code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class a : def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: int =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.get_dummy_components() SCREAMING_SNAKE_CASE_: str =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =inputs["""prompt"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""generator"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE_: Tuple =inputs["""output_type"""] if "image" in inputs: SCREAMING_SNAKE_CASE_: List[str] =inputs["""image"""] else: SCREAMING_SNAKE_CASE_: Union[str, Any] =None if "mask_image" in inputs: SCREAMING_SNAKE_CASE_: Optional[Any] =inputs["""mask_image"""] else: SCREAMING_SNAKE_CASE_: Tuple =None if "original_image" in inputs: SCREAMING_SNAKE_CASE_: List[str] =inputs["""original_image"""] else: SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: str =pipe.encode_prompt(lowerCAmelCase ) # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_: Union[str, Any] ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE_: int =image if mask_image is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =mask_image if original_image is not None: SCREAMING_SNAKE_CASE_: str =original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase , lowerCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) SCREAMING_SNAKE_CASE_: Optional[int] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =inputs["""generator"""] SCREAMING_SNAKE_CASE_: List[str] =inputs["""num_inference_steps"""] SCREAMING_SNAKE_CASE_: List[str] =inputs["""output_type"""] # inputs with prompt converted to embeddings SCREAMING_SNAKE_CASE_: Dict ={ """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =image if mask_image is not None: SCREAMING_SNAKE_CASE_: List[str] =mask_image if original_image is not None: SCREAMING_SNAKE_CASE_: int =original_image SCREAMING_SNAKE_CASE_: List[str] =pipe_loaded(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: Optional[int] =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase , 1E-4 ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Any =self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =pipe(**lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.pipeline_class.from_pretrained(lowerCAmelCase ) pipe_loaded.to(lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests SCREAMING_SNAKE_CASE_: Tuple =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =pipe_loaded(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: List[Any] =np.abs(to_np(lowerCAmelCase ) - to_np(lowerCAmelCase ) ).max() self.assertLess(lowerCAmelCase , 1E-4 )
709
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a : def __init__( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : str=False , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , lowerCAmelCase : Dict=19 , lowerCAmelCase : Dict=32 , lowerCAmelCase : Dict=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : List[Any]=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Dict=0.0_2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =parent SCREAMING_SNAKE_CASE_: Tuple =batch_size SCREAMING_SNAKE_CASE_: List[Any] =seq_length SCREAMING_SNAKE_CASE_: int =is_training SCREAMING_SNAKE_CASE_: Any =use_input_mask SCREAMING_SNAKE_CASE_: List[str] =use_token_type_ids SCREAMING_SNAKE_CASE_: List[Any] =use_labels SCREAMING_SNAKE_CASE_: Tuple =vocab_size SCREAMING_SNAKE_CASE_: Any =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[int] =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[Any] =intermediate_size SCREAMING_SNAKE_CASE_: List[Any] =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =max_position_embeddings SCREAMING_SNAKE_CASE_: Union[str, Any] =type_vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =type_sequence_label_size SCREAMING_SNAKE_CASE_: Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_: Any =num_labels SCREAMING_SNAKE_CASE_: Dict =num_choices SCREAMING_SNAKE_CASE_: Any =scope def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_: Optional[int] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_: Any =None SCREAMING_SNAKE_CASE_: Dict =None SCREAMING_SNAKE_CASE_: int =None if self.use_labels: SCREAMING_SNAKE_CASE_: int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: int =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_: Dict =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_: List[Any] =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=lowerCAmelCase , esmfold_config={"""trunk""": {"""num_blocks""": 2}, """fp16_esm""": False} , ) return config def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =EsmForProteinFolding(config=lowerCAmelCase ).float() model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase , attention_mask=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): Any =config_and_inputs SCREAMING_SNAKE_CASE_: int ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : List[str] = False UpperCamelCase : List[str] = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase : List[str] = () UpperCamelCase : List[Any] = {} if is_torch_available() else {} UpperCamelCase : Tuple = False def lowerCamelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =EsmFoldModelTester(self ) SCREAMING_SNAKE_CASE_: Tuple =ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @unittest.skip("""Does not support attention outputs""" ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCamelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' pass @unittest.skip("""ESMFold does not support passing input embeds!""" ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' pass @unittest.skip("""ESMFold does not support head pruning.""" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""ESMFold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' pass @unittest.skip("""ESMfold does not output hidden states in the normal way.""" ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold only has one output format.""" ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""This test doesn't work for ESMFold and doesn't test core functionality""" ) def lowerCamelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""ESMFold does not support input chunking.""" ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments.""" ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support torchscript compilation.""" ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""ESMFold doesn't support data parallel.""" ) def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' pass @require_torch class a ( UpperCAmelCase__ ): @slow def lowerCamelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =EsmForProteinFolding.from_pretrained("""facebook/esmfold_v1""" ).float() model.eval() SCREAMING_SNAKE_CASE_: str =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE_: Optional[int] =model(lowerCAmelCase )["""positions"""] SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([2.5_8_2_8, 0.7_9_9_3, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , lowerCAmelCase , atol=1E-4 ) )
710
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
711
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
0
