UpperCAmelCase__ ) dest_dir.mkdir(exist_ok=UpperCAmelCase__ ) for path in src_dir.iterdir(): A__ : Any = [x.rstrip() for x in list(path.open().readlines() )][:n] A__ : List[Any] = dest_dir.joinpath(path.name ) print(UpperCAmelCase__ ) dest_path.open("""w""" ).write("""\n""".join(UpperCAmelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
296
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Tuple , snake_case : List[str]=2 , snake_case : List[str]=8 , snake_case : List[Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=True , snake_case : Dict=True , snake_case : Tuple=99 , snake_case : Dict=16 , snake_case : Dict=5 , snake_case : int=2 , snake_case : Any=36 , snake_case : str="gelu" , snake_case : Dict=0.0 , snake_case : List[Any]=0.0 , snake_case : int=512 , snake_case : List[Any]=16 , snake_case : Tuple=2 , snake_case : Any=0.02 , snake_case : Optional[Any]=3 , snake_case : List[Any]=4 , snake_case : str=None , ): '''simple docstring''' A__ : Union[str, Any] = parent A__ : Optional[Any] = batch_size A__ : Dict = seq_length A__ : str = is_training A__ : Tuple = use_input_mask A__ : Dict = use_token_type_ids A__ : Dict = use_labels A__ : int = vocab_size A__ : List[str] = hidden_size A__ : Union[str, Any] = num_hidden_layers A__ : int = num_attention_heads A__ : List[str] = intermediate_size A__ : int = hidden_act A__ : str = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : Any = max_position_embeddings A__ : Optional[int] = type_vocab_size A__ : int = type_sequence_label_size A__ : Optional[Any] = initializer_range A__ : int = num_labels A__ : Optional[int] = num_choices A__ : Optional[int] = scope def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Optional[int] = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : Union[str, Any] = None if self.use_labels: A__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Any = ids_tensor([self.batch_size] , self.num_choices ) A__ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : List[str] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.get_config() A__ : List[str] = 300 return config def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = self.prepare_config_and_inputs() A__ : List[str] = True A__ : List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Any , snake_case : Any , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : Dict ): '''simple docstring''' A__ : List[str] = MraModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case , token_type_ids=snake_case ) A__ : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : List[Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : str , snake_case : Dict , snake_case : str , ): '''simple docstring''' A__ : Dict = True A__ : Optional[Any] = MraModel(snake_case ) model.to(snake_case ) model.eval() A__ : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) A__ : Optional[int] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : int , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : List[Any] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Dict , snake_case : Dict , snake_case : Dict , snake_case : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Dict = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Optional[Any] = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict , snake_case : str , snake_case : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = self.num_labels A__ : Union[str, Any] = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() A__ : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : Tuple , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : int , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] ): '''simple docstring''' A__ : List[str] = self.num_choices A__ : str = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ : str = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Dict = config_and_inputs A__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = () def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = MraModelTester(self ) A__ : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _UpperCamelCase ( self : Any ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : str = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason="""MRA does not output attentions""" ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' return @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : str = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Any = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : List[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) A__ : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Union[str, Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) A__ : Tuple = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Dict = 5_0265 A__ : List[str] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : List[Any] = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) ) @slow def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) A__ : List[Any] = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A__ : List[Any] = model(snake_case )[0] A__ : Union[str, Any] = 5_0265 A__ : Optional[Any] = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) A__ : Optional[int] = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1e-4 ) )
