code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCAmelCase_ = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowerCamelCase__ ( UpperCamelCase__ : str ) -> Optional[Any]: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") UpperCAmelCase_ = parser.parse_args() if args.check_lib: UpperCAmelCase_ = importlib.import_module("""transformers""") UpperCAmelCase_ = Path(transformers_module.__file__).parent else: UpperCAmelCase_ = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
from collections.abc import Callable import numpy as np def lowerCamelCase__ ( UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> np.array: '''simple docstring''' _snake_case = int(np.ceil((x_end - xa) / step_size ) ) _snake_case = np.zeros((n + 1,) ) _snake_case = ya _snake_case = xa for k in range(UpperCamelCase__ ): _snake_case = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) _snake_case = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase__ , y[k] ) + ode_func(x + step_size , UpperCamelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''deit''' def __init__( self , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=224 , lowerCAmelCase_=16 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=16 , **lowerCAmelCase_ , ) -> List[Any]: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = qkv_bias _snake_case = encoder_stride class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = version.parse('''1.11''' ) @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase ( self ) -> float: return 1E-4
295
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] ) -> int: '''simple docstring''' _snake_case = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): _snake_case = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): _snake_case = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _snake_case = key[key.find('patch_embed' ) + len('patch_embed' )] _snake_case = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: _snake_case = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _snake_case = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] _snake_case = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: _snake_case = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: _snake_case = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 _snake_case = key[key.find('block' ) + len('block' )] _snake_case = key.replace(F'''block{idx}''' , F'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: _snake_case = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: _snake_case = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: _snake_case = key.replace('attn' , 'attention.self' ) if "fc1" in key: _snake_case = key.replace('fc1' , 'dense1' ) if "fc2" in key: _snake_case = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: _snake_case = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: _snake_case = key.replace('linear_fuse.conv' , 'linear_fuse' ) _snake_case = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _snake_case = key[key.find('linear_c' ) + len('linear_c' )] _snake_case = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: _snake_case = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: _snake_case = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: _snake_case = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: _snake_case = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: _snake_case = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: _snake_case = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: _snake_case = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): _snake_case = key.replace('module.last_layer_depth' , 'head.head' ) _snake_case = value return new_state_dict def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) _snake_case = state_dict.pop(F'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict _snake_case = kv_weight[ : config.hidden_sizes[i], : ] _snake_case = kv_bias[: config.hidden_sizes[i]] _snake_case = kv_weight[ config.hidden_sizes[i] :, : ] _snake_case = kv_bias[config.hidden_sizes[i] :] def lowerCamelCase__ ( ) -> int: '''simple docstring''' _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=False , UpperCamelCase__ : int=None ) -> Optional[int]: '''simple docstring''' _snake_case = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _snake_case = GLPNImageProcessor() # prepare image _snake_case = prepare_img() _snake_case = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict _snake_case = torch.load(UpperCamelCase__ , map_location=torch.device('cpu' ) ) # rename keys _snake_case = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict _snake_case = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass _snake_case = model(UpperCamelCase__ ) _snake_case = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _snake_case = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: _snake_case = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'''Unknown model name: {model_name}''' ) _snake_case = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) parser.add_argument( """--model_name""", default="""glpn-kitti""", type=str, help="""Name of the model in case you're pushing to the hub.""", ) UpperCAmelCase_ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
def lowerCamelCase__ ( UpperCamelCase__ : list[int] ) -> list[list[int]]: '''simple docstring''' _snake_case = [] if len(UpperCamelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase__ ) ): _snake_case = nums.pop(0 ) _snake_case = permute(UpperCamelCase__ ) for perm in permutations: perm.append(UpperCamelCase__ ) result.extend(UpperCamelCase__ ) nums.append(UpperCamelCase__ ) return result def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' def backtrack(UpperCamelCase__ : Tuple ): if start == len(UpperCamelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): _snake_case , _snake_case = nums[i], nums[start] backtrack(start + 1 ) _snake_case , _snake_case = nums[i], nums[start] # backtrack _snake_case = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCamelCase_ : lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ ) -> None: _snake_case = None for i in sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ): _snake_case = Node(lowerCAmelCase_ , self.head ) def __iter__( self ) -> Iterator[int]: _snake_case = self.head while node: yield node.data _snake_case = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(lowerCAmelCase_ ) for node in self] ) def lowerCamelCase__ ( UpperCamelCase__ : SortedLinkedList , UpperCamelCase__ : SortedLinkedList ) -> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(UpperCamelCase__ ) + list(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
def lowerCamelCase__ ( UpperCamelCase__ : int = 4_000_000 ) -> int: '''simple docstring''' _snake_case = [] _snake_case , _snake_case = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCamelCase__ ) _snake_case , _snake_case = b, a + b return sum(UpperCamelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
295
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''char''' lowerCAmelCase_ = '''bpe''' lowerCAmelCase_ = '''wp''' UpperCAmelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''image_processor''', '''char_tokenizer'''] lowerCAmelCase_ = '''ViTImageProcessor''' lowerCAmelCase_ = '''MgpstrTokenizer''' def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> str: _snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase_ , ) _snake_case = kwargs.pop('feature_extractor' ) _snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) _snake_case = tokenizer _snake_case = AutoTokenizer.from_pretrained('gpt2' ) _snake_case = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> str: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: _snake_case = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: _snake_case = self.char_tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif images is None: return encodings else: _snake_case = encodings['input_ids'] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: _snake_case , _snake_case , _snake_case = sequences _snake_case = char_preds.size(0 ) _snake_case , _snake_case = self._decode_helper(lowerCAmelCase_ , 'char' ) _snake_case , _snake_case = self._decode_helper(lowerCAmelCase_ , 'bpe' ) _snake_case , _snake_case = self._decode_helper(lowerCAmelCase_ , 'wp' ) _snake_case = [] _snake_case = [] for i in range(lowerCAmelCase_ ): _snake_case = [char_scores[i], bpe_scores[i], wp_scores[i]] _snake_case = [char_strs[i], bpe_strs[i], wp_strs[i]] _snake_case = scores.index(max(lowerCAmelCase_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _snake_case = {} _snake_case = final_strs _snake_case = final_scores _snake_case = char_strs _snake_case = bpe_strs _snake_case = wp_strs return out def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if format == DecodeType.CHARACTER: _snake_case = self.char_decode _snake_case = 1 _snake_case = '[s]' elif format == DecodeType.BPE: _snake_case = self.bpe_decode _snake_case = 2 _snake_case = '#' elif format == DecodeType.WORDPIECE: _snake_case = self.wp_decode _snake_case = 102 _snake_case = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) _snake_case , _snake_case = [], [] _snake_case = pred_logits.size(0 ) _snake_case = pred_logits.size(1 ) _snake_case , _snake_case = pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase_ , sorted=lowerCAmelCase_ ) _snake_case = preds_index.view(-1 , lowerCAmelCase_ )[:, 1:] _snake_case = decoder(lowerCAmelCase_ ) _snake_case , _snake_case = torch.nn.functional.softmax(lowerCAmelCase_ , dim=2 ).max(dim=2 ) _snake_case = preds_max_prob[:, 1:] for index in range(lowerCAmelCase_ ): _snake_case = preds_str[index].find(lowerCAmelCase_ ) _snake_case = preds_str[index][:pred_eos] _snake_case = preds_index[index].cpu().tolist() _snake_case = pred_index.index(lowerCAmelCase_ ) if eos_token in pred_index else -1 _snake_case = preds_max_prob[index][: pred_eos_index + 1] _snake_case = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase_ ) conf_scores.append(lowerCAmelCase_ ) return dec_strs, conf_scores def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: _snake_case = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.bpe_tokenizer.batch_decode(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: _snake_case = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase_ )] return decode_strs
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
import os import jsonlines import numpy as np from tqdm import tqdm UpperCAmelCase_ = 2048 UpperCAmelCase_ = 4096 UpperCAmelCase_ = 42 UpperCAmelCase_ = os.environ.pop("""PROCESS_TRAIN""", """false""") UpperCAmelCase_ = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> Dict: '''simple docstring''' def choose_first(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=False ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: _snake_case = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: _snake_case = {k: [a[k]] for k in a} if len(a['start_token'] ) > 0: break return a _snake_case = {'id': example['id']} _snake_case = example['annotations'] _snake_case = annotation['yes_no_answer'] if 0 in yes_no_answer or 1 in yes_no_answer: _snake_case = ['yes'] if 1 in yes_no_answer else ['no'] _snake_case = _snake_case = [] _snake_case = _snake_case = [] _snake_case = ['<cls>'] else: _snake_case = ['short'] _snake_case = choose_first(annotation['short_answers'] ) if len(out['start_token'] ) == 0: # answer will be long if short is not available _snake_case = ['long'] _snake_case = choose_first(annotation['long_answer'] , is_long_answer=UpperCamelCase__ ) _snake_case = [] answer.update(UpperCamelCase__ ) # disregard some samples if len(answer['start_token'] ) > 1 or answer["start_token"] == answer["end_token"]: _snake_case = True else: _snake_case = False _snake_case = ['start_token', 'end_token', 'start_byte', 'end_byte', 'text'] if not all(isinstance(answer[k] , UpperCamelCase__ ) for k in cols ): raise ValueError('Issue in ID' , example['id'] ) return answer def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=False ) -> Any: '''simple docstring''' _snake_case = _get_single_answer(UpperCamelCase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = example['document']['tokens'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples _snake_case = ['start_token', 'end_token'] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 _snake_case = example['document']['tokens'] _snake_case = answer['start_token'] _snake_case = answer['end_token'] _snake_case = [] for i in range(len(doc['token'] ) ): if not doc["is_html"][i]: context.append(doc['token'][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 _snake_case = ' '.join(context[start_token:end_token] ) # checking above code if assertion: _snake_case = doc['is_html'][answer['start_token'] : answer['end_token']] _snake_case = doc['token'][answer['start_token'] : answer['end_token']] _snake_case = ' '.join([old[i] for i in range(len(UpperCamelCase__ ) ) if not is_html[i]] ) if new != old: print('ID:' , example['id'] ) print('New:' , UpperCamelCase__ , end='\n' ) print('Old:' , UpperCamelCase__ , end='\n\n' ) return { "context": " ".join(UpperCamelCase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=2_048 , UpperCamelCase__ : Dict=4_096 , UpperCamelCase__ : Dict=True ) -> Tuple: '''simple docstring''' _snake_case = get_context_and_ans(UpperCamelCase__ , assertion=UpperCamelCase__ ) _snake_case = out['answer'] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } _snake_case = tokenizer(example['question']['text'] , out['context'] ).input_ids _snake_case = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element _snake_case = [] _snake_case = [] _snake_case = input_ids[:q_len] _snake_case = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['category'][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCamelCase__ ), "end_token": [-100] * len(UpperCamelCase__ ), "category": category, }, } _snake_case = out['context'].split() _snake_case = splitted_context[answer['end_token']] _snake_case = len( tokenizer( ' '.join(splitted_context[: answer['start_token']] ) , add_special_tokens=UpperCamelCase__ , ).input_ids ) _snake_case = len( tokenizer(' '.join(splitted_context[: answer['end_token']] ) , add_special_tokens=UpperCamelCase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token _snake_case = len(tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 _snake_case = input_ids[answer['start_token'] : answer['end_token'] + 1] # right & left are inclusive _snake_case = answer['start_token'] _snake_case = answer['end_token'] if assertion: _snake_case = tokenizer.decode(UpperCamelCase__ ) if answer["span"] != new: print('ISSUE IN TOKENIZATION' ) print('OLD:' , answer['span'] ) print('NEW:' , UpperCamelCase__ , end='\n\n' ) if len(UpperCamelCase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } _snake_case = input_ids[:q_len] _snake_case = range(UpperCamelCase__ , len(UpperCamelCase__ ) , max_length - doc_stride ) _snake_case = [] _snake_case = [] _snake_case = [] _snake_case = [] # null, yes, no, long, short for i in doc_start_indices: _snake_case = i + max_length - q_len _snake_case = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: _snake_case = start_token - i + q_len _snake_case = end_token - i + q_len answers_category.append(answer['category'][0] ) # ["short"] -> "short" else: _snake_case = -100 _snake_case = -100 answers_category.append('null' ) _snake_case = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCamelCase__ ) answers_end_token.append(UpperCamelCase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('ISSUE in strided for ID:' , example['id'] ) print('New:' , tokenizer.decode(UpperCamelCase__ ) ) print('Old:' , tokenizer.decode(UpperCamelCase__ ) , end='\n\n' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=2_048 , UpperCamelCase__ : int=4_096 , UpperCamelCase__ : List[str]=False ) -> List[str]: '''simple docstring''' _snake_case = get_strided_contexts_and_ans( UpperCamelCase__ , UpperCamelCase__ , doc_stride=UpperCamelCase__ , max_length=UpperCamelCase__ , assertion=UpperCamelCase__ , ) return example def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ) -> Tuple: '''simple docstring''' with jsonlines.open(UpperCamelCase__ , 'a' ) as writer: for example in tqdm(UpperCamelCase__ , total=len(UpperCamelCase__ ) , desc='Saving samples ... ' ): _snake_case = example['labels'] for ids, start, end, cat in zip( example['input_ids'] , labels['start_token'] , labels['end_token'] , labels['category'] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { 'input_ids': ids, 'start_token': start, 'end_token': end, 'category': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCAmelCase_ = load_dataset("""natural_questions""") UpperCAmelCase_ = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") UpperCAmelCase_ = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] UpperCAmelCase_ = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } UpperCAmelCase_ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCAmelCase_ = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) UpperCAmelCase_ = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1
import os from datetime import datetime as dt from github import Github UpperCAmelCase_ = [ """good first issue""", """feature request""", """wip""", ] def lowerCamelCase__ ( ) -> List[Any]: '''simple docstring''' _snake_case = Github(os.environ['GITHUB_TOKEN'] ) _snake_case = g.get_repo('huggingface/accelerate' ) _snake_case = repo.get_issues(state='open' ) for issue in open_issues: _snake_case = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase__ : i.created_at , reverse=UpperCamelCase__ ) _snake_case = comments[0] if len(UpperCamelCase__ ) > 0 else None _snake_case = dt.utcnow() _snake_case = (current_time - issue.updated_at).days _snake_case = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
295
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
1
import unittest import numpy as np def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray | None = None , ) -> np.ndarray: '''simple docstring''' _snake_case = np.shape(UpperCamelCase__ ) _snake_case = np.shape(UpperCamelCase__ ) _snake_case = np.shape(UpperCamelCase__ ) if shape_a[0] != shape_b[0]: _snake_case = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCamelCase__ ) if shape_b[1] != shape_c[1]: _snake_case = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCamelCase__ ) _snake_case = pseudo_inv if a_inv is None: try: _snake_case = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> None: _snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) _snake_case = np.array([[2, 1], [6, 3]] ) _snake_case = schur_complement(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = np.block([[a, b], [b.T, c]] ) _snake_case = np.linalg.det(lowerCAmelCase_ ) _snake_case = np.linalg.det(lowerCAmelCase_ ) _snake_case = np.linalg.det(lowerCAmelCase_ ) self.assertAlmostEqual(lowerCAmelCase_ , det_a * det_s ) def lowerCAmelCase ( self ) -> None: _snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) _snake_case = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCAmelCase_ ): schur_complement(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> None: _snake_case = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) _snake_case = np.array([[0, 3], [3, 0], [2, 3]] ) _snake_case = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCAmelCase_ ): schur_complement(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
295
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''ibert''' def __init__( self , lowerCAmelCase_=3_0522 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_="absolute" , lowerCAmelCase_=False , lowerCAmelCase_="none" , **lowerCAmelCase_ , ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = quant_mode _snake_case = force_dequant class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = None , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> Union[Tuple, ImagePipelineOutput]: _snake_case = self.unet.config.sample_size _snake_case = (batch_size, 3, img_size, img_size) _snake_case = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _snake_case = self.scheduler.schedule[t] _snake_case = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _snake_case , _snake_case = self.scheduler.add_noise_to_input(lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _snake_case = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _snake_case = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _snake_case = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _snake_case = self.scheduler.step_correct( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , step_output.prev_sample , step_output['derivative'] , ) _snake_case = step_output.prev_sample _snake_case = (sample / 2 + 0.5).clamp(0 , 1 ) _snake_case = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
295
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
1
def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> Dict: '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=0 ) -> Any: '''simple docstring''' return sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x[column] ) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : int=float('inf' ) ) -> Dict: '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase__ ): _snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _snake_case = current_dis return min_dis def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict=float('inf' ) ) -> List[str]: '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , UpperCamelCase__ ): for j in range(max(0 , i - 6 ) , UpperCamelCase__ ): _snake_case = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _snake_case = current_dis return min_dis def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase__ , UpperCamelCase__ ) # recursion _snake_case = points_counts // 2 _snake_case = closest_pair_of_points_sqr( UpperCamelCase__ , points_sorted_on_y[:mid] , UpperCamelCase__ ) _snake_case = closest_pair_of_points_sqr( UpperCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase__ ) _snake_case = dis_between_closest_in_strip( UpperCamelCase__ , len(UpperCamelCase__ ) , UpperCamelCase__ ) return min(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' _snake_case = column_based_sort(UpperCamelCase__ , column=0 ) _snake_case = column_based_sort(UpperCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase_ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