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __magic_name__ ( lowercase ): # picklable for multiprocessing return x.sum() def __magic_name__ ( lowercase ): # picklable for multiprocessing return i + 1 @dataclass class a : UpperCamelCase : int UpperCamelCase : str class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] ={} SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =1 SCREAMING_SNAKE_CASE_: List[Any] =[1, 2] SCREAMING_SNAKE_CASE_: Optional[int] ={"""a""": 1, """b""": 2} SCREAMING_SNAKE_CASE_: Tuple ={"""a""": [1, 2], """b""": [3, 4]} SCREAMING_SNAKE_CASE_: Optional[Any] ={"""a""": {"""1""": 1}, """b""": 2} SCREAMING_SNAKE_CASE_: List[str] ={"""a""": 1, """b""": 2, """c""": 3, """d""": 4} SCREAMING_SNAKE_CASE_: List[str] ={} SCREAMING_SNAKE_CASE_: Dict =[] SCREAMING_SNAKE_CASE_: Dict =2 SCREAMING_SNAKE_CASE_: Any =[2, 3] SCREAMING_SNAKE_CASE_: Dict ={"""a""": 2, """b""": 3} SCREAMING_SNAKE_CASE_: Any ={"""a""": [2, 3], """b""": [4, 5]} SCREAMING_SNAKE_CASE_: str ={"""a""": {"""1""": 2}, """b""": 3} SCREAMING_SNAKE_CASE_: str ={"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =2 self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} SCREAMING_SNAKE_CASE_: Tuple ={"""a""": 2, """b""": 0, """c""": 2} SCREAMING_SNAKE_CASE_: str ={ """a""": np.eye(2 ).astype(lowerCAmelCase ), """b""": np.zeros(3 ).astype(lowerCAmelCase ), """c""": np.ones(2 ).astype(lowerCAmelCase ), } self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , map_numpy=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCAmelCase , lowerCAmelCase , map_numpy=lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(lowerCAmelCase , lowerCAmelCase , map_numpy=lowerCAmelCase , num_proc=lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(lowerCAmelCase , lowerCAmelCase , map_numpy=lowerCAmelCase , num_proc=lowerCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(lowerCAmelCase ): # can't pickle a local lambda map_nested(lambda lowerCAmelCase : x + 1 , lowerCAmelCase , num_proc=lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ={"""a""": 1, """b""": 2} SCREAMING_SNAKE_CASE_: int ={"""a""": 3, """b""": 4} SCREAMING_SNAKE_CASE_: Any ={"""a""": 5, """b""": 6} SCREAMING_SNAKE_CASE_: Optional[Any] =sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ) , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' class a : UpperCamelCase : int = 'bar' SCREAMING_SNAKE_CASE_: Union[str, Any] =Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(lowerCAmelCase , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: SCREAMING_SNAKE_CASE_: Dict ={f'''{i}''': i for i in range(lowercase )} SCREAMING_SNAKE_CASE_: List[str] =map_nested(lambda lowercase : x + 10 , lowercase , num_proc=lowercase , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a ( UpperCAmelCase__ ): @require_tf def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' import tensorflow as tf from tensorflow.keras import layers SCREAMING_SNAKE_CASE_: Dict =layers.Dense(2 ) def gen_random_output(): SCREAMING_SNAKE_CASE_: int =tf.random.uniform((1, 3) ) return model(lowerCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] =gen_random_output() with temp_seed(42 , set_tensorflow=lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Any =gen_random_output() SCREAMING_SNAKE_CASE_: str =gen_random_output() np.testing.assert_equal(lowerCAmelCase , lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' import torch def gen_random_output(): SCREAMING_SNAKE_CASE_: int =torch.nn.Linear(3 , 2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.rand(1 , 3 ) return model(lowerCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] =gen_random_output() with temp_seed(42 , set_pytorch=lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] =gen_random_output() SCREAMING_SNAKE_CASE_: str =gen_random_output() np.testing.assert_equal(lowerCAmelCase , lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def lowerCamelCase__ ( self : Tuple ) -> str: '''simple docstring''' def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): SCREAMING_SNAKE_CASE_: Union[str, Any] =gen_random_output() with temp_seed(42 ): SCREAMING_SNAKE_CASE_: Dict =gen_random_output() SCREAMING_SNAKE_CASE_: Optional[Any] =gen_random_output() np.testing.assert_equal(lowerCAmelCase , lowerCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =NestedDataStructure(lowercase ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Tuple =NestedDataStructure(lowercase ).flatten() assert output == expected_output def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: int =A(x=1 , y="""foobar""" ) SCREAMING_SNAKE_CASE_: List[str] ={"""x""": 1, """y""": """foobar"""} assert asdict(lowercase ) == expected_output SCREAMING_SNAKE_CASE_: Optional[Any] ={"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} SCREAMING_SNAKE_CASE_: List[str] ={"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(lowercase ) == expected_output with pytest.raises(lowercase ): asdict([1, A(x=10 , y="""foo""" )] ) def __magic_name__ ( lowercase ): return text.split() def __magic_name__ ( lowercase ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __magic_name__ ( ): with Pool(2 ) as pool: SCREAMING_SNAKE_CASE_: Any =list(iflatmap_unordered(lowercase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(lowercase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: SCREAMING_SNAKE_CASE_: Union[str, Any] =list(iflatmap_unordered(lowercase , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(lowercase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: SCREAMING_SNAKE_CASE_: Optional[int] =[] for yield_time, content in iflatmap_unordered( lowercase , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowercase ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(lowercase ) == 4
712
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
0
"""simple docstring""" def __magic_name__ ( lowercase = 3 , lowercase = 7 , lowercase = 100_0000 ): SCREAMING_SNAKE_CASE_: Optional[int] =0 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for current_denominator in range(1 , limit + 1 ): SCREAMING_SNAKE_CASE_: str =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: SCREAMING_SNAKE_CASE_: str =current_numerator SCREAMING_SNAKE_CASE_: List[Any] =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
714
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): UpperCamelCase : List[str] = JukeboxTokenizer UpperCamelCase : Union[str, Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCamelCase__ ( self : List[Any] ) -> str: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Any =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: Any =[ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Optional[int] =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) SCREAMING_SNAKE_CASE_: Dict =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: int =[ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
715
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): def __init__( self : int , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , lowerCAmelCase , ) super().__init__(args=lowerCAmelCase , **lowerCAmelCase )
716
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def lowerCamelCase__ ( *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str ) -> int: '''simple docstring''' pass @is_pipeline_test @require_torch @require_vision class a ( unittest.TestCase ): UpperCamelCase : Tuple = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) SCREAMING_SNAKE_CASE_: List[str] =[ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =vqa_pipeline(lowerCAmelCase , top_k=1 ) self.assertEqual( lowerCAmelCase , [ [{"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}], [{"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}], ] , ) @require_torch def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) SCREAMING_SNAKE_CASE_: List[Any] ="""./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE_: Tuple ="""How many cats are there?""" SCREAMING_SNAKE_CASE_: int =vqa_pipeline(image=lowerCAmelCase , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( lowerCAmelCase , [{"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}, {"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}] ) SCREAMING_SNAKE_CASE_: List[str] =vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( lowerCAmelCase , [{"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}, {"""score""": ANY(lowerCAmelCase ), """answer""": ANY(lowerCAmelCase )}] ) @slow @require_torch def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) SCREAMING_SNAKE_CASE_: List[Any] ="""./tests/fixtures/tests_samples/COCO/000000039769.png""" SCREAMING_SNAKE_CASE_: Dict ="""How many cats are there?""" SCREAMING_SNAKE_CASE_: Union[str, Any] =vqa_pipeline(image=lowerCAmelCase , question=lowerCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}] ) SCREAMING_SNAKE_CASE_: Optional[int] =vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}] ) SCREAMING_SNAKE_CASE_: Optional[int] =vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [[{"""score""": 0.8_7_9_9, """answer""": """2"""}, {"""score""": 0.2_9_6, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' pass