296
1
"""simple docstring""" class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): pass class __SCREAMING_SNAKE_CASE : def __init__( self : Any ): '''simple docstring''' A__ : int = [ [], [], [], ] def _UpperCamelCase ( self : Optional[Any] , snake_case : int , snake_case : int ): '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError("""Maximum queue size is 100""" ) self.queues[priority].append(snake_case ) except IndexError: raise ValueError("""Valid priorities are 0, 1, and 2""" ) def _UpperCamelCase ( self : str ): '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError("""All queues are empty""" ) def __str__( self : Any ): '''simple docstring''' return "\n".join(F'Priority {i}: {q}' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] ): '''simple docstring''' A__ : Optional[int] = [] def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError("""Maximum queue size is 100""" ) self.queue.append(snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if not self.queue: raise UnderFlowError("""The queue is empty""" ) else: A__ : Tuple = min(self.queue ) self.queue.remove(snake_case ) return data def __str__( self : List[str] ): '''simple docstring''' return str(self.queue ) def _lowerCAmelCase ( ) ->int: A__ : Any = FixedPriorityQueue() fpq.enqueue(0, 1_0 ) fpq.enqueue(1, 7_0 ) fpq.enqueue(0, 1_0_0 ) fpq.enqueue(2, 1 ) fpq.enqueue(2, 5 ) fpq.enqueue(1, 7 ) fpq.enqueue(2, 4 ) fpq.enqueue(1, 6_4 ) fpq.enqueue(0, 1_2_8 ) print(UpperCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCAmelCase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def _lowerCAmelCase ( ) ->Optional[Any]: A__ : int = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(UpperCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCAmelCase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
296
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets A_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' A_ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' A_ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : List[Any] , snake_case : List[str]=None , snake_case : List[Any]="uniform_average" , snake_case : int=True ): '''simple docstring''' A__ : Optional[int] = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
296
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : str , snake_case : Dict , snake_case : Union[str, Any]=13 , snake_case : Union[str, Any]=7 , snake_case : Optional[Any]=True , snake_case : Union[str, Any]=True , snake_case : int=True , snake_case : List[str]=99 , snake_case : str=32 , snake_case : Dict=5 , snake_case : List[str]=4 , snake_case : Dict=37 , snake_case : Dict="gelu" , snake_case : Any=0.1 , snake_case : Union[str, Any]=0.1 , snake_case : List[str]=512 , snake_case : Optional[int]=16 , snake_case : Dict=2 , snake_case : int=0.02 , snake_case : Any=3 , snake_case : Tuple=4 , snake_case : int=None , ): '''simple docstring''' A__ : Tuple = parent A__ : List[Any] = batch_size A__ : Optional[int] = seq_length A__ : Optional[Any] = is_training A__ : List[Any] = use_token_type_ids A__ : List[Any] = use_labels A__ : List[Any] = vocab_size A__ : Dict = hidden_size A__ : int = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : int = intermediate_size A__ : str = hidden_act A__ : Dict = hidden_dropout_prob A__ : Optional[int] = attention_probs_dropout_prob A__ : Tuple = max_position_embeddings A__ : int = type_vocab_size A__ : Any = type_sequence_label_size A__ : Tuple = initializer_range A__ : Optional[int] = num_labels A__ : Any = num_choices A__ : Optional[Any] = scope A__ : List[str] = self.vocab_size - 1 def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Dict = None if self.use_token_type_ids: A__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ : Dict = None A__ : List[str] = None A__ : str = None if self.use_labels: A__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : int = ids_tensor([self.batch_size] , self.num_choices ) A__ : int = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) A__ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Tuple , snake_case : Tuple , snake_case : List[Any] , snake_case : List[Any] , *snake_case : str ): '''simple docstring''' A__ : Optional[Any] = OpenAIGPTModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , token_type_ids=snake_case , head_mask=snake_case ) A__ : Tuple = model(snake_case , token_type_ids=snake_case ) A__ : List[str] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : int , snake_case : str , snake_case : List[Any] , snake_case : Tuple , *snake_case : Any ): '''simple docstring''' A__ : str = OpenAIGPTLMHeadModel(snake_case ) model.to(snake_case ) model.eval() A__ : List[str] = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : Dict , snake_case : Dict , snake_case : Any , *snake_case : Optional[int] ): '''simple docstring''' A__ : List[str] = OpenAIGPTDoubleHeadsModel(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : Any , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : List[str] , snake_case : Optional[int] , *snake_case : Dict ): '''simple docstring''' A__ : List[str] = self.num_labels A__ : str = OpenAIGPTForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[Any] = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : int = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Any = config_and_inputs A__ : str = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) snake_case_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly snake_case_ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCamelCase ( self : int , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[int] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCamelCase ( self : Tuple , snake_case : List[Any] , snake_case : List[Any] , snake_case : Dict=False ): '''simple docstring''' A__ : str = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": A__ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=snake_case , ) A__ : Optional[Any] = inputs_dict["""labels"""] A__ : Optional[Any] = inputs_dict["""labels"""] A__ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=snake_case , ) A__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Tuple = OpenAIGPTModelTester(self ) A__ : Optional[int] = ConfigTester(self , config_class=snake_case , n_embd=37 ) def _UpperCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*snake_case ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*snake_case ) @slow def _UpperCamelCase ( self : int ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : List[Any] = OpenAIGPTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : List[str] = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(snake_case ) A__ : List[Any] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=snake_case ) # the president is A__ : int = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the A__ : List[str] = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].tolist() , snake_case )
296
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : Optional[int] , snake_case : List[str]=None , **snake_case : Any ): '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case , ) super().__init__(args=snake_case , **snake_case )
296
1
"""simple docstring""" import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase , UpperCamelCase ): def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : Dict = load_tool("""text-to-speech""" ) self.tool.setup() def _UpperCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) A__ : Optional[Any] = self.tool("""hey""" ) A__ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) A__ : Dict = self.tool("""hey""" ) A__ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
296
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ = logging.get_logger(__name__) A_ = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): snake_case_ = 'focalnet' def __init__( self : Union[str, Any] , snake_case : Tuple=224 , snake_case : Tuple=4 , snake_case : List[Any]=3 , snake_case : int=96 , snake_case : List[Any]=False , snake_case : List[Any]=[192, 384, 768, 768] , snake_case : Union[str, Any]=[2, 2, 6, 2] , snake_case : str=[2, 2, 2, 2] , snake_case : Tuple=[3, 3, 3, 3] , snake_case : List[str]="gelu" , snake_case : Any=4.0 , snake_case : Any=0.0 , snake_case : Optional[Any]=0.1 , snake_case : Union[str, Any]=False , snake_case : Any=1e-4 , snake_case : Dict=False , snake_case : Optional[Any]=False , snake_case : Dict=False , snake_case : Optional[Any]=0.02 , snake_case : Dict=1e-5 , snake_case : Optional[int]=32 , snake_case : int=None , snake_case : List[Any]=None , **snake_case : Any , ): '''simple docstring''' super().__init__(**snake_case ) A__ : Tuple = image_size A__ : Dict = patch_size A__ : Tuple = num_channels A__ : str = embed_dim A__ : Union[str, Any] = use_conv_embed A__ : Union[str, Any] = hidden_sizes A__ : int = depths A__ : str = focal_levels A__ : str = focal_windows A__ : Union[str, Any] = hidden_act A__ : Any = mlp_ratio A__ : Any = hidden_dropout_prob A__ : str = drop_path_rate A__ : Dict = use_layerscale A__ : str = layerscale_value A__ : Optional[Any] = use_post_layernorm A__ : Any = use_post_layernorm_in_modulation A__ : Optional[int] = normalize_modulator A__ : Dict = initializer_range A__ : str = layer_norm_eps A__ : int = encoder_stride A__ : List[Any] = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] A__ , A__ : str = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names )
296
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A_ = random.Random() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Tuple=1.0, UpperCAmelCase__ : Optional[int]=None, UpperCAmelCase__ : str=None ) ->Union[str, Any]: if rng is None: A__ : Optional[int] = global_rng A__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Union[str, Any] , snake_case : str , snake_case : List[str]=7 , snake_case : str=400 , snake_case : Optional[Any]=2000 , snake_case : Union[str, Any]=10 , snake_case : str=160 , snake_case : List[str]=8 , snake_case : List[Any]=0.0 , snake_case : Optional[Any]=4000 , snake_case : Any=False , snake_case : int=True , ): '''simple docstring''' A__ : Any = parent A__ : str = batch_size A__ : List[str] = min_seq_length A__ : Dict = max_seq_length A__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A__ : Dict = padding_value A__ : Optional[Any] = sampling_rate A__ : Any = return_attention_mask A__ : Optional[int] = do_normalize A__ : Tuple = feature_size A__ : Optional[Any] = chunk_length A__ : Union[str, Any] = hop_length