from collections import namedtuple import requests from lxml import html # type: ignore UpperCAmelCase_ = namedtuple("""covid_data""", """cases deaths recovered""") def lowerCamelCase__ ( UpperCamelCase__ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' _snake_case = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) UpperCAmelCase_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
295
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") UpperCAmelCase_ = {"""target_lang""": """fi""", """source_lang""": """en"""} UpperCAmelCase_ = """>>zh<<""" UpperCAmelCase_ = """Helsinki-NLP/""" if is_torch_available(): UpperCAmelCase_ = """pt""" elif is_tf_available(): UpperCAmelCase_ = """tf""" else: UpperCAmelCase_ = """jax""" @require_sentencepiece class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = MarianTokenizer lowerCAmelCase_ = False lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> Tuple: super().setUp() _snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = Path(self.tmpdirname ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) _snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return ( "This is a test", "This is a test", ) def lowerCAmelCase ( self ) -> Dict: _snake_case = '</s>' _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowerCAmelCase_ ) , 9 ) def lowerCAmelCase ( self ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = MarianTokenizer.from_pretrained(F'''{ORG_NAME}opus-mt-en-de''' ) _snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(lowerCAmelCase_ , batch.input_ids[0] ) _snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = [x.name for x in Path(lowerCAmelCase_ ).glob('*' )] self.assertIn('source.spm' , lowerCAmelCase_ ) MarianTokenizer.from_pretrained(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.get_tokenizer() _snake_case = tok( ['I am a small frog' * 1000, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.get_tokenizer() _snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCAmelCase ( self ) -> List[str]: # fmt: off _snake_case = {'input_ids': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) _snake_case = 'Tämä on testi' _snake_case = 'This is a test' _snake_case = [76, 7, 2047, 2] _snake_case = [69, 12, 11, 940, 2] _snake_case = tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer(text_target=lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ = 500000 UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(__file__) UpperCAmelCase_ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def lowerCamelCase__ ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : str ) -> Any: '''simple docstring''' _snake_case = dataset.map(**UpperCamelCase__ ) @get_duration def lowerCamelCase__ ( UpperCamelCase__ : datasets.Dataset , **UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' _snake_case = dataset.filter(**UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _snake_case = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _snake_case = generate_example_dataset( os.path.join(UpperCamelCase__ , 'dataset.arrow' ) , UpperCamelCase__ , num_examples=UpperCamelCase__ ) _snake_case = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase__ ) def tokenize(UpperCamelCase__ : Any ): return tokenizer(examples['text'] ) _snake_case = map(UpperCamelCase__ ) _snake_case = map(UpperCamelCase__ , batched=UpperCamelCase__ ) _snake_case = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='numpy' ): _snake_case = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='pandas' ): _snake_case = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): _snake_case = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _snake_case = map(UpperCamelCase__ , function=lambda UpperCamelCase__ : None , batched=UpperCamelCase__ ) _snake_case = map(UpperCamelCase__ , function=UpperCamelCase__ , batched=UpperCamelCase__ ) _snake_case = filter(UpperCamelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase__ , 'wb' ) as f: f.write(json.dumps(UpperCamelCase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
295
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
1
def lowerCamelCase__ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : int ) -> float: '''simple docstring''' if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate _snake_case = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _snake_case = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
295
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
1
def lowerCamelCase__ ( UpperCamelCase__ : list ) -> list: '''simple docstring''' def merge(UpperCamelCase__ : list , UpperCamelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCamelCase__ ) <= 1: return collection _snake_case = len(UpperCamelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gptj''' lowerCAmelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCAmelCase_=5_0400 , lowerCAmelCase_=2048 , lowerCAmelCase_=4096 , lowerCAmelCase_=28 , lowerCAmelCase_=16 , lowerCAmelCase_=64 , lowerCAmelCase_=None , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> int: _snake_case = vocab_size _snake_case = n_positions _snake_case = n_embd _snake_case = n_layer _snake_case = n_head _snake_case = n_inner _snake_case = rotary_dim _snake_case = activation_function _snake_case = resid_pdrop _snake_case = embd_pdrop _snake_case = attn_pdrop _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id super().__init__( bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = "default" , lowerCAmelCase_ = None , lowerCAmelCase_ = False , ) -> Tuple: super().__init__(lowerCAmelCase_ , task=lowerCAmelCase_ , patching_specs=lowerCAmelCase_ , use_past=lowerCAmelCase_ ) if not getattr(self._config , 'pad_token_id' , lowerCAmelCase_ ): # TODO: how to do that better? _snake_case = 0 @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.n_layer @property def lowerCAmelCase ( self ) -> int: return self._config.n_head def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { """configuration_vision_text_dual_encoder""": ["""VisionTextDualEncoderConfig"""], """processing_vision_text_dual_encoder""": ["""VisionTextDualEncoderProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VisionTextDualEncoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""FlaxVisionTextDualEncoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""TFVisionTextDualEncoderModel"""] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> bool: '''simple docstring''' _snake_case = get_failure_array(UpperCamelCase__ ) # 2) Step through text searching for pattern _snake_case , _snake_case = 0, 0 # index into text, pattern while i < len(UpperCamelCase__ ): if pattern[j] == text[i]: if j == (len(UpperCamelCase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _snake_case = failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( UpperCamelCase__ : str ) -> list[int]: '''simple docstring''' _snake_case = [0] _snake_case = 0 _snake_case = 1 while j < len(UpperCamelCase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _snake_case = failure[i - 1] continue j += 1 failure.append(UpperCamelCase__ ) return failure if __name__ == "__main__": # Test 1) UpperCAmelCase_ = """abc1abc12""" UpperCAmelCase_ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase_ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCAmelCase_ = """ABABX""" UpperCAmelCase_ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) UpperCAmelCase_ = """AAAB""" UpperCAmelCase_ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) UpperCAmelCase_ = """abcdabcy""" UpperCAmelCase_ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) UpperCAmelCase_ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : List[str] ) -> Any: '''simple docstring''' _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in sd.keys(): _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] # pop unnecessary weights _snake_case = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) _snake_case = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _snake_case = sd.pop(UpperCamelCase__ ) _snake_case = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _snake_case = sd[key] # We split QKV in separate Q,K,V _snake_case = key.replace('.qkv_proj.' , '.q_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.k_proj.' ) _snake_case = key.replace('.qkv_proj.' , '.v_proj.' ) _snake_case = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _snake_case , _snake_case , _snake_case = torch.split(UpperCamelCase__ , depth // 3 , dim=0 ) _snake_case = q _snake_case = k _snake_case = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None ) -> Optional[int]: '''simple docstring''' _snake_case = load_checkpoint(UpperCamelCase__ ) if config is not None: _snake_case = OPTConfig.from_pretrained(UpperCamelCase__ ) else: _snake_case = OPTConfig() _snake_case = OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") UpperCAmelCase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
295
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { """configuration_tapas""": ["""TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TapasConfig"""], """tokenization_tapas""": ["""TapasTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TapasForMaskedLM""", """TapasForQuestionAnswering""", """TapasForSequenceClassification""", """TapasModel""", """TapasPreTrainedModel""", """load_tf_weights_in_tapas""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFTapasForMaskedLM""", """TFTapasForQuestionAnswering""", """TFTapasForSequenceClassification""", """TFTapasModel""", """TFTapasPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } _snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } _snake_case = tempfile.mkdtemp() _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) # load decoder from hub _snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCAmelCase_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.get_tokenizer() _snake_case = self.get_feature_extractor() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match _snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(lowerCAmelCase_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=lowerCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = floats_list((3, 1000) ) _snake_case = feature_extractor(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor(lowerCAmelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = 'This is a test string' _snake_case = processor(text=lowerCAmelCase_ ) _snake_case = tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self , lowerCAmelCase_=(2, 10, 16) , lowerCAmelCase_=77 ) -> List[Any]: np.random.seed(lowerCAmelCase_ ) return np.random.rand(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) _snake_case = processor.decode(lowerCAmelCase_ ) _snake_case = decoder.decode_beams(lowerCAmelCase_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: _snake_case = processor.batch_decode(lowerCAmelCase_ ) else: with get_context(lowerCAmelCase_ ).Pool() as pool: _snake_case = processor.batch_decode(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as p: _snake_case = decoder.decode_beams_batch(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case , _snake_case , _snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.logit_score ) self.assertListEqual(lowerCAmelCase_ , decoded_processor.lm_score ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 15 _snake_case = -20.0 _snake_case = -4.0 _snake_case = processor.batch_decode( lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , beam_width=lowerCAmelCase_ , beam_prune_logp=lowerCAmelCase_ , token_min_logp=lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] _snake_case = [d[0][2] for d in decoded_decoder_out] _snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , lowerCAmelCase_ ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , lowerCAmelCase_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(lowerCAmelCase_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , lowerCAmelCase_ , atol=1E-3 ) ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) _snake_case = self._get_dummy_logits() _snake_case = 2.0 _snake_case = 5.0 _snake_case = -20.0 _snake_case = True _snake_case = processor.batch_decode( lowerCAmelCase_ , alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) _snake_case = decoded_processor_out.text _snake_case = list(lowerCAmelCase_ ) decoder.reset_params( alpha=lowerCAmelCase_ , beta=lowerCAmelCase_ , unk_score_offset=lowerCAmelCase_ , lm_score_boundary=lowerCAmelCase_ , ) with get_context('fork' ).Pool() as pool: _snake_case = decoder.decode_beams_batch( lowerCAmelCase_ , lowerCAmelCase_ , ) _snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) _snake_case = WavaVecaProcessorWithLM.from_pretrained(lowerCAmelCase_ ) _snake_case = processor.decoder.model_container[processor.decoder._model_key] _snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() _snake_case = os.listdir(lowerCAmelCase_ ) _snake_case = os.listdir(lowerCAmelCase_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = floats_list((3, 1000) ) _snake_case = processor_wavaveca(lowerCAmelCase_ , return_tensors='np' ) _snake_case = processor_auto(lowerCAmelCase_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) _snake_case = self._get_dummy_logits() _snake_case = processor_wavaveca.batch_decode(lowerCAmelCase_ ) _snake_case = processor_auto.batch_decode(lowerCAmelCase_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_feature_extractor() _snake_case = self.get_tokenizer() _snake_case = self.get_decoder() _snake_case = WavaVecaProcessorWithLM(tokenizer=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , decoder=lowerCAmelCase_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self ) -> List[Any]: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits()[0] _snake_case = processor.decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) _snake_case = self._get_dummy_logits() _snake_case = processor.batch_decode(lowerCAmelCase_ , output_word_offsets=lowerCAmelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self ) -> int: import torch _snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=lowerCAmelCase_ ) _snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) _snake_case = iter(lowerCAmelCase_ ) _snake_case = next(lowerCAmelCase_ ) _snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) _snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train _snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): _snake_case = model(lowerCAmelCase_ ).logits.cpu().numpy() _snake_case = processor.decode(logits[0] , output_word_offsets=lowerCAmelCase_ ) _snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate _snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] _snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , lowerCAmelCase_ ) self.assertEqual(' '.join(self.get_from_offsets(lowerCAmelCase_ , 'word' ) ) , output.text ) # output times _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'start_time' ) ) _snake_case = torch.tensor(self.get_from_offsets(lowerCAmelCase_ , 'end_time' ) ) # fmt: off _snake_case = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) _snake_case = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=0.01 ) )
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
from ...processing_utils import ProcessorMixin class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''WhisperFeatureExtractor''' lowerCAmelCase_ = '''WhisperTokenizer''' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.feature_extractor _snake_case = False def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True ) -> Tuple: return self.tokenizer.get_decoder_prompt_ids(task=lowerCAmelCase_ , language=lowerCAmelCase_ , no_timestamps=lowerCAmelCase_ ) def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = kwargs.pop('audio' , lowerCAmelCase_ ) _snake_case = kwargs.pop('sampling_rate' , lowerCAmelCase_ ) _snake_case = kwargs.pop('text' , lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _snake_case = args[0] _snake_case = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case = self.feature_extractor(lowerCAmelCase_ , *lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None: _snake_case = self.tokenizer(lowerCAmelCase_ , **lowerCAmelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _snake_case = encodings['input_ids'] return inputs def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Union[str, Any]: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="np" ) -> List[str]: return self.tokenizer.get_prompt_ids(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ )
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=99 , lowerCAmelCase_=13 , lowerCAmelCase_=16 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=2 , lowerCAmelCase_=32 , lowerCAmelCase_=4 , lowerCAmelCase_=4 , lowerCAmelCase_=30 , lowerCAmelCase_=0 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , lowerCAmelCase_=None , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = decoder_seq_length # For common tests _snake_case = self.decoder_seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_labels _snake_case = vocab_size _snake_case = d_model _snake_case = d_model _snake_case = decoder_layers _snake_case = decoder_layers _snake_case = decoder_ffn_dim _snake_case = decoder_attention_heads _snake_case = decoder_attention_heads _snake_case = eos_token_id _snake_case = bos_token_id _snake_case = pad_token_id _snake_case = decoder_start_token_id _snake_case = use_cache _snake_case = max_position_embeddings _snake_case = None _snake_case = decoder_seq_length _snake_case = 2 _snake_case = 1 def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _snake_case = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> List[str]: _snake_case = True _snake_case = TrOCRDecoder(config=lowerCAmelCase_ ).to(lowerCAmelCase_ ).eval() _snake_case = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _snake_case = model(lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) self.parent.assertTrue(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) ) self.parent.assertTrue(len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) + 1 ) _snake_case = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _snake_case = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = model(lowerCAmelCase_ )['last_hidden_state'] _snake_case = model(lowerCAmelCase_ , past_key_values=lowerCAmelCase_ )['last_hidden_state'] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _snake_case = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-3 ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase_ = True lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Tuple: _snake_case = TrOCRStandaloneDecoderModelTester(self , is_training=lowerCAmelCase_ ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: pass def lowerCAmelCase ( self ) -> str: pass def lowerCAmelCase ( self ) -> int: pass def lowerCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self ) -> Optional[int]: pass
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCamelCase_ ( _lowerCamelCase ): def lowerCAmelCase ( self ) -> Dict: _snake_case = tempfile.mkdtemp() _snake_case = 8 # DPR tok _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = os.path.join(lowerCAmelCase_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _snake_case = os.path.join(lowerCAmelCase_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(lowerCAmelCase_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def lowerCAmelCase ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def lowerCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) @require_tokenizers def lowerCAmelCase ( self ) -> int: _snake_case = os.path.join(self.tmpdirname , 'rag_tokenizer' ) _snake_case = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) _snake_case = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCAmelCase_ ) rag_tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = RagTokenizer.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCAmelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCAmelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def lowerCAmelCase ( self ) -> List[str]: _snake_case = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) _snake_case = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] _snake_case = tokenizer(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) _snake_case = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] _snake_case = tokenizer(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ )
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> str: '''simple docstring''' _snake_case = len(UpperCamelCase__ ) _snake_case = sum(UpperCamelCase__ ) _snake_case = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _snake_case = True for i in range(1 , s + 1 ): _snake_case = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _snake_case = dp[i][j - 1] if arr[i - 1] <= j: _snake_case = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _snake_case = s - 2 * j break return diff
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Dict: _snake_case = logging.get_logger() # the current default level is logging.WARNING _snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = logging.get_verbosity() _snake_case = logging.get_logger('transformers.models.bart.tokenization_bart' ) _snake_case = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase_ ) as cl: logger.warning(lowerCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase_ ) as cl: logger.warning(lowerCAmelCase_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase_ ) as cl: logger.warning(lowerCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCAmelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowerCAmelCase ( self ) -> List[str]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _snake_case = logging.get_logger('transformers.models.bart.tokenization_bart' ) _snake_case = os.getenv('TRANSFORMERS_VERBOSITY' , lowerCAmelCase_ ) _snake_case = logging.log_levels[env_level_str] _snake_case = logging.get_verbosity() self.assertEqual( lowerCAmelCase_ , lowerCAmelCase_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level _snake_case = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowerCAmelCase ( self ) -> Union[str, Any]: # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() _snake_case = logging.logging.getLogger() with CaptureLogger(lowerCAmelCase_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowerCAmelCase ( self ) -> List[str]: # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() _snake_case = logging.get_logger('transformers.models.bart.tokenization_bart' ) _snake_case = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase_ ) as cl: logger.warning_advice(lowerCAmelCase_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase_ ) as cl: logger.warning_advice(lowerCAmelCase_ ) self.assertEqual(cl.out , msg + '\n' ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