717
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _lowerCAmelCase = parser.parse_args() if args.model_type == "bert": _lowerCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _lowerCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _lowerCAmelCase = model.state_dict() _lowerCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _lowerCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _lowerCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _lowerCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _lowerCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _lowerCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _lowerCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _lowerCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _lowerCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
718
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : str = 'vision-encoder-decoder' UpperCamelCase : Union[str, Any] = True def __init__( self : Optional[Any] , **lowerCAmelCase : int ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) SCREAMING_SNAKE_CASE_: int =kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE_: Optional[int] =encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] =kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE_: str =decoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE_: List[str] =AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =True @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : Any ) -> PretrainedConfig: '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE_: Any =True SCREAMING_SNAKE_CASE_: Optional[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_: List[Any] =self.encoder.to_dict() SCREAMING_SNAKE_CASE_: Tuple =self.decoder.to_dict() SCREAMING_SNAKE_CASE_: Union[str, Any] =self.__class__.model_type return output class a ( UpperCAmelCase__ ): UpperCamelCase : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : int ) -> float: '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =OrderedDict() SCREAMING_SNAKE_CASE_: Optional[Any] ={0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE_: int ={0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : "PreTrainedTokenizerBase" , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict() SCREAMING_SNAKE_CASE_: Dict =super().generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =dummy_input["""input_ids"""].shape SCREAMING_SNAKE_CASE_: Any =(batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE_: List[str] =dummy_input.pop("""input_ids""" ) SCREAMING_SNAKE_CASE_: Tuple =dummy_input.pop("""attention_mask""" ) SCREAMING_SNAKE_CASE_: Tuple =torch.zeros(lowerCAmelCase ) return common_inputs class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Tuple ) -> None: '''simple docstring''' pass def lowerCamelCase__ ( self : str , lowerCAmelCase : PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" ) -> OnnxConfig: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase , lowerCAmelCase )
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
0
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' (SCREAMING_SNAKE_CASE_): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
720
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _UpperCAmelCase = True except ImportError: _UpperCAmelCase = False try: from torch.hub import _get_torch_home _UpperCAmelCase = _get_torch_home() except ImportError: _UpperCAmelCase = os.path.expanduser( os.getenv("""TORCH_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """torch""")) ) _UpperCAmelCase = os.path.join(torch_cache_home, """transformers""") _UpperCAmelCase = """https://cdn.huggingface.co""" _UpperCAmelCase = """https://s3.amazonaws.com/models.huggingface.co/bert""" _UpperCAmelCase = """/""".join(str(Path(__file__).resolve()).split("""/""")[:-1]) _UpperCAmelCase = os.path.join(PATH, """config.yaml""") _UpperCAmelCase = os.path.join(PATH, """attributes.txt""") _UpperCAmelCase = os.path.join(PATH, """objects.txt""") _UpperCAmelCase = os.getenv("""PYTORCH_PRETRAINED_BERT_CACHE""", default_cache_path) _UpperCAmelCase = os.getenv("""PYTORCH_TRANSFORMERS_CACHE""", PYTORCH_PRETRAINED_BERT_CACHE) _UpperCAmelCase = os.getenv("""TRANSFORMERS_CACHE""", PYTORCH_TRANSFORMERS_CACHE) _UpperCAmelCase = """pytorch_model.bin""" _UpperCAmelCase = """config.yaml""" def __magic_name__ ( lowercase=OBJECTS , lowercase=ATTRIBUTES ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] with open(lowercase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) SCREAMING_SNAKE_CASE_: Optional[int] =[] with open(lowercase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =OrderedDict() with open(lowercase , """rb""" ) as f: SCREAMING_SNAKE_CASE_: Any =pkl.load(lowercase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): SCREAMING_SNAKE_CASE_: Optional[int] =ckp.pop(lowercase ) if isinstance(lowercase , np.ndarray ): SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor(lowercase ) else: assert isinstance(lowercase , torch.tensor ), type(lowercase ) SCREAMING_SNAKE_CASE_: str =v return r class a : UpperCamelCase : Dict = {} def __init__( self : Tuple , lowerCAmelCase : dict , lowerCAmelCase : str = "root" , lowerCAmelCase : Tuple=0 ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =name SCREAMING_SNAKE_CASE_: Optional[Any] =level SCREAMING_SNAKE_CASE_: Dict ={} for k, v in dictionary.items(): if v is None: raise ValueError() SCREAMING_SNAKE_CASE_: List[Any] =copy.deepcopy(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =copy.deepcopy(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] =Config(lowerCAmelCase , name=lowerCAmelCase , level=level + 1 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =v setattr(self , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =d def __repr__( self : Any ) -> int: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =val SCREAMING_SNAKE_CASE_: str =val SCREAMING_SNAKE_CASE_: Optional[int] =key.split(""".""" ) SCREAMING_SNAKE_CASE_: List[str] =len(lowerCAmelCase ) - 1 SCREAMING_SNAKE_CASE_: Tuple =self._pointer if len(lowerCAmelCase ) > 1: for i, l in enumerate(lowerCAmelCase ): if hasattr(self , lowerCAmelCase ) and isinstance(getattr(self , lowerCAmelCase ) , lowerCAmelCase ): setattr(getattr(self , lowerCAmelCase ) , """.""".join(levels[i:] ) , lowerCAmelCase ) if l == last_level: SCREAMING_SNAKE_CASE_: Optional[Any] =val else: SCREAMING_SNAKE_CASE_: Tuple =pointer[l] def lowerCamelCase__ ( self : Tuple ) -> Any: '''simple docstring''' return self._pointer def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' with open(f'''{file_name}''' , """w""" ) as stream: dump(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' with open(f'''{file_name}''' , """w""" ) as stream: json.dump(lowerCAmelCase , lowerCAmelCase ) @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' with open(lowerCAmelCase ) as stream: SCREAMING_SNAKE_CASE_: Any =load(lowerCAmelCase , Loader=lowerCAmelCase ) return data def __str__( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =""" """ if self._name != "root": SCREAMING_SNAKE_CASE_: Dict =f'''{t * (self._level-1)}{self._name}:\n''' else: SCREAMING_SNAKE_CASE_: Dict ="""""" SCREAMING_SNAKE_CASE_: List[Any] =self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(lowerCAmelCase , lowerCAmelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(lowerCAmelCase ).