def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Dict=False , snake_case : Optional[Any]=False ): '''simple docstring''' def _flatten(snake_case : Dict ): return list(itertools.chain(*snake_case ) ) if equal_length: A__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A__ : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A__ : List[str] = [np.asarray(snake_case ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): snake_case_ = WhisperFeatureExtractor if is_speech_available() else None def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : str = WhisperFeatureExtractionTester(self ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : List[Any] = feat_extract_first.save_pretrained(snake_case )[0] check_json_file_has_correct_format(snake_case ) A__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(snake_case ) A__ : str = feat_extract_first.to_dict() A__ : Union[str, Any] = feat_extract_second.to_dict() A__ : List[Any] = feat_extract_first.mel_filters A__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A__ : Any = os.path.join(snake_case , """feat_extract.json""" ) feat_extract_first.to_json_file(snake_case ) A__ : int = self.feature_extraction_class.from_json_file(snake_case ) A__ : Dict = feat_extract_first.to_dict() A__ : str = feat_extract_second.to_dict() A__ : str = feat_extract_first.mel_filters A__ : Dict = feat_extract_second.mel_filters self.assertTrue(np.allclose(snake_case , snake_case ) ) self.assertEqual(snake_case , snake_case ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] # Test feature size A__ : Dict = feature_extractor(snake_case , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input A__ : str = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test batched A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. A__ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] A__ : str = np.asarray(snake_case ) A__ : List[str] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) # Test truncation required A__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] A__ : Union[str, Any] = [np.asarray(snake_case ) for speech_input in speech_inputs] A__ : Union[str, Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] A__ : str = [np.asarray(snake_case ) for speech_input in speech_inputs_truncated] A__ : Optional[int] = feature_extractor(snake_case , return_tensors="""np""" ).input_features A__ : str = feature_extractor(snake_case , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(snake_case , snake_case ): self.assertTrue(np.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' import torch A__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : List[str] = np.random.rand(100 , 32 ).astype(np.floataa ) A__ : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A__ : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[int] ): '''simple docstring''' A__ : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech A__ : Union[str, Any] = ds.sort("""id""" ).select(range(snake_case ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : str = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on A__ : Optional[Any] = self._load_datasamples(1 ) A__ : Union[str, Any] = WhisperFeatureExtractor() A__ : List[str] = feature_extractor(snake_case , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , snake_case , atol=1e-4 ) ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A__ : Union[str, Any] = self._load_datasamples(1 )[0] A__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue A__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=snake_case )[0] self.assertTrue(np.all(np.mean(snake_case ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case ) - 1 ) < 1e-3 ) )
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple=False ) ->str: A__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'deit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'deit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'deit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'deit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'deit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'deit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'deit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'deit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'deit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'deit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any]=False ) ->str: for i in range(config.num_hidden_layers ): if base_model: A__ : Any = """""" else: A__ : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] A__ : str = in_proj_bias[: config.hidden_size] A__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] A__ : Any = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any] ) ->Any: A__ : int = dct.pop(UpperCAmelCase__ ) A__ : Tuple = val def _lowerCAmelCase ( ) ->List[Any]: A__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any ) ->Tuple: A__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads A__ : Tuple = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ : str = 1_0_0_0 A__ : List[str] = """huggingface/label-files""" A__ : Dict = """imagenet-1k-id2label.json""" A__ : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ), """r""" ) ) A__ : Dict = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Optional[int] = idalabel A__ : Dict = {v: k for k, v in idalabel.items()} A__ : List[str] = int(deit_name[-6:-4] ) A__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): A__ : List[str] = 1_9_2 A__ : int = 7_6_8 A__ : List[Any] = 1_2 A__ : Dict = 3 elif deit_name[9:].startswith("""small""" ): A__ : List[Any] = 3_8_4 A__ : List[str] = 1_5_3_6 A__ : Any = 1_2 A__ : Union[str, Any] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): A__ : int = 1_0_2_4 A__ : str = 4_0_9_6 A__ : Any = 2_4 A__ : int = 1_6 # load original model from timm A__ : Dict = timm.create_model(UpperCAmelCase__, pretrained=UpperCAmelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ : Tuple = timm_model.state_dict() A__ : str = create_rename_keys(UpperCAmelCase__, UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : str = DeiTForImageClassificationWithTeacher(UpperCAmelCase__ ).eval() model.load_state_dict(UpperCAmelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor A__ : int = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ : Any = DeiTImageProcessor(size=UpperCAmelCase__, crop_size=config.image_size ) A__ : Union[str, Any] = image_processor(images=prepare_img(), return_tensors="""pt""" ) A__ : Optional[Any] = encoding["""pixel_values"""] A__ : Union[str, Any] = model(UpperCAmelCase__ ) A__ : Union[str, Any] = timm_model(UpperCAmelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCAmelCase__, outputs.logits, atol=1e-3 ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model {deit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
296
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging A_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): def __init__( self : List[str] , snake_case : CLIPSegForImageSegmentation , snake_case : CLIPSegProcessor , snake_case : AutoencoderKL , snake_case : CLIPTextModel , snake_case : CLIPTokenizer , snake_case : UNetaDConditionModel , snake_case : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , snake_case : StableDiffusionSafetyChecker , snake_case : CLIPImageProcessor , ): '''simple docstring''' super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: A__ : Dict = ( F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , snake_case , standard_warn=snake_case ) A__ : Optional[int] = dict(scheduler.config ) A__ : str = 1 A__ : List[Any] = FrozenDict(snake_case ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: A__ : Tuple = ( F'The configuration file of this scheduler: {scheduler} has not set the configuration' """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , snake_case , standard_warn=snake_case ) A__ : List[Any] = dict(scheduler.config ) A__ : Tuple = True A__ : Any = FrozenDict(snake_case ) if safety_checker is None: logger.warning( F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=snake_case , segmentation_processor=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , safety_checker=snake_case , feature_extractor=snake_case , ) def _UpperCamelCase ( self : Optional[int] , snake_case : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ : Dict = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' self.enable_attention_slicing(snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ : Optional[Any] = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(snake_case , snake_case ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : str , snake_case : Union[str, List[str]] , snake_case : Union[torch.FloatTensor, PIL.Image.Image] , snake_case : str , snake_case : int = 512 , snake_case : int = 512 , snake_case : int = 50 , snake_case : float = 7.5 , snake_case : Optional[Union[str, List[str]]] = None , snake_case : Optional[int] = 1 , snake_case : float = 0.0 , snake_case : Optional[torch.Generator] = None , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[str] = "pil" , snake_case : bool = True , snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , snake_case : int = 1 , **snake_case : Optional[Any] , ): '''simple docstring''' A__ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) A__ : List[str] = self.segmentation_model(**snake_case ) A__ : Union[str, Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() A__ : Tuple = self.numpy_to_pil(snake_case )[0].resize(image.size ) # Run inpainting pipeline with the generated mask A__ : Dict = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=snake_case , image=snake_case , mask_image=snake_case , height=snake_case , width=snake_case , num_inference_steps=snake_case , guidance_scale=snake_case , negative_prompt=snake_case , num_images_per_prompt=snake_case , eta=snake_case , generator=snake_case , latents=snake_case , output_type=snake_case , return_dict=snake_case , callback=snake_case , callback_steps=snake_case , )
296