295
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
1
def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Dict: '''simple docstring''' if collection == []: return [] # get some information about the collection _snake_case = len(UpperCamelCase__ ) _snake_case = max(UpperCamelCase__ ) _snake_case = min(UpperCamelCase__ ) # create the counting array _snake_case = coll_max + 1 - coll_min _snake_case = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): _snake_case = counting_arr[i] + counting_arr[i - 1] # create the output collection _snake_case = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): _snake_case = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> List[str]: '''simple docstring''' return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" UpperCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
295
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] UpperCAmelCase_ = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Any ) -> Dict: '''simple docstring''' _snake_case = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks _snake_case = int(re.match(R'.*layer_(\d*).*' , UpperCamelCase__ )[1] ) layer_number -= 3 return F'''h.{layer_number}.''' + key def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 _snake_case = re.search(R'[^\d](\d+)$' , str(UpperCamelCase__ ) ) if bit_search is None: raise ValueError(F'''`dtype` is not a valid dtype: {dtype}.''' ) _snake_case = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' if bloom_config_file == "": _snake_case = BloomConfig() else: _snake_case = BloomConfig.from_json_file(UpperCamelCase__ ) if shard_model: _snake_case = os.listdir(UpperCamelCase__ ) _snake_case = sorted(filter(lambda UpperCamelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCamelCase__ ) ) _snake_case = {'weight_map': {}, 'metadata': {}} _snake_case = 0 _snake_case = None _snake_case = BloomConfig() for j, file in enumerate(UpperCamelCase__ ): print('Processing file: {}'.format(UpperCamelCase__ ) ) _snake_case = None for i in range(UpperCamelCase__ ): # load all TP files _snake_case = file.replace('model_00' , F'''model_0{i}''' ) _snake_case = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names _snake_case = list(temp.keys() ) for key in keys: _snake_case = temp.pop(UpperCamelCase__ ) if tensors is None: _snake_case = temp else: for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _snake_case = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _snake_case = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _snake_case = tensors[key] / pretraining_tp torch.save( UpperCamelCase__ , os.path.join( UpperCamelCase__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): _snake_case = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: _snake_case = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCamelCase__ ) ).zfill(5 ) ) _snake_case = BloomConfig() _snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME _snake_case = total_size with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCamelCase__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + '\n' f.write(UpperCamelCase__ ) else: _snake_case = BloomModel(UpperCamelCase__ ) _snake_case = os.listdir(UpperCamelCase__ ) _snake_case = sorted(filter(lambda UpperCamelCase__ : s.startswith('layer' ) and "model_00" in s , UpperCamelCase__ ) ) _snake_case = None for i, file in enumerate(UpperCamelCase__ ): _snake_case = None for i in range(UpperCamelCase__ ): # load all TP files _snake_case = file.replace('model_00' , F'''model_0{i}''' ) _snake_case = torch.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , map_location='cpu' ) # Rename keys in the transformers names _snake_case = list(temp.keys() ) for key in keys: _snake_case = temp.pop(UpperCamelCase__ ) if tensors is None: _snake_case = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel _snake_case = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks _snake_case = torch.cat([tensors[key], temp[key]] , dim=UpperCamelCase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCamelCase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): _snake_case = tensors[key] / pretraining_tp _snake_case = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert not other_keys.unexpected_keys, F'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: _snake_case = set(other_keys.missing_keys ) else: _snake_case = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) _snake_case = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _snake_case = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: _snake_case = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) UpperCAmelCase_ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
295
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ShapEImgaImgPipeline lowerCAmelCase_ = ['''image'''] lowerCAmelCase_ = ['''image'''] lowerCAmelCase_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowerCAmelCase_ = False @property def lowerCAmelCase ( self ) -> List[str]: return 32 @property def lowerCAmelCase ( self ) -> str: return 32 @property def lowerCAmelCase ( self ) -> List[Any]: return self.time_input_dim * 4 @property def lowerCAmelCase ( self ) -> str: return 8 @property def lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _snake_case = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _snake_case = CLIPVisionModel(lowerCAmelCase_ ) return model @property def lowerCAmelCase ( self ) -> Any: _snake_case = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _snake_case = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _snake_case = PriorTransformer(**lowerCAmelCase_ ) return model @property def lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _snake_case = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _snake_case = ShapERenderer(**lowerCAmelCase_ ) return model def lowerCAmelCase ( self ) -> str: _snake_case = self.dummy_prior _snake_case = self.dummy_image_encoder _snake_case = self.dummy_image_processor _snake_case = self.dummy_renderer _snake_case = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=lowerCAmelCase_ , clip_sample=lowerCAmelCase_ , clip_sample_range=1.0 , ) _snake_case = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Union[str, Any]: _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase ( self ) -> Dict: _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _snake_case = output.images[0] _snake_case = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _snake_case = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> str: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = torch_device == 'cpu' _snake_case = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCAmelCase_ , relax_max_difference=lowerCAmelCase_ , ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 1 _snake_case = 2 _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: _snake_case = batch_size * [inputs[key]] _snake_case = pipe(**lowerCAmelCase_ , num_images_per_prompt=lowerCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> List[str]: _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _snake_case = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(0 ) _snake_case = pipe( lowerCAmelCase_ , generator=lowerCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : def __init__( self , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=6.0 , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_="fp4" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = load_in_abit _snake_case = load_in_abit _snake_case = llm_inta_threshold _snake_case = llm_inta_skip_modules _snake_case = llm_inta_enable_fpaa_cpu_offload _snake_case = llm_inta_has_fpaa_weight _snake_case = bnb_abit_quant_type _snake_case = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _snake_case = torch.floataa elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , torch.dtype ): _snake_case = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def lowerCAmelCase ( self ) -> Tuple: if not isinstance(self.llm_inta_threshold , lowerCAmelCase_ ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , lowerCAmelCase_ ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , lowerCAmelCase_ ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , lowerCAmelCase_ ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , lowerCAmelCase_ ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , lowerCAmelCase_ ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def lowerCAmelCase ( self ) -> Optional[Any]: return self.load_in_abit or self.load_in_abit def lowerCAmelCase ( self ) -> str: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: _snake_case = cls(**lowerCAmelCase_ ) _snake_case = [] for key, value in kwargs.items(): if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) to_remove.append(lowerCAmelCase_ ) for key in to_remove: kwargs.pop(lowerCAmelCase_ , lowerCAmelCase_ ) if return_unused_kwargs: return config, kwargs else: return config def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: _snake_case = self.to_dict() _snake_case = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + '\n' writer.write(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> str: return F'''{self.__class__.__name__} {self.to_json_string()}''' def lowerCAmelCase ( self , lowerCAmelCase_ = True ) -> str: if use_diff is True: _snake_case = self.to_diff_dict() else: _snake_case = self.to_dict() return json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + "\n" def lowerCAmelCase ( self ) -> Dict[str, Any]: _snake_case = self.to_dict() # get the default config dict _snake_case = BitsAndBytesConfig().to_dict() _snake_case = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _snake_case = value return serializable_config_dict
295
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = StableDiffusionPanoramaPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler() torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Union[str, Any]: _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self ) -> int: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> Optional[int]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25E-3 ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'french fries' _snake_case = sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ , view_batch_size=2 ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' ) _snake_case = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> Tuple: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , skip_prk_steps=lowerCAmelCase_ ) _snake_case = StableDiffusionPanoramaPipeline(**lowerCAmelCase_ ) _snake_case = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = sd_pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self , lowerCAmelCase_=0 ) -> List[Any]: _snake_case = torch.manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self ) -> Any: _snake_case = 'stabilityai/stable-diffusion-2-base' _snake_case = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> Any: _snake_case = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' , safety_checker=lowerCAmelCase_ ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCAmelCase ( self ) -> int: _snake_case = 0 def callback_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: _snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _snake_case = latents[0, -3:, -3:, -1] _snake_case = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 _snake_case = False _snake_case = 'stabilityai/stable-diffusion-2-base' _snake_case = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() _snake_case = self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase ( self ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _snake_case = 'stabilityai/stable-diffusion-2-base' _snake_case = DDIMScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _snake_case = StableDiffusionPanoramaPipeline.from_pretrained(lowerCAmelCase_ , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _snake_case = self.get_inputs() _snake_case = pipe(**lowerCAmelCase_ ) _snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
295
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
1
from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ ) -> str: _snake_case = data _snake_case = None class UpperCamelCase_ : def __init__( self ) -> Tuple: _snake_case = None _snake_case = None def __iter__( self ) -> Iterator[Any]: _snake_case = self.head while self.head: yield node.data _snake_case = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> Optional[int]: return "->".join(str(lowerCAmelCase_ ) for item in iter(self ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: self.insert_nth(len(self ) , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: self.insert_nth(0 , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) _snake_case = Node(lowerCAmelCase_ ) if self.head is None: _snake_case = new_node # first node points itself _snake_case = _snake_case = new_node elif index == 0: # insert at head _snake_case = self.head _snake_case = _snake_case = new_node else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = new_node if index == len(self ) - 1: # insert at tail _snake_case = new_node def lowerCAmelCase ( self ) -> List[Any]: return self.delete_nth(0 ) def lowerCAmelCase ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase ( self , lowerCAmelCase_ = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) _snake_case = self.head if self.head == self.tail: # just one node _snake_case = _snake_case = None elif index == 0: # delete head node _snake_case = self.tail.next.next _snake_case = self.head.next else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = temp.next.next if index == len(self ) - 1: # delete at tail _snake_case = temp return delete_node.data def lowerCAmelCase ( self ) -> bool: return len(self ) == 0 def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = CircularLinkedList() assert len(UpperCamelCase__ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase__ ) == i circular_linked_list.insert_nth(UpperCamelCase__ , i + 1 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase__ ) == "->".join(str(UpperCamelCase__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
295
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' print('Loading config file...' ) def flatten_yaml_as_dict(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple="" , UpperCamelCase__ : Optional[int]="." ): _snake_case = [] for k, v in d.items(): _snake_case = parent_key + sep + k if parent_key else k if isinstance(UpperCamelCase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCamelCase__ , UpperCamelCase__ , sep=UpperCamelCase__ ).items() ) else: items.append((new_key, v) ) return dict(UpperCamelCase__ ) _snake_case = argparse.Namespace() with open(UpperCamelCase__ , 'r' ) as yaml_file: try: _snake_case = yaml.load(UpperCamelCase__ , Loader=yaml.FullLoader ) _snake_case = flatten_yaml_as_dict(UpperCamelCase__ ) for k, v in flat_cfg.items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(UpperCamelCase__ , str(UpperCamelCase__ ) ) ) return config def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' _snake_case = MobileViTVaConfig() _snake_case = False # dataset if task_name.startswith('imagenet1k_' ): _snake_case = 1_000 if int(task_name.strip().split('_' )[-1] ) == 384: _snake_case = 384 else: _snake_case = 256 _snake_case = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): _snake_case = 21_000 if int(task_name.strip().split('_' )[-1] ) == 384: _snake_case = 384 else: _snake_case = 256 _snake_case = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): _snake_case = 151 _snake_case = 512 _snake_case = 'ade20k-id2label.json' _snake_case = True elif task_name.startswith('voc_' ): _snake_case = 21 _snake_case = 512 _snake_case = 'pascal-voc-id2label.json' _snake_case = True # orig_config _snake_case = load_orig_config_file(UpperCamelCase__ ) assert getattr(UpperCamelCase__ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" _snake_case = getattr(UpperCamelCase__ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(UpperCamelCase__ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case = getattr(UpperCamelCase__ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case = getattr(UpperCamelCase__ , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: _snake_case = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) _snake_case = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) _snake_case = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label _snake_case = 'huggingface/label-files' _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' _snake_case = dct.pop(UpperCamelCase__ ) _snake_case = val def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=False ) -> Any: '''simple docstring''' if base_model: _snake_case = '' else: _snake_case = 'mobilevitv2.' _snake_case = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case = k[8:] else: _snake_case = k if ".block." in k: _snake_case = k_new.replace('.block.' , '.' ) if ".conv." in k: _snake_case = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: _snake_case = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: _snake_case = k_new.replace('conv_1.' , F'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if F'''layer_{i}.''' in k: _snake_case = k_new.replace(F'''layer_{i}.''' , F'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: _snake_case = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: _snake_case = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if F'''layer_{i}.0.''' in k: _snake_case = k_new.replace(F'''layer_{i}.0.''' , F'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if F'''layer_{i}.1.local_rep.0.''' in k: _snake_case = k_new.replace(F'''layer_{i}.1.local_rep.0.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if F'''layer_{i}.1.local_rep.1.''' in k: _snake_case = k_new.replace(F'''layer_{i}.1.local_rep.1.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: _snake_case = [0, 1] elif i == 4: _snake_case = [0, 1, 2, 3] elif i == 5: _snake_case = [0, 1, 2] for j in j_in: if F'''layer_{i}.1.global_rep.{j}.''' in k: _snake_case = k_new.replace( F'''layer_{i}.1.global_rep.{j}.''' , F'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if F'''layer_{i}.1.global_rep.{j+1}.''' in k: _snake_case = k_new.replace( F'''layer_{i}.1.global_rep.{j+1}.''' , F'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if F'''layer_{i}.1.conv_proj.''' in k: _snake_case = k_new.replace(F'''layer_{i}.1.conv_proj.''' , F'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: _snake_case = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: _snake_case = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: _snake_case = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: _snake_case = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: _snake_case = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: _snake_case = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: _snake_case = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: _snake_case = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: _snake_case = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCamelCase__ ( UpperCamelCase__ : str ) -> List[Any]: '''simple docstring''' _snake_case = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(UpperCamelCase__ ) for k in keys_to_ignore: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Optional[int]: '''simple docstring''' _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' _snake_case = get_mobilevitva_config(UpperCamelCase__ , UpperCamelCase__ ) # load original state_dict _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): _snake_case = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ).eval() _snake_case = False else: _snake_case = MobileViTVaForImageClassification(UpperCamelCase__ ).eval() _snake_case = False # remove and rename some keys of load the original model _snake_case = checkpoint remove_unused_keys(UpperCamelCase__ ) _snake_case = create_rename_keys(UpperCamelCase__ , base_model=UpperCamelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load modified state_dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case = model(**UpperCamelCase__ ) # verify classification model if task_name.startswith('imagenet' ): _snake_case = outputs.logits _snake_case = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""imagenet1k_256""", type=str, help=( """Name of the task for which the MobileViTV2 model you'd like to convert is trained on . """ """ Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 """ ), choices=[ """imagenet1k_256""", """imagenet1k_384""", """imagenet21k_to_1k_256""", """imagenet21k_to_1k_384""", """ade20k_deeplabv3""", """voc_deeplabv3""", ], ) parser.add_argument( """--orig_checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument("""--orig_config_path""", required=True, type=str, help="""Path to the original config file.""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) UpperCAmelCase_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
295