__name__})\n''' SCREAMING_SNAKE_CASE_: Any =level return r[:-1] @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : str , **lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) return cls(lowerCAmelCase ) @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : str , **lowerCAmelCase : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs.pop("""cache_dir""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =kwargs.pop("""force_download""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs.pop("""resume_download""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =kwargs.pop("""proxies""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =kwargs.pop("""local_files_only""" , lowerCAmelCase ) if os.path.isdir(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =os.path.join(lowerCAmelCase , lowerCAmelCase ) elif os.path.isfile(lowerCAmelCase ) or is_remote_url(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =pretrained_model_name_or_path else: SCREAMING_SNAKE_CASE_: List[str] =hf_bucket_url(lowerCAmelCase , filename=lowerCAmelCase , use_cdn=lowerCAmelCase ) try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE_: str =cached_path( lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , proxies=lowerCAmelCase , resume_download=lowerCAmelCase , local_files_only=lowerCAmelCase , ) # Load config dict if resolved_config_file is None: raise EnvironmentError SCREAMING_SNAKE_CASE_: Tuple =Config.load_yaml(lowerCAmelCase ) except EnvironmentError: SCREAMING_SNAKE_CASE_: Any ="""Can't load config for""" raise EnvironmentError(lowerCAmelCase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(lowerCAmelCase ), kwargs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =torch.load("""dump.pt""" , map_location=in_tensor.device ) SCREAMING_SNAKE_CASE_: Optional[int] =in_tensor.numpy() SCREAMING_SNAKE_CASE_: List[Any] =out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowercase , lowercase , rtol=0.01 , atol=0.1 ), ( f'''{sum([1 for x in np.isclose(lowercase , lowercase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %''' " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[str] =urlparse(lowercase ) return parsed.scheme in ("http", "https") def __magic_name__ ( lowercase , lowercase , lowercase=True ): SCREAMING_SNAKE_CASE_: List[Any] =CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX SCREAMING_SNAKE_CASE_: Optional[Any] ="""/""" not in model_id if legacy_format: return f'''{endpoint}/{model_id}-{filename}''' else: return f'''{endpoint}/{model_id}/{filename}''' def __magic_name__ ( lowercase , lowercase , lowercase=None , lowercase=0 , lowercase=None , ): SCREAMING_SNAKE_CASE_: Tuple ="""python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowercase , lowercase ): ua += "; " + "; ".join("""{}/{}""".format(lowercase , lowercase ) for k, v in user_agent.items() ) elif isinstance(lowercase , lowercase ): ua += "; " + user_agent SCREAMING_SNAKE_CASE_: Any ={"""user-agent""": ua} if resume_size > 0: SCREAMING_SNAKE_CASE_: List[str] ="""bytes=%d-""" % (resume_size,) SCREAMING_SNAKE_CASE_: int =requests.get(lowercase , stream=lowercase , proxies=lowercase , headers=lowercase ) if response.status_code == 416: # Range not satisfiable return SCREAMING_SNAKE_CASE_: Optional[Any] =response.headers.get("""Content-Length""" ) SCREAMING_SNAKE_CASE_: int =resume_size + int(lowercase ) if content_length is not None else None SCREAMING_SNAKE_CASE_: List[Any] =tqdm( unit="""B""" , unit_scale=lowercase , total=lowercase , initial=lowercase , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowercase ) ) temp_file.write(lowercase ) progress.close() def __magic_name__ ( lowercase , lowercase=None , lowercase=False , lowercase=None , lowercase=10 , lowercase=False , lowercase=None , lowercase=False , ): if cache_dir is None: SCREAMING_SNAKE_CASE_: Tuple =TRANSFORMERS_CACHE if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =str(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =None if not local_files_only: try: SCREAMING_SNAKE_CASE_: int =requests.head(lowercase , allow_redirects=lowercase , proxies=lowercase , timeout=lowercase ) if response.status_code == 200: SCREAMING_SNAKE_CASE_: Any =response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass SCREAMING_SNAKE_CASE_: int =url_to_filename(lowercase , lowercase ) # get cache path to put the file SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.join(lowercase , lowercase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowercase ): return cache_path else: SCREAMING_SNAKE_CASE_: Tuple =[ file for file in fnmatch.filter(os.listdir(lowercase ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(lowercase ) > 0: return os.path.join(lowercase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(lowercase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. SCREAMING_SNAKE_CASE_: Tuple =cache_path + """.lock""" with FileLock(lowercase ): # If the download just completed while the lock was activated. if os.path.exists(lowercase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: SCREAMING_SNAKE_CASE_: Optional[Any] =cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowercase , """a+b""" ) as f: yield f SCREAMING_SNAKE_CASE_: Tuple =_resumable_file_manager if os.path.exists(lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =os.stat(lowercase ).st_size else: SCREAMING_SNAKE_CASE_: Dict =0 else: SCREAMING_SNAKE_CASE_: int =partial(tempfile.NamedTemporaryFile , dir=lowercase , delete=lowercase ) SCREAMING_SNAKE_CASE_: Dict =0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , lowercase , temp_file.name , ) http_get( lowercase , lowercase , proxies=lowercase , resume_size=lowercase , user_agent=lowercase , ) os.replace(temp_file.name , lowercase ) SCREAMING_SNAKE_CASE_: str ={"""url""": url, """etag""": etag} SCREAMING_SNAKE_CASE_: Dict =cache_path + """.json""" with open(lowercase , """w""" ) as meta_file: json.dump(lowercase , lowercase ) return cache_path def __magic_name__ ( lowercase , lowercase=None ): SCREAMING_SNAKE_CASE_: Any =url.encode("""utf-8""" ) SCREAMING_SNAKE_CASE_: List[Any] =shaaaa(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =url_hash.hexdigest() if etag: SCREAMING_SNAKE_CASE_: str =etag.encode("""utf-8""" ) SCREAMING_SNAKE_CASE_: Dict =shaaaa(lowercase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def __magic_name__ ( lowercase , lowercase=None , lowercase=False , lowercase=None , lowercase=False , lowercase=None , lowercase=False , lowercase=False , lowercase=False , ): if cache_dir is None: SCREAMING_SNAKE_CASE_: List[str] =TRANSFORMERS_CACHE if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =str(lowercase ) if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =str(lowercase ) if is_remote_url(lowercase ): # URL, so get it from the cache (downloading if necessary) SCREAMING_SNAKE_CASE_: Optional[int] =get_from_cache( lowercase , cache_dir=lowercase , force_download=lowercase , proxies=lowercase , resume_download=lowercase , user_agent=lowercase , local_files_only=lowercase , ) elif os.path.exists(lowercase ): # File, and it exists. SCREAMING_SNAKE_CASE_: Any =url_or_filename elif urlparse(lowercase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(lowercase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(lowercase ) ) if extract_compressed_file: if not is_zipfile(lowercase ) and not tarfile.is_tarfile(lowercase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" SCREAMING_SNAKE_CASE_: str =os.path.split(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =output_file.replace(""".""" , """-""" ) + """-extracted""" SCREAMING_SNAKE_CASE_: List[str] =os.path.join(lowercase , lowercase ) if os.path.isdir(lowercase ) and os.listdir(lowercase ) and not force_extract: return output_path_extracted # Prevent parallel extractions SCREAMING_SNAKE_CASE_: Tuple =output_path + """.lock""" with FileLock(lowercase ): shutil.rmtree(lowercase , ignore_errors=lowercase ) os.makedirs(lowercase ) if is_zipfile(lowercase ): with ZipFile(lowercase , """r""" ) as zip_file: zip_file.extractall(lowercase ) zip_file.close() elif tarfile.is_tarfile(lowercase ): SCREAMING_SNAKE_CASE_: Tuple =tarfile.open(lowercase ) tar_file.extractall(lowercase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(lowercase ) ) return output_path_extracted return output_path def __magic_name__ ( lowercase , lowercase="," ): assert isinstance(lowercase , lowercase ) if os.path.isfile(lowercase ): with open(lowercase ) as f: SCREAMING_SNAKE_CASE_: Dict =eval(f.read() ) else: SCREAMING_SNAKE_CASE_: Dict =requests.get(lowercase ) try: SCREAMING_SNAKE_CASE_: Optional[Any] =requests.json() except Exception: SCREAMING_SNAKE_CASE_: str =req.content.decode() assert data is not None, "could not connect" try: SCREAMING_SNAKE_CASE_: Optional[Any] =eval(lowercase ) except Exception: SCREAMING_SNAKE_CASE_: Optional[int] =data.split("""\n""" ) req.close() return data def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =requests.get(lowercase ) SCREAMING_SNAKE_CASE_: Any =np.array(Image.open(BytesIO(response.content ) ) ) return img def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowercase ) with open(lowercase , """rb""" ) as stream: SCREAMING_SNAKE_CASE_: Dict =pkl.load(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =weights.pop("""model""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] ={} for k, v in model.items(): SCREAMING_SNAKE_CASE_: List[str] =torch.from_numpy(lowercase ) if "running_var" in k: SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor([0] ) SCREAMING_SNAKE_CASE_: Optional[int] =k.replace("""running_var""" , """num_batches_tracked""" ) SCREAMING_SNAKE_CASE_: Any =zero return new def __magic_name__ ( ): print(f'''{os.path.abspath(os.path.join(lowercase , os.pardir ) )}/demo.ipynb''' ) def __magic_name__ ( lowercase , lowercase="RGB" ): assert isinstance(lowercase , lowercase ) if os.path.isfile(lowercase ): SCREAMING_SNAKE_CASE_: Tuple =cva.imread(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =get_image_from_url(lowercase ) assert img is not None, f'''could not connect to: {im}''' SCREAMING_SNAKE_CASE_: Union[str, Any] =cva.cvtColor(lowercase , cva.COLOR_BGR2RGB ) if input_format == "RGB": SCREAMING_SNAKE_CASE_: Dict =img[:, :, ::-1] return img def __magic_name__ ( lowercase , lowercase=1 ): return (images[i : i + batch] for i in range(0 , len(lowercase ) , lowercase ))
700
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
0
"""simple docstring""" def __magic_name__ ( lowercase = 100 ): SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: str =0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
701
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
0
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : def __init__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[Any]=30 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : int=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=32 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : List[Any]=10 , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]=2 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: List[Any] =batch_size SCREAMING_SNAKE_CASE_: Optional[Any] =image_size SCREAMING_SNAKE_CASE_: List[str] =patch_size SCREAMING_SNAKE_CASE_: Optional[Any] =num_channels SCREAMING_SNAKE_CASE_: Optional[Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: int =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Dict =num_attention_heads SCREAMING_SNAKE_CASE_: Optional[int] =intermediate_size SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_act SCREAMING_SNAKE_CASE_: str =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Dict =type_sequence_label_size SCREAMING_SNAKE_CASE_: List[str] =initializer_range SCREAMING_SNAKE_CASE_: str =scope SCREAMING_SNAKE_CASE_: Any =encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) SCREAMING_SNAKE_CASE_: Tuple =(image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_: Any =num_patches + 2 def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: Optional[int] =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =DeiTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =DeiTForMaskedImageModeling(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: List[Any] =DeiTForMaskedImageModeling(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: int =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.type_sequence_label_size SCREAMING_SNAKE_CASE_: Tuple =DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[int] =DeiTForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): List[str] =config_and_inputs SCREAMING_SNAKE_CASE_: Union[str, Any] ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCamelCase : List[str] = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase : List[Any] = False UpperCamelCase : List[str] = False UpperCamelCase : Union[str, Any] = False def lowerCamelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =DeiTModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_: Optional[int] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[Any] =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_: Tuple =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_: List[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_: Union[str, Any] =self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model(**lowerCAmelCase ).loss loss.backward() def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_: List[str] =False SCREAMING_SNAKE_CASE_: int =True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_: Tuple =model_class(lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_: List[Any] =self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =model(**lowerCAmelCase ).loss loss.backward() def lowerCamelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: Any =[ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCAmelCase ), *get_values(lowerCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): SCREAMING_SNAKE_CASE_: Dict =problem_type["""title"""] SCREAMING_SNAKE_CASE_: Any =problem_type["""num_labels"""] SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_: Optional[int] =self._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_: Optional[int] =inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) SCREAMING_SNAKE_CASE_: Optional[Any] =inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCAmelCase ) as warning_list: SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: str =DeiTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[int] =prepare_img() SCREAMING_SNAKE_CASE_: int =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: List[str] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) SCREAMING_SNAKE_CASE_: Tuple =self.default_image_processor SCREAMING_SNAKE_CASE_: Optional[Any] =prepare_img() SCREAMING_SNAKE_CASE_: List[Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =inputs.pixel_values.to(lowerCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase )
702
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Union[str, Any] = 'markuplm' def __init__( self : str , lowerCAmelCase : int=3_0522 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Union[str, Any]=12 , lowerCAmelCase : int=3072 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0 , lowerCAmelCase : Any=0 , lowerCAmelCase : Dict=2 , lowerCAmelCase : List[Any]=256 , lowerCAmelCase : Any=1024 , lowerCAmelCase : str=216 , lowerCAmelCase : str=1001 , lowerCAmelCase : Optional[int]=32 , lowerCAmelCase : Tuple=50 , lowerCAmelCase : List[str]="absolute" , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Optional[int] =vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_size SCREAMING_SNAKE_CASE_: List[str] =num_hidden_layers SCREAMING_SNAKE_CASE_: Optional[int] =num_attention_heads SCREAMING_SNAKE_CASE_: List[str] =hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE_: Dict =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: str =max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] =type_vocab_size SCREAMING_SNAKE_CASE_: Tuple =initializer_range SCREAMING_SNAKE_CASE_: str =layer_norm_eps SCREAMING_SNAKE_CASE_: Any =position_embedding_type SCREAMING_SNAKE_CASE_: Optional[Any] =use_cache SCREAMING_SNAKE_CASE_: List[Any] =classifier_dropout # additional properties SCREAMING_SNAKE_CASE_: List[str] =max_depth SCREAMING_SNAKE_CASE_: Optional[int] =max_xpath_tag_unit_embeddings SCREAMING_SNAKE_CASE_: Any =max_xpath_subs_unit_embeddings SCREAMING_SNAKE_CASE_: Tuple =tag_pad_id SCREAMING_SNAKE_CASE_: int =subs_pad_id SCREAMING_SNAKE_CASE_: Any =xpath_unit_hidden_size