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] A__ : Optional[int] = (low + high) // 2 A__ , A__ , A__ : List[Any] = max_subarray(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_subarray(UpperCAmelCase__, mid + 1, UpperCAmelCase__ ) A__ , A__ , A__ : Union[str, Any] = max_cross_sum(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( UpperCAmelCase__ : Sequence[float], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ) ->tuple[int, int, float]: A__ , A__ : Dict = float("""-inf""" ), -1 A__ , A__ : Optional[Any] = float("""-inf""" ), -1 A__ : int | float = 0 for i in range(UpperCAmelCase__, low - 1, -1 ): summ += arr[i] if summ > left_sum: A__ : Optional[int] = summ A__ : Union[str, Any] = i A__ : Optional[Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: A__ : int = summ A__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->float: A__ : Union[str, Any] = [randint(1, UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] A__ : Any = time.time() max_subarray(UpperCAmelCase__, 0, input_size - 1 ) A__ : List[Any] = time.time() return end - start def _lowerCAmelCase ( ) ->None: A__ : List[Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] A__ : Any = [time_max_subarray(UpperCAmelCase__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(UpperCAmelCase__, UpperCAmelCase__ ): print(UpperCAmelCase__, """\t\t""", UpperCAmelCase__ ) plt.plot(UpperCAmelCase__, UpperCAmelCase__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
296
1
"""simple docstring""" from collections import defaultdict from math import gcd def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int: A__ : defaultdict = defaultdict(UpperCAmelCase__ ) A__ : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ): if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1: continue A__ : str = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
296
"""simple docstring""" from __future__ import annotations class __SCREAMING_SNAKE_CASE : def __init__( self : Dict , snake_case : int ): '''simple docstring''' A__ : List[Any] = order # a_{0} ... a_{k} A__ : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} A__ : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] A__ : Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] A__ : List[str] = [0.0] * self.order def _UpperCamelCase ( self : Optional[int] , snake_case : list[float] , snake_case : list[float] ): '''simple docstring''' if len(snake_case ) < self.order: A__ : Any = [1.0, *a_coeffs] if len(snake_case ) != self.order + 1: A__ : str = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) if len(snake_case ) != self.order + 1: A__ : Union[str, Any] = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case )}' ) raise ValueError(snake_case ) A__ : Dict = a_coeffs A__ : Any = b_coeffs def _UpperCamelCase ( self : List[str] , snake_case : float ): '''simple docstring''' A__ : str = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) A__ : Dict = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] A__ : Tuple = self.input_history[:-1] A__ : int = self.output_history[:-1] A__ : Dict = sample A__ : Tuple = result return result
296
1
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : List[str] , snake_case : Optional[int]=14 , snake_case : List[str]=7 , snake_case : Any=True , snake_case : Dict=True , snake_case : Optional[int]=False , snake_case : Optional[Any]=True , snake_case : Optional[int]=99 , snake_case : Tuple=32 , snake_case : int=4 , snake_case : int=4 , snake_case : Union[str, Any]=4 , snake_case : int=37 , snake_case : str="gelu" , snake_case : Union[str, Any]=0.1 , snake_case : int=0.1 , snake_case : Dict=512 , snake_case : Optional[Any]=0.02 , ): '''simple docstring''' A__ : str = parent A__ : Dict = batch_size A__ : Tuple = seq_length A__ : List[Any] = is_training A__ : int = use_input_mask A__ : Optional[Any] = use_token_type_ids A__ : Optional[Any] = use_labels A__ : Dict = vocab_size A__ : Tuple = hidden_size A__ : int = rotary_dim A__ : Dict = num_hidden_layers A__ : List[str] = num_attention_heads A__ : Tuple = intermediate_size A__ : Union[str, Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : int = attention_probs_dropout_prob A__ : Tuple = max_position_embeddings A__ : List[Any] = initializer_range A__ : Optional[int] = None A__ : List[str] = vocab_size - 1 A__ : Tuple = vocab_size - 1 A__ : List[str] = vocab_size - 1 def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Optional[int] = None if self.use_input_mask: A__ : str = random_attention_mask([self.batch_size, self.seq_length] ) A__ : List[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : List[str] = self.prepare_config_and_inputs() A__ , A__ , A__ : Any = config_and_inputs A__ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _UpperCamelCase ( self : List[Any] , snake_case : int , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Tuple ): '''simple docstring''' A__ : List[str] = 20 A__ : str = model_class_name(snake_case ) A__ : List[str] = model.init_cache(input_ids.shape[0] , snake_case ) A__ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) A__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A__ : Any = model( input_ids[:, :-1] , attention_mask=snake_case , past_key_values=snake_case , position_ids=snake_case , ) A__ : Dict = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : int = model( input_ids[:, -1:] , attention_mask=snake_case , past_key_values=outputs_cache.past_key_values , position_ids=snake_case , ) A__ : Optional[int] = model(snake_case ) A__ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Any , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = 20 A__ : Dict = model_class_name(snake_case ) A__ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) A__ : List[str] = model.init_cache(input_ids.shape[0] , snake_case ) A__ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) A__ : Tuple = model( input_ids[:, :-1] , attention_mask=snake_case , past_key_values=snake_case , position_ids=snake_case , ) A__ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) A__ : Any = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case , position_ids=snake_case , ) A__ : Dict = model(snake_case , attention_mask=snake_case ) A__ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case_ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Optional[int] = FlaxGPTJModelTester(self ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case , snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' for model_class_name in self.all_model_classes: A__ , A__ , A__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case , snake_case , snake_case , snake_case ) @tooslow def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) A__ : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=snake_case , truncation=snake_case ) A__ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) A__ : List[Any] = False A__ : Optional[int] = model.config.eos_token_id A__ : str = jax.jit(model.generate ) A__ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences A__ : str = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) A__ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(snake_case , snake_case ) @is_pt_flax_cross_test def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A__ : str = self._prepare_for_class(snake_case , snake_case ) A__ : Any = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ : str = getattr(snake_case , snake_case ) A__ , A__ : Union[str, Any] = pt_inputs["""input_ids"""].shape A__ : Dict = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case ): A__ : List[Any] = 0 A__ : List[Any] = 1 A__ : Union[str, Any] = 0 A__ : Dict = 1 A__ : str = pt_model_class(snake_case ).eval() A__ : int = model_class(snake_case , dtype=jnp.floataa ) A__ : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case ) A__ : int = fx_state with torch.no_grad(): A__ : Optional[Any] = pt_model(**snake_case ).to_tuple() A__ : Optional[int] = fx_model(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(snake_case , snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case ) A__ : Any = model_class.from_pretrained(snake_case , from_pt=snake_case ) A__ : List[str] = fx_model_loaded(**snake_case ).to_tuple() self.assertEqual( len(snake_case ) , len(snake_case ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(snake_case , snake_case ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs A__ : List[str] = self._prepare_for_class(snake_case , snake_case ) A__ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class A__ : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning A__ : Union[str, Any] = getattr(snake_case , snake_case ) A__ : Optional[Any] = pt_model_class(snake_case ).eval() A__ : Optional[int] = model_class(snake_case , dtype=jnp.floataa ) A__ : Any = load_flax_weights_in_pytorch_model(snake_case , fx_model.params ) A__ , A__ : int = pt_inputs["""input_ids"""].shape A__ : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case ): A__ : Optional[Any] = 0 A__ : Tuple = 1 A__ : Any = 0 A__ : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): A__ : str = pt_model(**snake_case ).to_tuple() A__ : Union[str, Any] = fx_model(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(snake_case , snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case ) A__ : str = pt_model_class.from_pretrained(snake_case , from_flax=snake_case ) with torch.no_grad(): A__ : Optional[Any] = pt_model_loaded(**snake_case ).to_tuple() self.assertEqual( len(snake_case ) , len(snake_case ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(snake_case , snake_case ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: A__ : str = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) A__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
296
"""simple docstring""" import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple=13 , snake_case : Dict=7 , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Dict=True , snake_case : Any=True , snake_case : List[str]=99 , snake_case : str=64 , snake_case : Optional[int]=5 , snake_case : str=4 , snake_case : List[Any]=37 , snake_case : Optional[Any]="gelu" , snake_case : List[str]=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=512 , snake_case : Dict=16 , snake_case : List[Any]=2 , snake_case : Optional[int]=0.02 , snake_case : Any=3 , snake_case : Union[str, Any]=4 , snake_case : Dict=None , ): '''simple docstring''' A__ : Tuple = parent A__ : Union[str, Any] = batch_size A__ : List[str] = seq_length A__ : Optional[int] = is_training A__ : Dict = use_input_mask A__ : Any = use_token_type_ids A__ : Optional[Any] = use_labels A__ : List[str] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Optional[int] = hidden_dropout_prob A__ : Tuple = attention_probs_dropout_prob A__ : str = max_position_embeddings A__ : List[str] = type_vocab_size A__ : Union[str, Any] = type_sequence_label_size A__ : List[Any] = initializer_range A__ : Optional[int] = num_labels A__ : Dict = num_choices A__ : Dict = scope A__ : List[Any] = vocab_size - 1 def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : List[Any] = None if self.use_input_mask: A__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A__ : Union[str, Any] = None if self.use_labels: A__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : Tuple = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ , A__ , A__ , A__ : str = self.prepare_config_and_inputs() A__ : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : List[str] , snake_case : int ): '''simple docstring''' A__ : Any = GPTNeoXModel(config=snake_case ) model.to(snake_case ) model.eval() A__ : int = model(snake_case , attention_mask=snake_case ) A__ : Optional[int] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : int = True A__ : str = GPTNeoXModel(snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Dict , snake_case : List[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : Any ): '''simple docstring''' A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() A__ : Tuple = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : Tuple ): '''simple docstring''' A__ : int = self.num_labels A__ : int = GPTNeoXForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() A__ : Optional[Any] = model(snake_case , attention_mask=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : str , snake_case : Tuple , snake_case : int , snake_case : int , snake_case : Dict ): '''simple docstring''' A__ : List[Any] = self.num_labels A__ : Tuple = GPTNeoXForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Any , snake_case : Union[str, Any] , snake_case : int , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Tuple = self.num_labels A__ : Any = GPTNeoXForTokenClassification(snake_case ) model.to(snake_case ) model.eval() A__ : Dict = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] , snake_case : List[str] , snake_case : Tuple , snake_case : Any ): '''simple docstring''' A__ : Optional[int] = True A__ : Any = GPTNeoXForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() # first forward pass A__ : Tuple = model(snake_case , attention_mask=snake_case , use_cache=snake_case ) A__ : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Tuple = model(snake_case , attention_mask=snake_case , output_hidden_states=snake_case ) A__ : List[Any] = output_from_no_past["""hidden_states"""][0] A__ : List[str] = model( snake_case , attention_mask=snake_case , past_key_values=snake_case , output_hidden_states=snake_case , )["""hidden_states"""][0] # select random slice A__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ : Dict = config_and_inputs A__ : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase ): snake_case_ = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) snake_case_ = (GPTNeoXForCausalLM,) if is_torch_available() else () snake_case_ = ( { 'feature-extraction': GPTNeoXModel, 'question-answering': GPTNeoXForQuestionAnswering, 'text-classification': GPTNeoXForSequenceClassification, 'text-generation': GPTNeoXForCausalLM, 'token-classification': GPTNeoXForTokenClassification, 'zero-shot': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : Any = GPTNeoXModelTester(self ) A__ : Any = ConfigTester(self , config_class=snake_case , hidden_size=64 , num_attention_heads=8 ) def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ , A__ , A__ , A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ , A__ , A__ , A__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A__ : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ , A__ , A__ , A__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case ) def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def _UpperCamelCase ( self : str ): '''simple docstring''' A__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @unittest.skip(reason="""Feed forward chunking is not implemented""" ) def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] ): '''simple docstring''' A__ , A__ : int = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) A__ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Union[str, Any] = GPTNeoXModel(snake_case ) original_model.to(snake_case ) original_model.eval() A__ : Optional[int] = original_model(snake_case ).last_hidden_state A__ : List[str] = original_model(snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights A__ : Optional[int] = {"""type""": scaling_type, """factor""": 10.0} A__ : Optional[int] = GPTNeoXModel(snake_case ) scaled_model.to(snake_case ) scaled_model.eval() A__ : List[str] = scaled_model(snake_case ).last_hidden_state A__ : Tuple = scaled_model(snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case , snake_case , atol=1e-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) for checkpointing in [True, False]: A__ : Optional[Any] = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case ) A__ : Optional[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(snake_case ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 A__ : Union[str, Any] = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure""" A__ : Tuple = model.generate(**snake_case , do_sample=snake_case , max_new_tokens=20 ) A__ : Tuple = tokenizer.batch_decode(snake_case )[0] self.assertEqual(snake_case , snake_case )
296
1