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''megatron-bert''' def __init__( self , lowerCAmelCase_=2_9056 , lowerCAmelCase_=1024 , lowerCAmelCase_=24 , lowerCAmelCase_=16 , lowerCAmelCase_=4096 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> List[Any]: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 16 UpperCAmelCase_ = 32 def lowerCamelCase__ ( UpperCamelCase__ : Accelerator , UpperCamelCase__ : DatasetDict , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : int = 16 ) -> int: '''simple docstring''' _snake_case = AutoTokenizer.from_pretrained('bert-base-cased' ) _snake_case = DatasetDict( { 'train': dataset['train'].select(UpperCamelCase__ ), 'validation': dataset['train'].select(UpperCamelCase__ ), 'test': dataset['validation'], } ) def tokenize_function(UpperCamelCase__ : str ): # max_length=None => use the model max length (it's actually the default) _snake_case = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case = 16 elif accelerator.mixed_precision != "no": _snake_case = 8 else: _snake_case = None return tokenizer.pad( UpperCamelCase__ , padding='longest' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. _snake_case = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _snake_case = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) _snake_case = DataLoader( tokenized_datasets['test'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> Optional[int]: '''simple docstring''' _snake_case = [] # Download the dataset _snake_case = load_dataset('glue' , 'mrpc' ) # Create our splits _snake_case = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case = config['lr'] _snake_case = int(config['num_epochs'] ) _snake_case = int(config['seed'] ) _snake_case = int(config['batch_size'] ) _snake_case = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation _snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _snake_case = batch_size // MAX_GPU_BATCH_SIZE _snake_case = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase__ ) # New Code # # Create our folds: _snake_case = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) _snake_case = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase__ ): _snake_case , _snake_case , _snake_case = get_fold_dataloaders( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case = model.to(accelerator.device ) # Instantiate optimizer _snake_case = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) # Instantiate scheduler _snake_case = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.loss _snake_case = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) _snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCamelCase__ ) # New Code # # We also run predictions on the test set at the very end _snake_case = [] for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case , _snake_case = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _snake_case = torch.cat(UpperCamelCase__ , dim=0 ) _snake_case = torch.stack(UpperCamelCase__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _snake_case = metric.compute(predictions=UpperCamelCase__ , references=UpperCamelCase__ ) accelerator.print('Average test metrics from all folds:' , UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Any: '''simple docstring''' _snake_case = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=UpperCamelCase__ , default=3 , help='The number of splits to perform across the dataset' ) _snake_case = parser.parse_args() _snake_case = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=30 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _snake_case = (image_size // patch_size) ** 2 _snake_case = num_patches + 1 def lowerCAmelCase ( self ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = FlaxViTModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _snake_case = (self.image_size, self.image_size) _snake_case = (self.patch_size, self.patch_size) _snake_case = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: _snake_case = self.type_sequence_label_size _snake_case = FlaxViTForImageClassification(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = FlaxViTForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCAmelCase ( self ) -> None: _snake_case = FlaxViTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> int: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _snake_case = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = model_class(lowerCAmelCase_ ) @jax.jit def model_jitted(lowerCAmelCase_ , **lowerCAmelCase_ ): return model(pixel_values=lowerCAmelCase_ , **lowerCAmelCase_ ) with self.subTest('JIT Enabled' ): _snake_case = model_jitted(**lowerCAmelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _snake_case = model_jitted(**lowerCAmelCase_ ).to_tuple() self.assertEqual(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _snake_case = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCAmelCase_ )
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
import string def lowerCamelCase__ ( UpperCamelCase__ : str ) -> str: '''simple docstring''' _snake_case = '' for i in sequence: _snake_case = ord(UpperCamelCase__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowerCamelCase__ ( UpperCamelCase__ : str ) -> str: '''simple docstring''' _snake_case = string.ascii_letters _snake_case = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase__ )] if c in letters else c for c in sequence ) def lowerCamelCase__ ( ) -> None: '''simple docstring''' from timeit import timeit print('Running performance benchmarks...' ) _snake_case = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=UpperCamelCase__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=UpperCamelCase__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"{example} encrypted in atbash: {atbash(example)}") benchmark()
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = 42 class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = True @register_to_config def __init__( self , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = ("DownEncoderBlock2D",) , lowerCAmelCase_ = ("UpDecoderBlock2D",) , lowerCAmelCase_ = (64,) , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "silu" , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 0.1_82_15 , ) -> Any: super().__init__() # pass init params to Encoder _snake_case = Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) # pass init params to Decoder _snake_case = Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , ) _snake_case = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) _snake_case = False _snake_case = False # only relevant if vae tiling is enabled _snake_case = self.config.sample_size _snake_case = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _snake_case = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _snake_case = 0.25 def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[int]: if isinstance(lowerCAmelCase_ , (Encoder, Decoder) ): _snake_case = value def lowerCAmelCase ( self , lowerCAmelCase_ = True ) -> List[Any]: _snake_case = use_tiling def lowerCAmelCase ( self ) -> Optional[Any]: self.enable_tiling(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = True def lowerCAmelCase ( self ) -> Any: _snake_case = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase ( self ) -> Dict[str, AttentionProcessor]: _snake_case = {} def fn_recursive_add_processors(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , 'set_processor' ): _snake_case = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , lowerCAmelCase_ , lowerCAmelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return processors def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _snake_case = len(self.attn_processors.keys() ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(lowerCAmelCase_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if hasattr(lowerCAmelCase_ , 'set_processor' ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): module.set_processor(lowerCAmelCase_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , lowerCAmelCase_ , lowerCAmelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[int]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) if self.use_slicing and x.shape[0] > 1: _snake_case = [self.encoder(lowerCAmelCase_ ) for x_slice in x.split(1 )] _snake_case = torch.cat(lowerCAmelCase_ ) else: _snake_case = self.encoder(lowerCAmelCase_ ) _snake_case = self.quant_conv(lowerCAmelCase_ ) _snake_case = DiagonalGaussianDistribution(lowerCAmelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = self.post_quant_conv(lowerCAmelCase_ ) _snake_case = self.decoder(lowerCAmelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) @apply_forward_hook def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _snake_case = [self._decode(lowerCAmelCase_ ).sample for z_slice in z.split(1 )] _snake_case = torch.cat(lowerCAmelCase_ ) else: _snake_case = self._decode(lowerCAmelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = min(a.shape[2] , b.shape[2] , lowerCAmelCase_ ) for y in range(lowerCAmelCase_ ): _snake_case = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = min(a.shape[3] , b.shape[3] , lowerCAmelCase_ ) for x in range(lowerCAmelCase_ ): _snake_case = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> AutoencoderKLOutput: _snake_case = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _snake_case = int(self.tile_latent_min_size * self.tile_overlap_factor ) _snake_case = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _snake_case = [] for i in range(0 , x.shape[2] , lowerCAmelCase_ ): _snake_case = [] for j in range(0 , x.shape[3] , lowerCAmelCase_ ): _snake_case = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _snake_case = self.encoder(lowerCAmelCase_ ) _snake_case = self.quant_conv(lowerCAmelCase_ ) row.append(lowerCAmelCase_ ) rows.append(lowerCAmelCase_ ) _snake_case = [] for i, row in enumerate(lowerCAmelCase_ ): _snake_case = [] for j, tile in enumerate(lowerCAmelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _snake_case = self.blend_v(rows[i - 1][j] , lowerCAmelCase_ , lowerCAmelCase_ ) if j > 0: _snake_case = self.blend_h(row[j - 1] , lowerCAmelCase_ , lowerCAmelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase_ , dim=3 ) ) _snake_case = torch.cat(lowerCAmelCase_ , dim=2 ) _snake_case = DiagonalGaussianDistribution(lowerCAmelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: _snake_case = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _snake_case = int(self.tile_sample_min_size * self.tile_overlap_factor ) _snake_case = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _snake_case = [] for i in range(0 , z.shape[2] , lowerCAmelCase_ ): _snake_case = [] for j in range(0 , z.shape[3] , lowerCAmelCase_ ): _snake_case = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _snake_case = self.post_quant_conv(lowerCAmelCase_ ) _snake_case = self.decoder(lowerCAmelCase_ ) row.append(lowerCAmelCase_ ) rows.append(lowerCAmelCase_ ) _snake_case = [] for i, row in enumerate(lowerCAmelCase_ ): _snake_case = [] for j, tile in enumerate(lowerCAmelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _snake_case = self.blend_v(rows[i - 1][j] , lowerCAmelCase_ , lowerCAmelCase_ ) if j > 0: _snake_case = self.blend_h(row[j - 1] , lowerCAmelCase_ , lowerCAmelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(lowerCAmelCase_ , dim=3 ) ) _snake_case = torch.cat(lowerCAmelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True , lowerCAmelCase_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _snake_case = sample _snake_case = self.encode(lowerCAmelCase_ ).latent_dist if sample_posterior: _snake_case = posterior.sample(generator=lowerCAmelCase_ ) else: _snake_case = posterior.mode() _snake_case = self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
from math import pi def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
295
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=0.999 , UpperCamelCase__ : Optional[Any]="cosine" , ) -> int: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCamelCase__ : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCamelCase__ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _snake_case = [] for i in range(UpperCamelCase__ ): _snake_case = i / num_diffusion_timesteps _snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCamelCase__ ) / alpha_bar_fn(UpperCamelCase__ ) , UpperCamelCase__ ) ) return torch.tensor(UpperCamelCase__ , dtype=torch.floataa ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = [e.name for e in KarrasDiffusionSchedulers] lowerCAmelCase_ = 2 @register_to_config def __init__( self , lowerCAmelCase_ = 1000 , lowerCAmelCase_ = 0.0_00_85 , lowerCAmelCase_ = 0.0_12 , lowerCAmelCase_ = "linear" , lowerCAmelCase_ = None , lowerCAmelCase_ = "epsilon" , lowerCAmelCase_ = "linspace" , lowerCAmelCase_ = 0 , ) -> Optional[Any]: if trained_betas is not None: _snake_case = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _snake_case = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _snake_case = betas_for_alpha_bar(lowerCAmelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _snake_case = 1.0 - self.betas _snake_case = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: if schedule_timesteps is None: _snake_case = self.timesteps _snake_case = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _snake_case = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _snake_case = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _snake_case = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase ( self ) -> Union[str, Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: _snake_case = self.index_for_timestep(lowerCAmelCase_ ) if self.state_in_first_order: _snake_case = self.sigmas[step_index] else: _snake_case = self.sigmas_interpol[step_index] _snake_case = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> List[Any]: _snake_case = num_inference_steps _snake_case = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _snake_case = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _snake_case = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _snake_case = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _snake_case = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) _snake_case = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _snake_case = torch.from_numpy(np.log(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) _snake_case = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) # interpolate sigmas _snake_case = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _snake_case = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _snake_case = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCAmelCase_ ).startswith('mps' ): # mps does not support float64 _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ , dtype=torch.floataa ) else: _snake_case = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) # interpolate timesteps _snake_case = self.sigma_to_t(lowerCAmelCase_ ).to(lowerCAmelCase_ , dtype=timesteps.dtype ) _snake_case = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _snake_case = torch.cat([timesteps[:1], interleaved_timesteps] ) _snake_case = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _snake_case = defaultdict(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: # get log sigma _snake_case = sigma.log() # get distribution _snake_case = log_sigma - self.log_sigmas[:, None] # get sigmas range _snake_case = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _snake_case = low_idx + 1 _snake_case = self.log_sigmas[low_idx] _snake_case = self.log_sigmas[high_idx] # interpolate sigmas _snake_case = (low - log_sigma) / (low - high) _snake_case = w.clamp(0 , 1 ) # transform interpolation to time range _snake_case = (1 - w) * low_idx + w * high_idx _snake_case = t.view(sigma.shape ) return t @property def lowerCAmelCase ( self ) -> List[str]: return self.sample is None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: _snake_case = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _snake_case = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _snake_case = self.sigmas[step_index] _snake_case = self.sigmas_interpol[step_index + 1] _snake_case = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _snake_case = self.sigmas[step_index - 1] _snake_case = self.sigmas_interpol[step_index] _snake_case = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _snake_case = 0 _snake_case = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _snake_case = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _snake_case = sigma_hat if self.state_in_first_order else sigma_interpol _snake_case = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _snake_case = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _snake_case = sigma_interpol - sigma_hat # store for 2nd order step _snake_case = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _snake_case = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _snake_case = sigma_next - sigma_hat _snake_case = self.sample _snake_case = None _snake_case = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _snake_case = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _snake_case = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _snake_case = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _snake_case = self.timesteps.to(original_samples.device ) _snake_case = timesteps.to(original_samples.device ) _snake_case = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _snake_case = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _snake_case = sigma.unsqueeze(-1 ) _snake_case = original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
def lowerCamelCase__ ( UpperCamelCase__ : str ) -> list: '''simple docstring''' _snake_case = [0] * len(UpperCamelCase__ ) for i in range(1 , len(UpperCamelCase__ ) ): # use last results for better performance - dynamic programming _snake_case = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case = j return prefix_result def lowerCamelCase__ ( UpperCamelCase__ : str ) -> int: '''simple docstring''' return max(prefix_function(UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ArgumentParser('Transformers CLI tool' , usage='transformers-cli <command> [<args>]' ) _snake_case = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(UpperCamelCase__ ) DownloadCommand.register_subcommand(UpperCamelCase__ ) EnvironmentCommand.register_subcommand(UpperCamelCase__ ) RunCommand.register_subcommand(UpperCamelCase__ ) ServeCommand.register_subcommand(UpperCamelCase__ ) UserCommands.register_subcommand(UpperCamelCase__ ) AddNewModelCommand.register_subcommand(UpperCamelCase__ ) AddNewModelLikeCommand.register_subcommand(UpperCamelCase__ ) LfsCommands.register_subcommand(UpperCamelCase__ ) PTtoTFCommand.register_subcommand(UpperCamelCase__ ) # Let's go _snake_case = parser.parse_args() if not hasattr(UpperCamelCase__ , 'func' ): parser.print_help() exit(1 ) # Run _snake_case = args.func(UpperCamelCase__ ) service.run() if __name__ == "__main__": main()
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCamelCase__ ( UpperCamelCase__ : str = "isbn/0140328726" ) -> dict: '''simple docstring''' _snake_case = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: _snake_case = F'''{olid} is not a valid Open Library olid''' raise ValueError(UpperCamelCase__ ) return requests.get(F'''https://openlibrary.org/{new_olid}.json''' ).json() def lowerCamelCase__ ( UpperCamelCase__ : dict ) -> dict: '''simple docstring''' _snake_case = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } _snake_case = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} _snake_case = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] _snake_case = data['First sentence']['value'] for key, value in data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = ', '.join(UpperCamelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCAmelCase_ = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: UpperCAmelCase_ = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print("""\n""".join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
UpperCAmelCase_ = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def lowerCamelCase__ ( UpperCamelCase__ : str ) -> int: '''simple docstring''' _snake_case = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1_000} _snake_case = 0 _snake_case = 0 while place < len(UpperCamelCase__ ): if (place + 1 < len(UpperCamelCase__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowerCamelCase__ ( UpperCamelCase__ : int ) -> str: '''simple docstring''' _snake_case = [] for arabic, roman in ROMAN: ((_snake_case) , (_snake_case)) = divmod(UpperCamelCase__ , UpperCamelCase__ ) result.append(roman * factor ) if number == 0: break return "".join(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
295
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCamelCase_ ( unittest.TestCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=4 , ) -> Union[str, Any]: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_attention_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_choices def lowerCAmelCase ( self ) -> Any: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_attention_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase_ , ) return config, input_ids, attention_mask def lowerCAmelCase ( self ) -> Dict: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self ) -> str: _snake_case = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase ( self ) -> Any: for model_class_name in self.all_model_classes: _snake_case = model_class_name.from_pretrained('distilbert-base-uncased' ) _snake_case = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase_ ) @require_flax class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> int: _snake_case = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _snake_case = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _snake_case = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] _snake_case = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) )