703
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
0
_UpperCAmelCase = {} def __magic_name__ ( lowercase , lowercase , lowercase ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE_: Optional[int] =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE_: int =_calculate(days - 1 , lowercase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE_: Optional[int] =_calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE_: str =_calculate(days - 1 , lowercase , 0 ) SCREAMING_SNAKE_CASE_: Dict =state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE_: Optional[Any] =prizestrings return prizestrings def __magic_name__ ( lowercase = 30 ): return _calculate(lowercase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
704
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """unc-nlp/lxmert-base-uncased""": 5_1_2, } _UpperCAmelCase = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class a ( UpperCAmelCase__ ): '''simple docstring''' UpperCamelCase : int = VOCAB_FILES_NAMES UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : str = LxmertTokenizer def __init__( self : int , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]="[UNK]" , lowerCAmelCase : str="[SEP]" , lowerCAmelCase : List[Any]="[PAD]" , lowerCAmelCase : Tuple="[CLS]" , lowerCAmelCase : List[Any]="[MASK]" , lowerCAmelCase : List[str]=True , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Tuple =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_: Optional[int] =getattr(lowerCAmelCase , normalizer_state.pop("""type""" ) ) SCREAMING_SNAKE_CASE_: Dict =do_lower_case SCREAMING_SNAKE_CASE_: Union[str, Any] =strip_accents SCREAMING_SNAKE_CASE_: str =tokenize_chinese_chars SCREAMING_SNAKE_CASE_: Optional[int] =normalizer_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =do_lower_case def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any]=None ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.sep_token_id] SCREAMING_SNAKE_CASE_: Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
705
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
0
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): if len(lowercase ) != len(lowercase ): raise ValueError("""String lengths must match!""" ) SCREAMING_SNAKE_CASE_: List[Any] =0 for chara, chara in zip(lowercase , lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
0
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =set(lowercase ), [start] while stack: SCREAMING_SNAKE_CASE_: int =stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored _UpperCAmelCase = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
707
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
0
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int ="""""" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("""join() accepts only strings to be joined""" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
708
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def __magic_name__ ( lowercase , lowercase = True , lowercase = math.inf , lowercase = -math.inf , lowercase = math.inf , lowercase = -math.inf , lowercase = False , lowercase = 100 , lowercase = 0.01 , lowercase = 1 , ): SCREAMING_SNAKE_CASE_: int =False SCREAMING_SNAKE_CASE_: Optional[Any] =search_prob SCREAMING_SNAKE_CASE_: Optional[Any] =start_temperate SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: str =0 SCREAMING_SNAKE_CASE_: Optional[int] =None while not search_end: SCREAMING_SNAKE_CASE_: int =current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE_: Optional[int] =current_state scores.append(lowercase ) iterations += 1 SCREAMING_SNAKE_CASE_: int =None SCREAMING_SNAKE_CASE_: int =current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE_: Dict =random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE_: int =neighbors.pop(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE_: Tuple =change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE_: Optional[int] =picked_neighbor else: SCREAMING_SNAKE_CASE_: str =(math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE_: Optional[int] =picked_neighbor SCREAMING_SNAKE_CASE_: Union[str, Any] =current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE_: str =True else: SCREAMING_SNAKE_CASE_: Union[str, Any] =next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def __magic_name__ ( lowercase , lowercase ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) _UpperCAmelCase = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _UpperCAmelCase = simulated_annealing( prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) _UpperCAmelCase = SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa) _UpperCAmelCase = simulated_annealing( prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def __magic_name__ ( lowercase , lowercase ): return (3 * x**2) - (6 * y) _UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCAmelCase = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" ) _UpperCAmelCase = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) _UpperCAmelCase = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f"""{local_min.score()}""" )
709
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
0
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self : int , lowerCAmelCase : int , lowerCAmelCase : Any=2 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : int=True , lowerCAmelCase : Any=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=99 , lowerCAmelCase : int=36 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=37 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : int=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : List[str]=0.0_2 , lowerCAmelCase : Optional[int]=6 , lowerCAmelCase : str=6 , lowerCAmelCase : str=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : int=None , lowerCAmelCase : Optional[int]=1000 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =parent SCREAMING_SNAKE_CASE_: Dict =batch_size SCREAMING_SNAKE_CASE_: Optional[Any] =num_channels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: int =patch_size SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: List[str] =use_input_mask SCREAMING_SNAKE_CASE_: Tuple =use_token_type_ids SCREAMING_SNAKE_CASE_: List[Any] =use_labels SCREAMING_SNAKE_CASE_: List[Any] =vocab_size SCREAMING_SNAKE_CASE_: Any =hidden_size SCREAMING_SNAKE_CASE_: int =num_hidden_layers SCREAMING_SNAKE_CASE_: Union[str, Any] =num_attention_heads SCREAMING_SNAKE_CASE_: Dict =intermediate_size SCREAMING_SNAKE_CASE_: Tuple =hidden_act SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[str] =max_position_embeddings SCREAMING_SNAKE_CASE_: int =type_vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_: Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_: Tuple =coordinate_size SCREAMING_SNAKE_CASE_: int =shape_size SCREAMING_SNAKE_CASE_: int =num_labels SCREAMING_SNAKE_CASE_: Optional[int] =num_choices SCREAMING_SNAKE_CASE_: Union[str, Any] =scope SCREAMING_SNAKE_CASE_: List[str] =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE_: Tuple =text_seq_length SCREAMING_SNAKE_CASE_: Optional[Any] =(image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE_: List[str] =self.text_seq_length + self.image_seq_length def lowerCamelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_: Any =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) SCREAMING_SNAKE_CASE_: Optional[int] =bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_: Dict =bbox[i, j, 3] SCREAMING_SNAKE_CASE_: Dict =bbox[i, j, 1] SCREAMING_SNAKE_CASE_: str =tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_: List[Any] =bbox[i, j, 2] SCREAMING_SNAKE_CASE_: Optional[int] =bbox[i, j, 0] SCREAMING_SNAKE_CASE_: List[str] =tmp_coordinate SCREAMING_SNAKE_CASE_: str =tf.constant(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Tuple =None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Optional[Any] =random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE_: Dict =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: str =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Optional[int] =None if self.use_labels: SCREAMING_SNAKE_CASE_: Dict =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: List[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_: List[str] =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =TFLayoutLMvaModel(config=lowerCAmelCase ) # text + image SCREAMING_SNAKE_CASE_: int =model(lowerCAmelCase , pixel_values=lowerCAmelCase , training=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =model( lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , training=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Optional[int] =model(lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , training=lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase , training=lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE_: Union[str, Any] =model({"""pixel_values""": pixel_values} , training=lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.num_labels SCREAMING_SNAKE_CASE_: Tuple =TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =model( lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , training=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.num_labels SCREAMING_SNAKE_CASE_: Optional[int] =TFLayoutLMvaForTokenClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =model( lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , training=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =2 SCREAMING_SNAKE_CASE_: int =TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =model( lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , training=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE_): Optional[int] =config_and_inputs SCREAMING_SNAKE_CASE_: int ={ """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : List[Any] = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCamelCase : str = False UpperCamelCase : Union[str, Any] = False UpperCamelCase : Dict = False def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any ) -> List[Any]: '''simple docstring''' return True def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]=False ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =copy.deepcopy(lowerCAmelCase ) if model_class in get_values(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple ={ k: tf.tile(tf.expand_dims(lowerCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) SCREAMING_SNAKE_CASE_: Dict =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def lowerCamelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE_: int =ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: str =model_class(lowerCAmelCase ) if getattr(lowerCAmelCase , """hf_compute_loss""" , lowerCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE_: Optional[int] =self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase )[0] ] SCREAMING_SNAKE_CASE_: Any =added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE_: Union[str, Any] =self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =prepared_for_class.pop("""input_ids""" ) SCREAMING_SNAKE_CASE_: Tuple =model(lowerCAmelCase , **lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE_: List[Any] =self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =prepared_for_class.pop("""input_ids""" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE_: str =prepared_for_class["""labels"""].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE_: Dict =-100 SCREAMING_SNAKE_CASE_: Any =tf.convert_to_tensor(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowerCAmelCase , **lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE_: str =self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase , return_labels=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE_: List[str] =self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase , return_labels=lowerCAmelCase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE_: List[Any] =prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE_: List[str] =inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE_: Optional[Any] =list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE_: Any ={0: """input_ids"""} for label_key in label_keys: SCREAMING_SNAKE_CASE_: List[str] =signature_names.index(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =label_key SCREAMING_SNAKE_CASE_: str =sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE_: str =[] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE_: Any =prepared_for_class[value] SCREAMING_SNAKE_CASE_: Dict =tuple(lowerCAmelCase ) # Send to model SCREAMING_SNAKE_CASE_: Any =model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' ( SCREAMING_SNAKE_CASE_ ): Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' ( SCREAMING_SNAKE_CASE_ ): Tuple =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_: Optional[int] =type self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] ) -> Any: '''simple docstring''' ( SCREAMING_SNAKE_CASE_ ): str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' ( SCREAMING_SNAKE_CASE_ ): Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' ( SCREAMING_SNAKE_CASE_ ): Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @slow def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Dict =TFLayoutLMvaModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =TFLayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: Dict =prepare_img() SCREAMING_SNAKE_CASE_: List[str] =image_processor(images=lowerCAmelCase , return_tensors="""tf""" ).pixel_values SCREAMING_SNAKE_CASE_: Union[str, Any] =tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE_: List[str] =tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass SCREAMING_SNAKE_CASE_: Tuple =model(input_ids=lowerCAmelCase , bbox=lowerCAmelCase , pixel_values=lowerCAmelCase , training=lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: List[Any] =(1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=1E-4 ) )
710
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
0