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ ( UpperCamelCase__ : str ) -> Optional[int]: '''simple docstring''' _snake_case = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) _snake_case = emb.weight.data return lin_layer def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any=None ) -> List[str]: '''simple docstring''' _snake_case = {} for old_key in state_dict.keys(): _snake_case = old_key if "moe_layer.experts." in key: if expert_idx is not None: _snake_case = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: _snake_case = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _snake_case = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _snake_case = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _snake_case = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _snake_case = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _snake_case = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _snake_case = key.replace('final_layer_norm' , 'ff_layer_norm' ) _snake_case = state_dict[old_key] return new_dict def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str = WEIGHTS_NAME ) -> Union[str, Any]: '''simple docstring''' _snake_case = [] _snake_case = 0 os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) for expert in range(UpperCamelCase__ ): _snake_case = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(UpperCamelCase__ ): _snake_case = torch.load(UpperCamelCase__ )['model'] remove_ignore_keys_(UpperCamelCase__ ) _snake_case = rename_fairseq_keys(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = os.path.join( UpperCamelCase__ , weights_name.replace('.bin' , F'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCamelCase__ )[0]].dtype ) # Add the last block _snake_case = os.path.join(UpperCamelCase__ , weights_name.replace('.bin' , F'''-{len(UpperCamelCase__ )+1:05d}-of-???.bin''' ) ) _snake_case = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(UpperCamelCase__ ) _snake_case = rename_fairseq_keys(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCamelCase__ ) == 1: _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCamelCase__ , UpperCamelCase__ ) # Otherwise, let's build the index _snake_case = {} for idx, shard in enumerate(UpperCamelCase__ ): _snake_case = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(UpperCamelCase__ ):05d}.bin''' ) _snake_case = os.path.join(UpperCamelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) for key in shard: _snake_case = shard_file # Add the metadata _snake_case = {'total_size': total_size} _snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , 'w' , encoding='utf-8' ) as f: _snake_case = json.dumps(UpperCamelCase__ , indent=2 , sort_keys=UpperCamelCase__ ) + '\n' f.write(UpperCamelCase__ ) return metadata, index if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ , UpperCAmelCase_ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) UpperCAmelCase_ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) UpperCAmelCase_ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase ( self ) -> Optional[int]: _snake_case , _snake_case = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = jax.device_count() _snake_case = num_samples * [prompt] _snake_case = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _snake_case = replicate(lowerCAmelCase_ ) _snake_case = shard(lowerCAmelCase_ ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _snake_case = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=25 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array([0.42_38, 0.44_14, 0.43_95, 0.44_53, 0.46_29, 0.45_90, 0.45_31, 0.4_55_08, 0.45_12] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> List[Any]: _snake_case = 'stabilityai/stable-diffusion-2' _snake_case , _snake_case = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _snake_case , _snake_case = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , revision='bf16' , dtype=jnp.bfloataa , ) _snake_case = scheduler_params _snake_case = 'A painting of a squirrel eating a burger' _snake_case = jax.device_count() _snake_case = num_samples * [prompt] _snake_case = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _snake_case = replicate(lowerCAmelCase_ ) _snake_case = shard(lowerCAmelCase_ ) _snake_case = jax.random.PRNGKey(0 ) _snake_case = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _snake_case = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=25 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _snake_case = images[0, 253:256, 253:256, -1] _snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _snake_case = jnp.array([0.43_36, 0.4_29_69, 0.44_53, 0.41_99, 0.42_97, 0.45_31, 0.44_34, 0.44_34, 0.42_97] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
295
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
1
import math class UpperCamelCase_ : def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _snake_case = 0.0 _snake_case = 0.0 for i in range(len(lowerCAmelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> list[list[int | float]]: for i in range(len(lowerCAmelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _snake_case = SelfOrganizingMap() _snake_case = 3 _snake_case = 0.5 for _ in range(UpperCamelCase__ ): for j in range(len(UpperCamelCase__ ) ): # training sample _snake_case = training_samples[j] # Compute the winning vector _snake_case = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # Update the winning vector _snake_case = self_organizing_map.update(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # classify test sample _snake_case = [0, 0, 0, 1] _snake_case = self_organizing_map.get_winner(UpperCamelCase__ , UpperCamelCase__ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
295
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 256} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> Dict: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Optional[Any]: _snake_case = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(lowerCAmelCase_ ): _snake_case = target_sizes.numpy() _snake_case = [] for idx in range(len(lowerCAmelCase_ ) ): _snake_case = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=lowerCAmelCase_ ) _snake_case = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase_ ) else: _snake_case = logits.argmax(dim=1 ) _snake_case = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } UpperCAmelCase_ = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } UpperCAmelCase_ = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } UpperCAmelCase_ = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase_ = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase_ = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRContextEncoderTokenizer class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = DPRQuestionEncoderTokenizer UpperCAmelCase_ = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) UpperCAmelCase_ = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) UpperCAmelCase_ = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(_lowerCamelCase ) class UpperCamelCase_ : def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: _snake_case = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] _snake_case = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] _snake_case = len(lowerCAmelCase_ ) _snake_case = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages assert len(lowerCAmelCase_ ) == len( lowerCAmelCase_ ), F'''There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.''' _snake_case = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] _snake_case = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] _snake_case = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: _snake_case = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _snake_case = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 4 , ) -> List[DPRSpanPrediction]: _snake_case = reader_input['input_ids'] _snake_case , _snake_case , _snake_case = reader_output[:3] _snake_case = len(lowerCAmelCase_ ) _snake_case = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) _snake_case = [] for doc_id in sorted_docs: _snake_case = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _snake_case = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _snake_case = sequence_ids.index(self.pad_token_id ) else: _snake_case = len(lowerCAmelCase_ ) _snake_case = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> List[DPRSpanPrediction]: _snake_case = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _snake_case = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) _snake_case = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' _snake_case = end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = DPRReaderTokenizer
295
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : list[int] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> tuple[float, list[float]]: '''simple docstring''' _snake_case = list(range(len(UpperCamelCase__ ) ) ) _snake_case = [v / w for v, w in zip(UpperCamelCase__ , UpperCamelCase__ )] index.sort(key=lambda UpperCamelCase__ : ratio[i] , reverse=UpperCamelCase__ ) _snake_case = 0 _snake_case = [0] * len(UpperCamelCase__ ) for i in index: if weight[i] <= capacity: _snake_case = 1 max_value += value[i] capacity -= weight[i] else: _snake_case = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ UpperCAmelCase_ = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ UpperCAmelCase_ = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase_ , lowerCAmelCase_ , sample_weight=lowerCAmelCase_ ) ), }
295
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = AltDiffusionPipeline lowerCAmelCase_ = TEXT_TO_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase_ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) _snake_case = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , ) torch.manual_seed(0 ) _snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) _snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) _snake_case = CLIPTextModel(lowerCAmelCase_ ) _snake_case = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) _snake_case = 77 _snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ) -> List[str]: if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def lowerCAmelCase ( self ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase ( self ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() torch.manual_seed(0 ) _snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _snake_case = RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) _snake_case = text_encoder _snake_case = AltDiffusionPipeline(**lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = 'A photo of an astronaut' _snake_case = alt_pipe(**lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> str: _snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator _snake_case = self.get_dummy_components() _snake_case = PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) _snake_case = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder _snake_case = RobertaSeriesModelWithTransformation(lowerCAmelCase_ ) _snake_case = text_encoder _snake_case = AltDiffusionPipeline(**lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = self.get_dummy_inputs(lowerCAmelCase_ ) _snake_case = alt_pipe(**lowerCAmelCase_ ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase ): def lowerCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> Tuple: # make sure here that pndm scheduler skips prk _snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.manual_seed(0 ) _snake_case = alt_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self ) -> List[Any]: _snake_case = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) _snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ ) _snake_case = alt_pipe.to(lowerCAmelCase_ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A painting of a squirrel eating a burger' _snake_case = torch.manual_seed(0 ) _snake_case = alt_pipe([prompt] , generator=lowerCAmelCase_ , num_inference_steps=2 , output_type='numpy' ) _snake_case = output.images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _snake_case = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
295
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") class UpperCamelCase_ ( Generic[T] ): lowerCAmelCase_ = 42 # Cache store of keys lowerCAmelCase_ = 42 # References of the keys in cache lowerCAmelCase_ = 10 # Maximum capacity of cache def __init__( self , lowerCAmelCase_ ) -> None: _snake_case = deque() _snake_case = set() if not n: _snake_case = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: _snake_case = n def lowerCAmelCase ( self , lowerCAmelCase_ ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _snake_case = self.dq_store.pop() self.key_reference.remove(lowerCAmelCase_ ) else: self.dq_store.remove(lowerCAmelCase_ ) self.dq_store.appendleft(lowerCAmelCase_ ) self.key_reference.add(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> None: for k in self.dq_store: print(lowerCAmelCase_ ) def __repr__( self ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
295
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ = data_utils.TransfoXLTokenizer UpperCAmelCase_ = data_utils.TransfoXLCorpus UpperCAmelCase_ = data_utils UpperCAmelCase_ = data_utils def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase__ , 'rb' ) as fp: _snake_case = pickle.load(UpperCamelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _snake_case = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _snake_case = corpus.vocab.__dict__ torch.save(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCamelCase__ ) _snake_case = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _snake_case = os.path.abspath(UpperCamelCase__ ) _snake_case = os.path.abspath(UpperCamelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _snake_case = TransfoXLConfig() else: _snake_case = TransfoXLConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _snake_case = TransfoXLLMHeadModel(UpperCamelCase__ ) _snake_case = load_tf_weights_in_transfo_xl(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCamelCase__ )}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCamelCase__ )}''' ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) UpperCAmelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
295
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase_ = { """configuration_audio_spectrogram_transformer""": [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ASTConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ASTForAudioClassification""", """ASTModel""", """ASTPreTrainedModel""", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""ASTFeatureExtractor"""] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=32 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=[10, 20, 30, 40] , lowerCAmelCase_=[2, 2, 3, 2] , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=10 , lowerCAmelCase_=0.02 , lowerCAmelCase_=["stage2", "stage3", "stage4"] , lowerCAmelCase_=[2, 3, 4] , lowerCAmelCase_=None , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = num_labels _snake_case = initializer_range _snake_case = out_features _snake_case = out_indices _snake_case = scope def lowerCAmelCase ( self ) -> Any: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.num_labels ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: _snake_case = ConvNextModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = ConvNextForImageClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _snake_case = None _snake_case = ConvNextBackbone(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Dict: _snake_case = ConvNextModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self ) -> Tuple: return @unittest.skip(reason='ConvNext does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> List[str]: pass @unittest.skip(reason='ConvNext does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Any: pass @unittest.skip(reason='ConvNext does not use feedforward chunking' ) def lowerCAmelCase ( self ) -> int: pass def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = ConvNextModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained('facebook/convnext-tiny-224' ) if is_vision_available() else None @slow def lowerCAmelCase ( self ) -> Any: _snake_case = ConvNextForImageClassification.from_pretrained('facebook/convnext-tiny-224' ).to(lowerCAmelCase_ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='pt' ).to(lowerCAmelCase_ ) # forward pass with torch.no_grad(): _snake_case = model(**lowerCAmelCase_ ) # verify the logits _snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase , _lowerCamelCase ): lowerCAmelCase_ = (ConvNextBackbone,) if is_torch_available() else () lowerCAmelCase_ = ConvNextConfig lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> Dict: _snake_case = ConvNextModelTester(self )
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
from math import isqrt def lowerCamelCase__ ( UpperCamelCase__ : int ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(UpperCamelCase__ ) + 1 ) ) def lowerCamelCase__ ( UpperCamelCase__ : int = 10**6 ) -> int: '''simple docstring''' _snake_case = 0 _snake_case = 1 _snake_case = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCamelCase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _snake_case = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim _snake_case = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _snake_case = model(lowerCAmelCase_ )['last_hidden_state'].detach() self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase_ , atol=1E-3 ) ) @slow def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) _snake_case = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house _snake_case = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim _snake_case = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _snake_case = model(lowerCAmelCase_ )['last_hidden_state'].detach() self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase_ , atol=1E-3 ) )
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str = " " ) -> list: '''simple docstring''' _snake_case = [] _snake_case = 0 for index, char in enumerate(UpperCamelCase__ ): if char == separator: split_words.append(string[last_index:index] ) _snake_case = index + 1 elif index + 1 == len(UpperCamelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def lowerCamelCase__ ( UpperCamelCase__ : str ) -> List[str]: '''simple docstring''' _snake_case = 1 _snake_case = 2 while i * i <= n: _snake_case = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase__ ( ) -> Dict: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase__ ) > 500 ) if __name__ == "__main__": print(solution())
295
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
1
import argparse import os import re import packaging.version UpperCAmelCase_ = """examples/""" UpperCAmelCase_ = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ = """README.md""" def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case = f.read() _snake_case , _snake_case = REPLACE_PATTERNS[pattern] _snake_case = replace.replace('VERSION' , UpperCamelCase__ ) _snake_case = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='examples' ) def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : Dict=False ) -> List[str]: '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = '🤗 Transformers currently provides the following architectures' _snake_case = '1. Want to contribute a new model?' with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _snake_case = f.readlines() # Find the start of the list. _snake_case = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _snake_case = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _snake_case = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCamelCase__ ) def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: _snake_case = f.read() _snake_case = REPLACE_PATTERNS['init'][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str]=False ) -> int: '''simple docstring''' _snake_case = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _snake_case = default_version.base_version elif patch: _snake_case = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: _snake_case = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. _snake_case = input(F'''Which version are you releasing? [{default_version}]''' ) if len(UpperCamelCase__ ) == 0: _snake_case = default_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ) -> Any: '''simple docstring''' _snake_case = get_version() _snake_case = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' _snake_case = current_version.base_version # Check with the user we got that right. _snake_case = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(UpperCamelCase__ ) == 0: _snake_case = dev_version print(F'''Updating version to {version}.''' ) global_version_update(UpperCamelCase__ ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = self.vocab_size - 1 def lowerCAmelCase ( self ) -> int: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) _snake_case = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Optional[Any]: _snake_case = OpenAIGPTModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Dict: _snake_case = OpenAIGPTLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> List[str]: _snake_case = OpenAIGPTDoubleHeadsModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) -> Dict: _snake_case = self.num_labels _snake_case = OpenAIGPTForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase_ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase_ = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Union[str, Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = inputs_dict['labels'] _snake_case = inputs_dict['labels'] _snake_case = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase_ , ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCAmelCase ( self ) -> List[str]: _snake_case = OpenAIGPTModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , n_embd=37 ) def lowerCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Any: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> Dict: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = OpenAIGPTModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(lowerCAmelCase_ ) _snake_case = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president is _snake_case = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the _snake_case = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase_ )
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase_ = 6_37_81_37.0 UpperCAmelCase_ = 6_35_67_52.31_42_45 UpperCAmelCase_ = 6378137 def lowerCamelCase__ ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ) -> float: '''simple docstring''' _snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _snake_case = atan((1 - flattening) * tan(radians(UpperCamelCase__ ) ) ) _snake_case = atan((1 - flattening) * tan(radians(UpperCamelCase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _snake_case = haversine_distance(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _snake_case = (b_lata + b_lata) / 2 _snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _snake_case = (sin(UpperCamelCase__ ) ** 2) * (cos(UpperCamelCase__ ) ** 2) _snake_case = cos(sigma / 2 ) ** 2 _snake_case = (sigma - sin(UpperCamelCase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _snake_case = (cos(UpperCamelCase__ ) ** 2) * (sin(UpperCamelCase__ ) ** 2) _snake_case = sin(sigma / 2 ) ** 2 _snake_case = (sigma + sin(UpperCamelCase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
import os import pytest from attr import dataclass UpperCAmelCase_ = """us-east-1""" # defaults region @dataclass class UpperCamelCase_ : lowerCAmelCase_ = 42 lowerCAmelCase_ = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' lowerCAmelCase_ = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 16, '''per_device_eval_batch_size''': 16, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 500, '''save_steps''': 5500, } lowerCAmelCase_ = {**hyperparameters, '''max_steps''': 1000} @property def lowerCAmelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCAmelCase ( self ) -> str: return F'''{self.framework}-transfromers-test''' @property def lowerCAmelCase ( self ) -> str: return F'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCAmelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _snake_case = SageMakerTestEnvironment(framework=request.cls.framework )
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase_ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class UpperCamelCase_ : lowerCAmelCase_ = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase_ = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = {} if self.train_dir is not None: _snake_case = self.train_dir if self.validation_dir is not None: _snake_case = self.validation_dir _snake_case = data_files if data_files else None @dataclass class UpperCamelCase_ : lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) lowerCAmelCase_ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase_ = field(default=_lowerCamelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase_ = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) lowerCAmelCase_ = field( default=_lowerCamelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] ) -> Dict: '''simple docstring''' _snake_case = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _snake_case = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _snake_case = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0: _snake_case = ds['train'].train_test_split(data_args.train_val_split ) _snake_case = split['train'] _snake_case = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _snake_case = ViTMAEConfig.from_pretrained(model_args.config_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: _snake_case = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: _snake_case = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _snake_case = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: _snake_case = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: _snake_case = ViTImageProcessor() # create model if model_args.model_name_or_path: _snake_case = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _snake_case = ViTMAEForPreTraining(UpperCamelCase__ ) if training_args.do_train: _snake_case = ds['train'].column_names else: _snake_case = ds['validation'].column_names if data_args.image_column_name is not None: _snake_case = data_args.image_column_name elif "image" in column_names: _snake_case = 'image' elif "img" in column_names: _snake_case = 'img' else: _snake_case = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _snake_case = image_processor.size['shortest_edge'] else: _snake_case = (image_processor.size['height'], image_processor.size['width']) _snake_case = Compose( [ Lambda(lambda UpperCamelCase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(UpperCamelCase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(UpperCamelCase__ : str ): _snake_case = [transforms(UpperCamelCase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _snake_case = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _snake_case = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase__ ) # Compute absolute learning rate _snake_case = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _snake_case = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _snake_case = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: _snake_case = None if training_args.resume_from_checkpoint is not None: _snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: _snake_case = last_checkpoint _snake_case = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _snake_case = trainer.evaluate() trainer.log_metrics('eval' , UpperCamelCase__ ) trainer.save_metrics('eval' , UpperCamelCase__ ) # Write model card and (optionally) push to hub _snake_case = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
295
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''bert''' def __init__( self , lowerCAmelCase_=3_0522 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Optional[int]: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = classifier_dropout class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = DebertaTokenizer lowerCAmelCase_ = True lowerCAmelCase_ = DebertaTokenizerFast def lowerCAmelCase ( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '[UNK]'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = 'lower newer' _snake_case = 'lower newer' return input_text, output_text def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = 'lower newer' _snake_case = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokens + [tokenizer.unk_token] _snake_case = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.get_tokenizer() _snake_case = tokenizer('Hello' , 'World' ) _snake_case = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> Any: _snake_case = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: _snake_case = tokenizer_class.from_pretrained('microsoft/deberta-base' ) _snake_case = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) for seq in encoding['input_ids']] # fmt: off _snake_case = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on _snake_case = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , lowerCAmelCase_ ) for expected, decoded in zip(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCAmelCase_ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCAmelCase_ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: _snake_case = json.loads(f.read() ) _snake_case = collections.OrderedDict() _snake_case = collections.OrderedDict() _snake_case = collections.OrderedDict() with open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f: _snake_case = f.readlines() _snake_case = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(UpperCamelCase__ ): _snake_case = b _snake_case = idx for wd in b: _snake_case = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_="<|startoftext|>" , lowerCAmelCase_="<|endoftext|>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> List[Any]: super().__init__( unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , do_clean_text=lowerCAmelCase_ , **lowerCAmelCase_ , ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) _snake_case = do_clean_text _snake_case , _snake_case , _snake_case , _snake_case = load_vocab_and_emoji(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCAmelCase ( self ) -> str: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def lowerCAmelCase ( self ) -> List[str]: return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: return self.subword_tokenizer.tokenize(lowerCAmelCase_ , clean=self.do_clean_text ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[str]: return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = ''.join(lowerCAmelCase_ ).strip() return out_string def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[int]: _snake_case = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] return input_ids def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _snake_case = 0 if os.path.isdir(lowerCAmelCase_ ): _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: _snake_case = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) _snake_case = token_index writer.write(','.join(lowerCAmelCase_ ) + '\n' ) index += 1 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , lowerCAmelCase_ ) return vocab_file, emoji_file class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _snake_case = vocab # same as swe _snake_case = ids_to_tokens # same as bpe _snake_case = emoji _snake_case = np.max([len(lowerCAmelCase_ ) for w in self.vocab.keys()] ) _snake_case = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) _snake_case = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) _snake_case = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) _snake_case = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) _snake_case = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) _snake_case = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' _snake_case = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' _snake_case = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ) -> str: return len(self.ids_to_tokens ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = self.content_repattera.sub('<URL>' , lowerCAmelCase_ ) _snake_case = self.content_repattera.sub('<EMAIL>' , lowerCAmelCase_ ) _snake_case = self.content_repattera.sub('<TEL>' , lowerCAmelCase_ ) _snake_case = self.content_repattera.sub('<DATE>' , lowerCAmelCase_ ) _snake_case = self.content_repattera.sub('<DATE>' , lowerCAmelCase_ ) _snake_case = self.content_repattera.sub('<PRICE>' , lowerCAmelCase_ ) _snake_case = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: _snake_case = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Tuple: _snake_case = text.replace(' ' , '<SP>' ) _snake_case = text.replace(' ' , '<SP>' ) _snake_case = text.replace('\r\n' , '<BR>' ) _snake_case = text.replace('\n' , '<BR>' ) _snake_case = text.replace('\r' , '<BR>' ) _snake_case = text.replace('\t' , '<TAB>' ) _snake_case = text.replace('—' , 'ー' ) _snake_case = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: _snake_case = text.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if clean: _snake_case = self.clean_text(lowerCAmelCase_ ) def check_simbol(lowerCAmelCase_ ): _snake_case = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 2: _snake_case = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(lowerCAmelCase_ ): _snake_case = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 3: _snake_case = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False _snake_case = 0 _snake_case = [] while pos < len(lowerCAmelCase_ ): _snake_case = min(len(lowerCAmelCase_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 _snake_case = [] # (token_id, token, pos) for e in range(lowerCAmelCase_ , lowerCAmelCase_ , -1 ): _snake_case = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase_ ) > 2: _snake_case = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase_ ) > 0: # the smallest token_id is adopted _snake_case , _snake_case , _snake_case = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[0] )[0] result.append(lowerCAmelCase_ ) _snake_case = e else: _snake_case = pos + 1 _snake_case = text[pos:end] if check_simbol(lowerCAmelCase_ ): result.append('<KIGOU>' ) elif checkuae(lowerCAmelCase_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) _snake_case = end return result def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="\n" ) -> Optional[Any]: _snake_case = [] _snake_case = [] _snake_case = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode('utf-8' , errors='replace' ) ) _snake_case = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(lowerCAmelCase_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode('utf-8' , errors='replace' ) ) _snake_case = ''.join(lowerCAmelCase_ ) return text
295
def lowerCamelCase__ ( ) -> int: '''simple docstring''' return 1 def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 200 ) + one_pound(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : int = 200 ) -> int: '''simple docstring''' return two_pound(UpperCamelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
295
1
def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> int: '''simple docstring''' _snake_case = 0 _snake_case = len(UpperCamelCase__ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _snake_case = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None _snake_case = sorted_collection[point] if current_item == item: return point else: if point < left: _snake_case = left _snake_case = point elif point > right: _snake_case = right _snake_case = point else: if item < current_item: _snake_case = point - 1 else: _snake_case = point + 1 return None def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> Dict: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None _snake_case = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(UpperCamelCase__ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif point > right: return interpolation_search_by_recursion(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , point - 1 ) else: return interpolation_search_by_recursion( UpperCamelCase__ , UpperCamelCase__ , point + 1 , UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' if collection != sorted(UpperCamelCase__ ): raise ValueError('Collection must be ascending sorted' ) return True if __name__ == "__main__": import sys UpperCAmelCase_ = 0 if debug == 1: UpperCAmelCase_ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit("""Sequence must be ascending sorted to apply interpolation search""") UpperCAmelCase_ = 67 UpperCAmelCase_ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print("""Not found""")
295
def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' _snake_case = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
295
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
295
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): @register_to_config def __init__( self , lowerCAmelCase_ = 128 , lowerCAmelCase_ = 256 , lowerCAmelCase_ = 20_00.0 , lowerCAmelCase_ = 768 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2048 , lowerCAmelCase_ = 0.1 , ) -> Union[str, Any]: super().__init__() _snake_case = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) _snake_case = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder _snake_case = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = nn.Dropout(p=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: _snake_case = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case , _snake_case , _snake_case = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _snake_case = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _snake_case = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _snake_case = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _snake_case = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _snake_case = self.position_encoding(lowerCAmelCase_ ) _snake_case = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings _snake_case = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. _snake_case = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _snake_case = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _snake_case = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _snake_case = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _snake_case = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] _snake_case = self.decoder_norm(lowerCAmelCase_ ) _snake_case = self.post_dropout(lowerCAmelCase_ ) _snake_case = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> Tuple: super().__init__() _snake_case = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Tuple: _snake_case = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: _snake_case = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _snake_case = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer _snake_case = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: super().__init__() _snake_case = TaLayerNorm(lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> str: # pre_self_attention_layer_norm _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block _snake_case = self.attention(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> str: super().__init__() _snake_case = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ) -> Dict: _snake_case = self.layer_norm(lowerCAmelCase_ ) _snake_case = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: super().__init__() _snake_case = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) _snake_case = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) _snake_case = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _snake_case = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: _snake_case = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.DenseReluDense(lowerCAmelCase_ ) _snake_case = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.Dropout(lowerCAmelCase_ ) _snake_case = NewGELUActivation() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Any: _snake_case = self.act(self.wi_a(lowerCAmelCase_ ) ) _snake_case = self.wi_a(lowerCAmelCase_ ) _snake_case = hidden_gelu * hidden_linear _snake_case = self.dropout(lowerCAmelCase_ ) _snake_case = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1E-6 ) -> str: super().__init__() _snake_case = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) _snake_case = eps def lowerCAmelCase ( self , lowerCAmelCase_ ) -> int: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _snake_case = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) _snake_case = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _snake_case = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase_ ( nn.Module ): def lowerCAmelCase ( self , lowerCAmelCase_ ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: super().__init__() _snake_case = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = self.scale_bias(lowerCAmelCase_ ) _snake_case , _snake_case = torch.chunk(lowerCAmelCase_ , 2 , -1 ) _snake_case = x * (1 + scale) + shift return x
295
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''xlm''' lowerCAmelCase_ = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , lowerCAmelCase_=3_0145 , lowerCAmelCase_=2048 , lowerCAmelCase_=12 , lowerCAmelCase_=16 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=True , lowerCAmelCase_=512 , lowerCAmelCase_=2048**-0.5 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0.02 , lowerCAmelCase_=0 , lowerCAmelCase_=1 , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=5 , lowerCAmelCase_=True , lowerCAmelCase_="first" , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=0.1 , lowerCAmelCase_=5 , lowerCAmelCase_=5 , lowerCAmelCase_=0 , lowerCAmelCase_=0 , lowerCAmelCase_=2 , lowerCAmelCase_=0 , **lowerCAmelCase_ , ) -> List[str]: _snake_case = vocab_size _snake_case = emb_dim _snake_case = n_layers _snake_case = n_heads _snake_case = dropout _snake_case = attention_dropout _snake_case = gelu_activation _snake_case = sinusoidal_embeddings _snake_case = causal _snake_case = asm _snake_case = n_langs _snake_case = use_lang_emb _snake_case = layer_norm_eps _snake_case = bos_index _snake_case = eos_index _snake_case = pad_index _snake_case = unk_index _snake_case = mask_index _snake_case = is_encoder _snake_case = max_position_embeddings _snake_case = embed_init_std _snake_case = init_std _snake_case = summary_type _snake_case = summary_use_proj _snake_case = summary_activation _snake_case = summary_proj_to_labels _snake_case = summary_first_dropout _snake_case = start_n_top _snake_case = end_n_top _snake_case = mask_token_id _snake_case = lang_id if "n_words" in kwargs: _snake_case = kwargs['n_words'] super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
295
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''gpt_neo''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , lowerCAmelCase_=5_0257 , lowerCAmelCase_=2048 , lowerCAmelCase_=2048 , lowerCAmelCase_=24 , lowerCAmelCase_=[[["global", "local"], 12]] , lowerCAmelCase_=16 , lowerCAmelCase_=None , lowerCAmelCase_=256 , lowerCAmelCase_="gelu_new" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-5 , lowerCAmelCase_=0.02 , lowerCAmelCase_=True , lowerCAmelCase_=5_0256 , lowerCAmelCase_=5_0256 , **lowerCAmelCase_ , ) -> Tuple: _snake_case = vocab_size _snake_case = max_position_embeddings _snake_case = hidden_size _snake_case = num_layers _snake_case = num_heads _snake_case = intermediate_size _snake_case = window_size _snake_case = activation_function _snake_case = resid_dropout _snake_case = embed_dropout _snake_case = attention_dropout _snake_case = classifier_dropout _snake_case = layer_norm_epsilon _snake_case = initializer_range _snake_case = use_cache _snake_case = bos_token_id _snake_case = eos_token_id _snake_case = attention_types _snake_case = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowerCAmelCase ( lowerCAmelCase_ ) -> Any: _snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ) -> Any: '''simple docstring''' import torch _snake_case = input.size() _snake_case = len(UpperCamelCase__ ) _snake_case = shape[dimension] _snake_case = torch.arange(0 , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = torch.div(sizedim - size , UpperCamelCase__ , rounding_mode='floor' ) + 1 _snake_case = torch.arange(UpperCamelCase__ ) + low_indices[:min_length][:, None] _snake_case = [slice(UpperCamelCase__ )] * rank _snake_case = indices _snake_case = input[s] _snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ) -> str: '''simple docstring''' import torch _snake_case = torch.arange(1 , UpperCamelCase__ ) _snake_case = torch.remainder(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = remainders == 0 _snake_case = candidates[divisor_indices] _snake_case = torch.max(UpperCamelCase__ ) return largest_divisor, torch.div(UpperCamelCase__ , UpperCamelCase__ , rounding_mode='floor' ) class UpperCamelCase_ ( _lowerCamelCase ): @property def lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) _snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: _snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowerCAmelCase ( self ) -> int: return self._config.num_heads def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = -1 , lowerCAmelCase_ = -1 , lowerCAmelCase_ = False , lowerCAmelCase_ = None , ) -> Mapping[str, Any]: _snake_case = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() _snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _snake_case , _snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values _snake_case = seqlen + 2 _snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] _snake_case = common_inputs['attention_mask'] if self.use_past: _snake_case = ordered_inputs['attention_mask'].dtype _snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self ) -> int: return 13
295
1
from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase_ = 100 UpperCAmelCase_ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase_ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _snake_case = set() _snake_case = 42 _snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def lowerCamelCase__ ( UpperCamelCase__ : int = 5_000 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase__ ): if len(partition(UpperCamelCase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
295
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _snake_case , _snake_case = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCAmelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCAmelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
295
1
import torch from diffusers import DiffusionPipeline class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__() self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) def __call__( self ) -> List[Any]: _snake_case = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _snake_case = 1 _snake_case = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample _snake_case = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _snake_case = scheduler_output - scheduler_output + torch.ones_like(lowerCAmelCase_ ) return result
295
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig UpperCAmelCase_ = logging.get_logger(__name__) # General docstring UpperCAmelCase_ = """ResNetConfig""" # Base docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = [1, 2048, 7, 7] # Image classification docstring UpperCAmelCase_ = """microsoft/resnet-50""" UpperCAmelCase_ = """tiger cat""" UpperCAmelCase_ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Union[str, Any]: super().__init__() _snake_case = nn.Convad( lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=lowerCAmelCase_ , stride=lowerCAmelCase_ , padding=kernel_size // 2 , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) _snake_case = ACTaFN[activation] if activation is not None else nn.Identity() def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> Dict: super().__init__() _snake_case = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case = config.num_channels def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.pooler(lowerCAmelCase_ ) return embedding class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 ) -> List[Any]: super().__init__() _snake_case = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , stride=lowerCAmelCase_ , bias=lowerCAmelCase_ ) _snake_case = nn.BatchNormad(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = self.convolution(lowerCAmelCase_ ) _snake_case = self.normalization(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" ) -> Any: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "relu" , lowerCAmelCase_ = 4 ) -> List[str]: super().__init__() _snake_case = in_channels != out_channels or stride != 1 _snake_case = out_channels // reduction _snake_case = ( ResNetShortCut(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case = nn.Sequential( ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ ) , ResNetConvLayer(lowerCAmelCase_ , lowerCAmelCase_ , kernel_size=1 , activation=lowerCAmelCase_ ) , ) _snake_case = ACTaFN[activation] def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = hidden_state _snake_case = self.layer(lowerCAmelCase_ ) _snake_case = self.shortcut(lowerCAmelCase_ ) hidden_state += residual _snake_case = self.activation(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Tuple: super().__init__() _snake_case = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer _snake_case = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase_ , lowerCAmelCase_ , stride=lowerCAmelCase_ , activation=config.hidden_act ) , *[layer(lowerCAmelCase_ , lowerCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Tensor: _snake_case = input for layer in self.layers: _snake_case = layer(lowerCAmelCase_ ) return hidden_state class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , depth=lowerCAmelCase_ ) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = True ) -> BaseModelOutputWithNoAttention: _snake_case = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case = hidden_states + (hidden_state,) _snake_case = stage_module(lowerCAmelCase_ ) if output_hidden_states: _snake_case = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase_ , hidden_states=lowerCAmelCase_ , ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ResNetConfig lowerCAmelCase_ = '''resnet''' lowerCAmelCase_ = '''pixel_values''' lowerCAmelCase_ = True def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if isinstance(lowerCAmelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(lowerCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = value UpperCAmelCase_ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCAmelCase_ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__(lowerCAmelCase_ ) _snake_case = config _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder( lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = encoder_outputs[0] _snake_case = self.pooler(lowerCAmelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase_ , pooler_output=lowerCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> Union[str, Any]: super().__init__(lowerCAmelCase_ ) _snake_case = config.num_labels _snake_case = ResNetModel(lowerCAmelCase_ ) # classification head _snake_case = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase ( self , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.resnet(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.pooler_output if return_dict else outputs[1] _snake_case = self.classifier(lowerCAmelCase_ ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: _snake_case = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase_ , logits=lowerCAmelCase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowerCamelCase , ) class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): def __init__( self , lowerCAmelCase_ ) -> List[Any]: super().__init__(lowerCAmelCase_ ) super()._init_backbone(lowerCAmelCase_ ) _snake_case = [config.embedding_size] + config.hidden_sizes _snake_case = ResNetEmbeddings(lowerCAmelCase_ ) _snake_case = ResNetEncoder(lowerCAmelCase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase_ ) @replace_return_docstrings(output_type=lowerCAmelCase_ , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> BackboneOutput: _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = self.embedder(lowerCAmelCase_ ) _snake_case = self.encoder(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) _snake_case = outputs.hidden_states _snake_case = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase_ , )
295
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) lowerCAmelCase_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) lowerCAmelCase_ = "question" lowerCAmelCase_ = "context" lowerCAmelCase_ = "answers" @property def lowerCAmelCase ( self ) -> Dict[str, str]: return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
295
def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] ) -> bool: '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> bool: '''simple docstring''' if curr_ind == len(UpperCamelCase__ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(UpperCamelCase__ ) ): if valid_connection(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): # Insert current vertex into path as next transition _snake_case = next_ver # Validate created path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , curr_ind + 1 ): return True # Backtrack _snake_case = -1 return False def lowerCamelCase__ ( UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int = 0 ) -> list[int]: '''simple docstring''' _snake_case = [-1] * (len(UpperCamelCase__ ) + 1) # initialize start and end of path with starting index _snake_case = _snake_case = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(UpperCamelCase__ , UpperCamelCase__ , 1 ) else []
295
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def lowerCamelCase__ ( UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict ) -> List[Any]: '''simple docstring''' _snake_case = OmegaConf.load(UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] _snake_case = list(state_dict.keys() ) # extract state_dict for VQVAE _snake_case = {} _snake_case = 'first_stage_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] # extract state_dict for UNetLDM _snake_case = {} _snake_case = 'model.diffusion_model.' for key in keys: if key.startswith(UpperCamelCase__ ): _snake_case = state_dict[key] _snake_case = config.model.params.first_stage_config.params _snake_case = config.model.params.unet_config.params _snake_case = VQModel(**UpperCamelCase__ ).eval() vqvae.load_state_dict(UpperCamelCase__ ) _snake_case = UNetLDMModel(**UpperCamelCase__ ).eval() unet.load_state_dict(UpperCamelCase__ ) _snake_case = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=UpperCamelCase__ , ) _snake_case = LDMPipeline(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) pipeline.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) UpperCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
295
1
class UpperCamelCase_ : # Public class to implement a graph def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _snake_case = row _snake_case = col _snake_case = graph def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: # Checking all 8 elements surrounding nth element _snake_case = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _snake_case = [-1, 0, 1, -1, 1, -1, 0, 1] _snake_case = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> int: # And finally, count all islands. _snake_case = [[False for j in range(self.COL )] for i in range(self.ROW )] _snake_case = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) count += 1 return count
295
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCamelCase_ : @property def lowerCAmelCase ( self ) -> int: return self.get_dummy_input() @property def lowerCAmelCase ( self ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def lowerCAmelCase ( self , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> List[str]: _snake_case = 4 _snake_case = 32 _snake_case = (32, 32) _snake_case = torch.manual_seed(0 ) _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = (batch_size, num_channels) + sizes _snake_case = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) _snake_case = {'hidden_states': hidden_states} if include_temb: _snake_case = 128 _snake_case = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) if include_res_hidden_states_tuple: _snake_case = torch.manual_seed(1 ) _snake_case = (randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ),) if include_encoder_hidden_states: _snake_case = floats_tensor((batch_size, 32, 32) ).to(lowerCAmelCase_ ) if include_skip_sample: _snake_case = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase_ , device=lowerCAmelCase_ ) return dummy_input def lowerCAmelCase ( self ) -> Tuple: _snake_case = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": _snake_case = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _snake_case = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) unet_block.to(lowerCAmelCase_ ) unet_block.eval() with torch.no_grad(): _snake_case = unet_block(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] self.assertEqual(output.shape , self.output_shape ) _snake_case = output[0, -1, -3:, -3:] _snake_case = torch.tensor(lowerCAmelCase_ ).to(lowerCAmelCase_ ) assert torch_all_close(output_slice.flatten() , lowerCAmelCase_ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def lowerCAmelCase ( self ) -> Tuple: _snake_case , _snake_case = self.prepare_init_args_and_inputs_for_common() _snake_case = self.block_class(**lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.train() _snake_case = model(**lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = output[0] _snake_case = torch.device(lowerCAmelCase_ ) _snake_case = randn_tensor(output.shape , device=lowerCAmelCase_ ) _snake_case = torch.nn.functional.mse_loss(lowerCAmelCase_ , lowerCAmelCase_ ) loss.backward()
295
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int ) -> np.ndarray: '''simple docstring''' _snake_case = np.nan for i in range(UpperCamelCase__ ): _snake_case = features[:, labels == i] _snake_case = data.mean(1 ) # Centralize the data of class i _snake_case = data - column_reshape(UpperCamelCase__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(UpperCamelCase__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case = np.dot(UpperCamelCase__ , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int ) -> np.ndarray: '''simple docstring''' _snake_case = features.mean(1 ) _snake_case = np.nan for i in range(UpperCamelCase__ ): _snake_case = features[:, labels == i] _snake_case = data.shape[1] _snake_case = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _snake_case = device_data * np.dot( column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ ) , (column_reshape(UpperCamelCase__ ) - column_reshape(UpperCamelCase__ )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int ) -> np.ndarray: '''simple docstring''' if features.any(): _snake_case = features.mean(1 ) # Center the dataset _snake_case = features - np.reshape(UpperCamelCase__ , (data_mean.size, 1) ) _snake_case = np.dot(UpperCamelCase__ , centered_data.T ) / features.shape[1] _snake_case , _snake_case = np.linalg.eigh(UpperCamelCase__ ) # Take all the columns in the reverse order (-1), and then takes only the first _snake_case = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _snake_case = np.dot(filtered_eigenvectors.T , UpperCamelCase__ ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=UpperCamelCase__ ) logging.error('Dataset empty' ) raise AssertionError def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _snake_case , _snake_case = eigh( covariance_between_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , covariance_within_classes(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , ) _snake_case = eigenvectors[:, ::-1][:, :dimensions] _snake_case , _snake_case , _snake_case = np.linalg.svd(UpperCamelCase__ ) _snake_case = svd_matrix[:, 0:dimensions] _snake_case = np.dot(filtered_svd_matrix.T , UpperCamelCase__ ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=UpperCamelCase__ ) logging.error('Dataset empty' ) raise AssertionError def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _snake_case = np.array([0, 0, 0, 1, 1] ) _snake_case = 2 _snake_case = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(UpperCamelCase__ ) as error_info: _snake_case = linear_discriminant_analysis( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if isinstance(UpperCamelCase__ , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def lowerCamelCase__ ( ) -> None: '''simple docstring''' _snake_case = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _snake_case = 2 _snake_case = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(UpperCamelCase__ ) as error_info: _snake_case = principal_component_analysis(UpperCamelCase__ , UpperCamelCase__ ) if not np.allclose(UpperCamelCase__ , UpperCamelCase__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
295
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case , _snake_case = 9, 14 # noqa: F841 _snake_case = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _snake_case = defaultdict(UpperCamelCase__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _snake_case = mst(UpperCamelCase__ ) _snake_case = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _snake_case = tuple(answer[:2] ) _snake_case = tuple(edge[::-1] ) assert edge in result or reverse in result
295
1
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean() def lowerCamelCase__ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any] ) -> int: '''simple docstring''' _snake_case = np.dot(UpperCamelCase__ , UpperCamelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) ) def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Any=70_000 ) -> Tuple: '''simple docstring''' _snake_case = np.zeros(x.shape[1] ) for iterations in range(UpperCamelCase__ ): _snake_case = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = sigmoid_function(UpperCamelCase__ ) _snake_case = np.dot(x.T , h - y ) / y.size _snake_case = theta - alpha * gradient # updating the weights _snake_case = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _snake_case = sigmoid_function(UpperCamelCase__ ) _snake_case = cost_function(UpperCamelCase__ , UpperCamelCase__ ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCAmelCase_ = datasets.load_iris() UpperCAmelCase_ = iris.data[:, :2] UpperCAmelCase_ = (iris.target != 0) * 1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = logistic_reg(alpha, x, y, max_iterations=70000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCamelCase__ ( UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' return sigmoid_function( np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 0].min(), x[:, 0].max()) ((UpperCAmelCase_) , (UpperCAmelCase_)) = (x[:, 1].min(), x[:, 1].max()) ((UpperCAmelCase_) , (UpperCAmelCase_)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCAmelCase_ = np.c_[xxa.ravel(), xxa.ravel()] UpperCAmelCase_ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
295
from collections.abc import Sequence def lowerCamelCase__ ( UpperCamelCase__ : Sequence[float] , UpperCamelCase__ : bool = False ) -> float: '''simple docstring''' if not arr: return 0 _snake_case = 0 if allow_empty_subarrays else float('-inf' ) _snake_case = 0.0 for num in arr: _snake_case = max(0 if allow_empty_subarrays else num , curr_sum + num ) _snake_case = max(UpperCamelCase__ , UpperCamelCase__ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
295
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCamelCase_ ( unittest.TestCase , _lowerCamelCase ): def lowerCAmelCase ( self ) -> str: _snake_case = load_tool('text-to-speech' ) self.tool.setup() def lowerCAmelCase ( self ) -> Any: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _snake_case = self.tool('hey' ) _snake_case = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) ) def lowerCAmelCase ( self ) -> Tuple: # SpeechT5 isn't deterministic torch.manual_seed(0 ) _snake_case = self.tool('hey' ) _snake_case = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85] ) , ) )
295
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ ( enum.Enum ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 @add_end_docstrings(_lowerCamelCase ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case = None if self.model.config.prefix is not None: _snake_case = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) _snake_case = {**self._preprocess_params, **preprocess_params} _snake_case = {**self._forward_params, **forward_params} def lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Tuple: _snake_case = {} if prefix is not None: _snake_case = prefix if prefix: _snake_case = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) _snake_case = generate_kwargs _snake_case = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case = ReturnType.TENSORS if return_type is not None: _snake_case = return_type if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCAmelCase ( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[str]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> List[Any]: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_="" , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Any: _snake_case = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) _snake_case = prompt_text if handle_long_generation == "hole": _snake_case = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case = generate_kwargs['max_new_tokens'] else: _snake_case = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case = inputs['attention_mask'][:, -keep_length:] return inputs def lowerCAmelCase ( self , lowerCAmelCase_ , **lowerCAmelCase_ ) -> Optional[Any]: _snake_case = model_inputs['input_ids'] _snake_case = model_inputs.get('attention_mask' , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case = None _snake_case = None _snake_case = 1 else: _snake_case = input_ids.shape[0] _snake_case = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = generated_sequence.shape[0] if self.framework == "pt": _snake_case = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=ReturnType.FULL_TEXT , lowerCAmelCase_=True ) -> int: _snake_case = model_outputs['generated_sequence'][0] _snake_case = model_outputs['input_ids'] _snake_case = model_outputs['prompt_text'] _snake_case = generated_sequence.numpy().tolist() _snake_case = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case = 0 else: _snake_case = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case = prompt_text + text[prompt_length:] else: _snake_case = text[prompt_length:] _snake_case = {'generated_text': all_text} records.append(lowerCAmelCase_ ) return records
295
1
from math import sqrt def lowerCamelCase__ ( UpperCamelCase__ : int ) -> int: '''simple docstring''' _snake_case = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def lowerCamelCase__ ( UpperCamelCase__ : int = 10_000 ) -> int: '''simple docstring''' _snake_case = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
295
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo UpperCAmelCase_ = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ UpperCAmelCase_ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ UpperCAmelCase_ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ ( datasets.Metric ): def lowerCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase_ , hypotheses=lowerCAmelCase_ , min_len=lowerCAmelCase_ , max_len=lowerCAmelCase_ ) }
295
1
from itertools import permutations def lowerCamelCase__ ( UpperCamelCase__ : tuple ) -> bool: '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _snake_case = [7, 11, 13, 17] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase__ ( UpperCamelCase__ : int = 10 ) -> int: '''simple docstring''' return sum( int(''.join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(F"{solution() = }")
295
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase_ = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } UpperCAmelCase_ = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' _snake_case = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="replace" , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_=False , **lowerCAmelCase_ , ) -> Tuple: _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token super().__init__( errors=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) with open(lowerCAmelCase_ , encoding='utf-8' ) as vocab_handle: _snake_case = json.load(lowerCAmelCase_ ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase_ , encoding='utf-8' ) as merges_handle: _snake_case = merges_handle.read().split('\n' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCAmelCase ( self ) -> Any: return len(self.encoder ) def lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Dict: if token in self.cache: return self.cache[token] _snake_case = tuple(lowerCAmelCase_ ) _snake_case = get_pairs(lowerCAmelCase_ ) if not pairs: return token while True: _snake_case = min(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : self.bpe_ranks.get(lowerCAmelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(lowerCAmelCase_ ): try: _snake_case = word.index(lowerCAmelCase_ , lowerCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(lowerCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(lowerCAmelCase_ ) _snake_case = new_word if len(lowerCAmelCase_ ) == 1: break else: _snake_case = get_pairs(lowerCAmelCase_ ) _snake_case = ' '.join(lowerCAmelCase_ ) _snake_case = word return word def lowerCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _snake_case = [] for token in re.findall(self.pat , lowerCAmelCase_ ): _snake_case = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase_ ).split(' ' ) ) return bpe_tokens def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: return self.encoder.get(lowerCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[int]: return self.decoder.get(lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _snake_case = ''.join(lowerCAmelCase_ ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase_ , ensure_ascii=lowerCAmelCase_ ) + '\n' ) _snake_case = 0 with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _snake_case = token_index writer.write(' '.join(lowerCAmelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , **lowerCAmelCase_ ) -> str: _snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase_ ) > 0 and not text[0].isspace()): _snake_case = ' ' + text return (text, kwargs)
295
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''instructblip_vision_model''' def __init__( self , lowerCAmelCase_=1408 , lowerCAmelCase_=6144 , lowerCAmelCase_=39 , lowerCAmelCase_=16 , lowerCAmelCase_=224 , lowerCAmelCase_=14 , lowerCAmelCase_="gelu" , lowerCAmelCase_=1E-6 , lowerCAmelCase_=0.0 , lowerCAmelCase_=1E-10 , lowerCAmelCase_=True , **lowerCAmelCase_ , ) -> Tuple: super().__init__(**lowerCAmelCase_ ) _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = patch_size _snake_case = image_size _snake_case = initializer_range _snake_case = attention_dropout _snake_case = layer_norm_eps _snake_case = hidden_act _snake_case = qkv_bias @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) _snake_case , _snake_case = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _snake_case = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''instructblip_qformer''' def __init__( self , lowerCAmelCase_=3_0522 , lowerCAmelCase_=768 , lowerCAmelCase_=12 , lowerCAmelCase_=12 , lowerCAmelCase_=3072 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1E-12 , lowerCAmelCase_=0 , lowerCAmelCase_="absolute" , lowerCAmelCase_=2 , lowerCAmelCase_=1408 , **lowerCAmelCase_ , ) -> List[str]: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = cross_attention_frequency _snake_case = encoder_hidden_size @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , **lowerCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) _snake_case , _snake_case = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _snake_case = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = '''instructblip''' lowerCAmelCase_ = True def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=32 , **lowerCAmelCase_ ) -> str: super().__init__(**lowerCAmelCase_ ) if vision_config is None: _snake_case = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _snake_case = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _snake_case = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _snake_case = InstructBlipVisionConfig(**lowerCAmelCase_ ) _snake_case = InstructBlipQFormerConfig(**lowerCAmelCase_ ) _snake_case = text_config['model_type'] if 'model_type' in text_config else 'opt' _snake_case = CONFIG_MAPPING[text_model_type](**lowerCAmelCase_ ) _snake_case = self.text_config.tie_word_embeddings _snake_case = self.text_config.is_encoder_decoder _snake_case = num_query_tokens _snake_case = self.vision_config.hidden_size _snake_case = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _snake_case = 1.0 _snake_case = 0.02 @classmethod def lowerCAmelCase ( cls , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ , ) -> Tuple: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase_ , ) def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.vision_config.to_dict() _snake_case = self.qformer_config.to_dict() _snake_case = self.text_config.to_dict() _snake_case = self.__class__.model_type return output
295
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : int ) -> list[int]: '''simple docstring''' _snake_case = [True] * limit _snake_case = False _snake_case = False _snake_case = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): _snake_case = i * 2 while index < limit: _snake_case = False _snake_case = index + i _snake_case = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def lowerCamelCase__ ( UpperCamelCase__ : int = 1_000_000 ) -> int: '''simple docstring''' _snake_case = prime_sieve(UpperCamelCase__ ) _snake_case = 0 _snake_case = 0 for i in range(len(UpperCamelCase__ ) ): for j in range(i + length , len(UpperCamelCase__ ) ): _snake_case = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _snake_case = j - i _snake_case = sol return largest if __name__ == "__main__": print(F"{solution() = }")
295
import random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : bool = False ) -> dict: '''simple docstring''' _snake_case = {i: [] for i in range(UpperCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCamelCase__ ): for j in range(i + 1 , UpperCamelCase__ ): if random.random() < probability: graph[i].append(UpperCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCamelCase__ ) return graph def lowerCamelCase__ ( UpperCamelCase__ : int ) -> dict: '''simple docstring''' return { i: [j for j in range(UpperCamelCase__ ) if i != j] for i in range(UpperCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
295
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError('Quantized models are not supported.' ) _snake_case = re.match(R'^mobilenet_v1_([^_]*)_([^_]*)$' , UpperCamelCase__ ) if matches: _snake_case = float(matches[1] ) _snake_case = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _snake_case = 1_001 _snake_case = 'imagenet-1k-id2label.json' _snake_case = 'huggingface/label-files' _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ) + 1: v for k, v in idalabel.items()} _snake_case = 'background' _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ) -> int: '''simple docstring''' _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any]=False ) -> List[str]: '''simple docstring''' _snake_case = get_mobilenet_va_config(UpperCamelCase__ ) # Load 🤗 model _snake_case = MobileNetVaForImageClassification(UpperCamelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _snake_case = MobileNetVaImageProcessor( crop_size={'width': config.image_size, 'height': config.image_size} , size={'shortest_edge': config.image_size + 32} , ) _snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": _snake_case = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _snake_case = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _snake_case = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) _snake_case = 'google/' + model_name image_processor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""mobilenet_v1_1.0_224""", type=str, help="""Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.""", ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original TensorFlow checkpoint (.ckpt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
295
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = 13 , lowerCAmelCase_ = 64 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 128 , lowerCAmelCase_=[16, 32, 64, 128] , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 37 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 10 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 128 , lowerCAmelCase_ = [2, 2, 2, 2] , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 2 , ) -> Dict: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = encoder_stride _snake_case = num_attention_outputs _snake_case = embed_dim _snake_case = embed_dim + 1 _snake_case = resolution _snake_case = depths _snake_case = hidden_sizes _snake_case = dim _snake_case = mlp_expansion_ratio def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> Tuple: return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _snake_case = TFEfficientFormerModel(config=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _snake_case = self.type_sequence_label_size _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _snake_case = 1 _snake_case = TFEfficientFormerForImageClassification(lowerCAmelCase_ ) _snake_case = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _snake_case = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case = config_and_inputs _snake_case = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerModelTester(self ) _snake_case = ConfigTester( self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_ , hidden_size=37 ) def lowerCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def lowerCAmelCase ( self ) -> int: pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def lowerCAmelCase ( self ) -> Optional[Any]: pass def lowerCAmelCase ( self ) -> str: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(lowerCAmelCase_ ) _snake_case = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): _snake_case = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: _snake_case = seq_length * self.model_tester.chunk_length else: _snake_case = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: _snake_case = outputs.decoder_hidden_states self.asseretIsInstance(lowerCAmelCase_ , (list, tuple) ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'decoder_seq_length' , lowerCAmelCase_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> List[Any]: _snake_case = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def lowerCAmelCase ( self ) -> Dict: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase_ ) @slow def lowerCAmelCase ( self ) -> str: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFEfficientFormerModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True _snake_case = getattr(self.model_tester , 'seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'encoder_seq_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'key_length' , lowerCAmelCase_ ) _snake_case = getattr(self.model_tester , 'chunk_length' , lowerCAmelCase_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): _snake_case = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(lowerCAmelCase_ ) _snake_case = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ ) , training=lowerCAmelCase_ ) _snake_case = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCAmelCase_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def lowerCAmelCase ( self ) -> Dict: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _snake_case = model_class(lowerCAmelCase_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _snake_case = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=lowerCAmelCase_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _snake_case = model(lowerCAmelCase_ ) self.assertTrue(outputs_dict is not None ) def lowerCamelCase__ ( ) -> List[str]: '''simple docstring''' _snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase ( self ) -> Dict: return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.05_55, 0.48_25, -0.08_52] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase ( self ) -> str: _snake_case = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=lowerCAmelCase_ , return_tensors='tf' ) # forward pass _snake_case = model(**lowerCAmelCase_ , training=lowerCAmelCase_ ) # verify the logits _snake_case = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase_ ) _snake_case = tf.constant([-0.13_12, 0.43_53, -1.04_99] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) )
295
1
from __future__ import annotations def lowerCamelCase__ ( UpperCamelCase__ : list[int] ) -> list[int]: '''simple docstring''' if len(UpperCamelCase__ ) == 0: return array _snake_case , _snake_case = min(UpperCamelCase__ ), max(UpperCamelCase__ ) # Compute the variables _snake_case = _max - _min + 1 _snake_case , _snake_case = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _snake_case = i - _min _snake_case = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _snake_case = 0 for i in range(UpperCamelCase__ ): while holes_repeat[i] > 0: _snake_case = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = input("""Enter numbers separated by comma:\n""") UpperCAmelCase_ = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
295
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = LEDTokenizerFast lowerCAmelCase_ = True def lowerCAmelCase ( self ) -> List[str]: super().setUp() _snake_case = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _snake_case = {'unk_token': '<unk>'} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase_ ) ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , **lowerCAmelCase_ ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def lowerCAmelCase ( self ) -> Union[str, Any]: return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _snake_case = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , max_length=len(lowerCAmelCase_ ) , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _snake_case = batch.input_ids.tolist()[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors='pt' ) self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('labels' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) @require_torch def lowerCAmelCase ( self ) -> Optional[int]: _snake_case = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(text_target=lowerCAmelCase_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='pt' ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['A long paragraph for summarization.'] _snake_case = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = tokenizer(lowerCAmelCase_ , return_tensors='pt' ) _snake_case = tokenizer(text_target=lowerCAmelCase_ , return_tensors='pt' ) _snake_case = inputs['input_ids'] _snake_case = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCAmelCase ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _snake_case = ['Summary of the text.', 'Another summary.'] _snake_case = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _snake_case = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ ) _snake_case = [[0] * len(lowerCAmelCase_ ) for x in encoded_output['input_ids']] _snake_case = tokenizer.pad(lowerCAmelCase_ ) self.assertSequenceEqual(outputs['global_attention_mask'] , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Tuple: pass def lowerCAmelCase ( self ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = 'A, <mask> AllenNLP sentence.' _snake_case = tokenizer_r.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode_plus(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _snake_case = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _snake_case = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
295
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 224} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = do_center_crop _snake_case = crop_size _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _snake_case = image_std if image_std is not None else OPENAI_CLIP_STD _snake_case = do_convert_rgb def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BICUBIC , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size=size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> Dict: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='size' , default_to_square=lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' , default_to_square=lowerCAmelCase_ ) _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _snake_case = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: _snake_case = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: _snake_case = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: _snake_case = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
295
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase_ ( _lowerCamelCase , unittest.TestCase ): lowerCAmelCase_ = BertTokenizer lowerCAmelCase_ = BertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english def lowerCAmelCase ( self ) -> Optional[int]: super().setUp() _snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = 'UNwant\u00E9d,running' _snake_case = 'unwanted, running' return input_text, output_text def lowerCAmelCase ( self ) -> List[Any]: _snake_case = self.tokenizer_class(self.vocab_file ) _snake_case = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(lowerCAmelCase_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [9, 6, 7, 12, 10, 11] ) def lowerCAmelCase ( self ) -> Tuple: if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # With lower casing _snake_case = self.get_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer(do_lower_case=lowerCAmelCase_ ) _snake_case = 'UNwant\u00E9d,running' _snake_case = tokenizer.tokenize(lowerCAmelCase_ ) _snake_case = rust_tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCAmelCase_ ) _snake_case = rust_tokenizer.encode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def lowerCAmelCase ( self ) -> Any: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> List[str]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def lowerCAmelCase ( self ) -> Dict: _snake_case = BasicTokenizer(do_lower_case=lowerCAmelCase_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = BasicTokenizer() _snake_case = 'a\n\'ll !!to?\'d of, can\'t.' _snake_case = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCAmelCase ( self ) -> Union[str, Any]: _snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] _snake_case = {} for i, token in enumerate(lowerCAmelCase_ ): _snake_case = i _snake_case = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def lowerCAmelCase ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def lowerCAmelCase ( self ) -> Dict: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def lowerCAmelCase ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def lowerCAmelCase ( self ) -> Tuple: _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def lowerCAmelCase ( self ) -> Optional[Any]: _snake_case = self.tokenizer_class.from_pretrained('bert-base-uncased' ) _snake_case = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) _snake_case = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def lowerCAmelCase ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _snake_case = tokenizer_r.encode_plus( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , ) _snake_case = tokenizer_r.do_lower_case if hasattr(lowerCAmelCase_ , 'do_lower_case' ) else False _snake_case = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def lowerCAmelCase ( self ) -> str: _snake_case = ['的', '人', '有'] _snake_case = ''.join(lowerCAmelCase_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = True _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = False _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) _snake_case = tokenizer_r.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_p.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) _snake_case = tokenizer_r.convert_ids_to_tokens(lowerCAmelCase_ ) _snake_case = tokenizer_p.convert_ids_to_tokens(lowerCAmelCase_ ) # it is expected that only the first Chinese character is not preceded by "##". _snake_case = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase_ ) ] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
295
1
from random import randint, random def lowerCamelCase__ ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 5 , ) -> list: '''simple docstring''' _snake_case = [[-1] * number_of_cells] # Create a highway without any car _snake_case = 0 _snake_case = max(UpperCamelCase__ , 0 ) while i < number_of_cells: _snake_case = ( randint(0 , UpperCamelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCamelCase__ ( UpperCamelCase__ : list , UpperCamelCase__ : int ) -> int: '''simple docstring''' _snake_case = 0 _snake_case = highway_now[car_index + 1 :] for cell in range(len(UpperCamelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCamelCase__ , -1 ) def lowerCamelCase__ ( UpperCamelCase__ : list , UpperCamelCase__ : float , UpperCamelCase__ : int ) -> list: '''simple docstring''' _snake_case = len(UpperCamelCase__ ) # Beforce calculations, the highway is empty _snake_case = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case = min(highway_now[car_index] + 1 , UpperCamelCase__ ) # Number of empty cell before the next car _snake_case = get_distance(UpperCamelCase__ , UpperCamelCase__ ) - 1 # We can't have the car causing an accident _snake_case = min(next_highway[car_index] , UpperCamelCase__ ) if random() < probability: # Randomly, a driver will slow down _snake_case = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCamelCase__ ( UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int ) -> list: '''simple docstring''' _snake_case = len(highway[0] ) for i in range(UpperCamelCase__ ): _snake_case = update(highway[i] , UpperCamelCase__ , UpperCamelCase__ ) _snake_case = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): _snake_case = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case = (car_index + speed) % number_of_cells # Commit the change of position _snake_case = speed highway.append(UpperCamelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
295
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> None: warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , lowerCAmelCase_ , ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ )
295
1
from __future__ import annotations import numpy as np def lowerCamelCase__ ( UpperCamelCase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' _snake_case , _snake_case = np.shape(UpperCamelCase__ ) if rows != columns: _snake_case = ( '\'table\' has to be of square shaped array but got a ' F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCamelCase__ ) _snake_case = np.zeros((rows, columns) ) _snake_case = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _snake_case = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) _snake_case = (table[i][j] - total) / upper[j][j] _snake_case = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) _snake_case = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
295
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowerCamelCase__ ( UpperCamelCase__ : Dict=True ) -> Dict: '''simple docstring''' if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowerCamelCase ) ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: with TemporaryDirectory() as tmp_dir: _snake_case = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _snake_case = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _snake_case = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _snake_case = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _snake_case = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' _snake_case = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _snake_case = None builder_instance.download_and_prepare() _snake_case = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowerCamelCase__ ( UpperCamelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _snake_case = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) _snake_case = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) _snake_case = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _snake_case = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
295
1