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =len(lowercase ) # We need to create solution object to save path. SCREAMING_SNAKE_CASE_: Optional[Any] =[[0 for _ in range(lowercase )] for _ in range(lowercase )] SCREAMING_SNAKE_CASE_: List[str] =run_maze(lowercase , 0 , 0 , lowercase ) if solved: print("""\n""".join(str(lowercase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =len(lowercase ) # Final check point. if i == j == (size - 1): SCREAMING_SNAKE_CASE_: Optional[int] =1 return True SCREAMING_SNAKE_CASE_: int =(not i < 0) and (not j < 0) # Check lower bounds SCREAMING_SNAKE_CASE_: Union[str, Any] =(i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. SCREAMING_SNAKE_CASE_: List[str] =(not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited SCREAMING_SNAKE_CASE_: str =1 # check for directions if ( run_maze(lowercase , i + 1 , lowercase , lowercase ) or run_maze(lowercase , lowercase , j + 1 , lowercase ) or run_maze(lowercase , i - 1 , lowercase , lowercase ) or run_maze(lowercase , lowercase , j - 1 , lowercase ) ): return True SCREAMING_SNAKE_CASE_: str =0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[int] = 'codegen' UpperCamelCase : List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any] , lowerCAmelCase : Union[str, Any]=5_0400 , lowerCAmelCase : Tuple=2048 , lowerCAmelCase : Dict=2048 , lowerCAmelCase : List[Any]=4096 , lowerCAmelCase : str=28 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]="gelu_new" , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Dict=0.0_2 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]=5_0256 , lowerCAmelCase : Dict=5_0256 , lowerCAmelCase : int=False , **lowerCAmelCase : str , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =vocab_size SCREAMING_SNAKE_CASE_: Any =n_ctx SCREAMING_SNAKE_CASE_: str =n_positions SCREAMING_SNAKE_CASE_: Any =n_embd SCREAMING_SNAKE_CASE_: List[Any] =n_layer SCREAMING_SNAKE_CASE_: Tuple =n_head SCREAMING_SNAKE_CASE_: List[Any] =n_inner SCREAMING_SNAKE_CASE_: List[Any] =rotary_dim SCREAMING_SNAKE_CASE_: Tuple =activation_function SCREAMING_SNAKE_CASE_: Any =resid_pdrop SCREAMING_SNAKE_CASE_: List[str] =embd_pdrop SCREAMING_SNAKE_CASE_: List[Any] =attn_pdrop SCREAMING_SNAKE_CASE_: Optional[Any] =layer_norm_epsilon SCREAMING_SNAKE_CASE_: Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_: Tuple =use_cache SCREAMING_SNAKE_CASE_: Any =bos_token_id SCREAMING_SNAKE_CASE_: str =eos_token_id super().__init__( bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , **lowerCAmelCase ) class a ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" , lowerCAmelCase : List[PatchingSpec] = None , lowerCAmelCase : bool = False , ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCAmelCase , task=lowerCAmelCase , patching_specs=lowerCAmelCase , use_past=lowerCAmelCase ) if not getattr(self._config , """pad_token_id""" , lowerCAmelCase ): # TODO: how to do that better? SCREAMING_SNAKE_CASE_: Dict =0 @property def lowerCamelCase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction="""inputs""" ) SCREAMING_SNAKE_CASE_: Any ={0: """batch""", 1: """past_sequence + sequence"""} else: SCREAMING_SNAKE_CASE_: Optional[Any] ={0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' return self._config.n_layer @property def lowerCamelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return self._config.n_head def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =super(lowerCAmelCase , self ).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE_: int =OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch SCREAMING_SNAKE_CASE_: int =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE_: Dict =seqlen + 2 SCREAMING_SNAKE_CASE_: List[str] =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) SCREAMING_SNAKE_CASE_: Any =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE_: Dict =common_inputs["""attention_mask"""] if self.use_past: SCREAMING_SNAKE_CASE_: int =ordered_inputs["""attention_mask"""].dtype SCREAMING_SNAKE_CASE_: Any =torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' return 13
712
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =3 SCREAMING_SNAKE_CASE_: List[str] =250 SCREAMING_SNAKE_CASE_: Any =ids_tensor((batch_size, length) , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self._get_tensors(5 ) SCREAMING_SNAKE_CASE_: int =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =MaxLengthCriteria(max_length=10 ) SCREAMING_SNAKE_CASE_: Dict =self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Any =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: str =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[str] =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self._get_tensors(5 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Optional[int] =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) SCREAMING_SNAKE_CASE_: Optional[int] =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" def __magic_name__ ( lowercase = 100 ): SCREAMING_SNAKE_CASE_: str =set() SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: Optional[Any] =n + 1 # maximum limit for a in range(2 , lowercase ): for b in range(2 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =a**b # calculates the current power collect_powers.add(lowercase ) # adds the result to the set return len(lowercase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
714
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) set_seed(7_7_0) _UpperCAmelCase = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } _UpperCAmelCase = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } _UpperCAmelCase = os.path.dirname(os.path.abspath(__file__)) _UpperCAmelCase = os.path.join(os.path.expanduser("""~"""), """.cache""") _UpperCAmelCase = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: str =model_type if use_small: key += "_small" return os.path.join(lowercase , REMOTE_MODEL_PATHS[key]["""file_name"""] ) def __magic_name__ ( lowercase , lowercase ): os.makedirs(lowercase , exist_ok=lowercase ) hf_hub_download(repo_id=lowercase , filename=lowercase , local_dir=lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase=False , lowercase="text" ): if model_type == "text": SCREAMING_SNAKE_CASE_: Dict =BarkSemanticModel SCREAMING_SNAKE_CASE_: Any =BarkSemanticConfig SCREAMING_SNAKE_CASE_: Union[str, Any] =BarkSemanticGenerationConfig elif model_type == "coarse": SCREAMING_SNAKE_CASE_: str =BarkCoarseModel SCREAMING_SNAKE_CASE_: Optional[Any] =BarkCoarseConfig SCREAMING_SNAKE_CASE_: List[str] =BarkCoarseGenerationConfig elif model_type == "fine": SCREAMING_SNAKE_CASE_: int =BarkFineModel SCREAMING_SNAKE_CASE_: Dict =BarkFineConfig SCREAMING_SNAKE_CASE_: Dict =BarkFineGenerationConfig else: raise NotImplementedError() SCREAMING_SNAKE_CASE_: Tuple =f'''{model_type}_small''' if use_small else model_type SCREAMING_SNAKE_CASE_: Optional[Any] =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowercase ): logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["""repo_id"""] , model_info["""file_name"""] ) SCREAMING_SNAKE_CASE_: Dict =torch.load(lowercase , map_location=lowercase ) # this is a hack SCREAMING_SNAKE_CASE_: str =checkpoint["""model_args"""] if "input_vocab_size" not in model_args: SCREAMING_SNAKE_CASE_: Union[str, Any] =model_args["""vocab_size"""] SCREAMING_SNAKE_CASE_: Optional[int] =model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments SCREAMING_SNAKE_CASE_: Optional[Any] =model_args.pop("""n_head""" ) SCREAMING_SNAKE_CASE_: Optional[int] =model_args.pop("""n_embd""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =model_args.pop("""n_layer""" ) SCREAMING_SNAKE_CASE_: str =ConfigClass(**checkpoint["""model_args"""] ) SCREAMING_SNAKE_CASE_: Any =ModelClass(config=lowercase ) SCREAMING_SNAKE_CASE_: str =GenerationConfigClass() SCREAMING_SNAKE_CASE_: List[str] =model_generation_config SCREAMING_SNAKE_CASE_: Any =checkpoint["""model"""] # fixup checkpoint SCREAMING_SNAKE_CASE_: Dict ="""_orig_mod.""" for k, v in list(state_dict.items() ): if k.startswith(lowercase ): # replace part of the key with corresponding layer name in HF implementation SCREAMING_SNAKE_CASE_: List[Any] =k[len(lowercase ) :] for old_layer_name in new_layer_name_dict: SCREAMING_SNAKE_CASE_: str =new_k.replace(lowercase , new_layer_name_dict[old_layer_name] ) SCREAMING_SNAKE_CASE_: Optional[int] =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Dict =set(state_dict.keys() ) - set(model.state_dict().keys() ) SCREAMING_SNAKE_CASE_: List[str] ={k for k in extra_keys if not k.endswith(""".attn.bias""" )} SCREAMING_SNAKE_CASE_: str =set(model.state_dict().keys() ) - set(state_dict.keys() ) SCREAMING_SNAKE_CASE_: Tuple ={k for k in missing_keys if not k.endswith(""".attn.bias""" )} if len(lowercase ) != 0: raise ValueError(f'''extra keys found: {extra_keys}''' ) if len(lowercase ) != 0: raise ValueError(f'''missing keys: {missing_keys}''' ) model.load_state_dict(lowercase , strict=lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =model.num_parameters(exclude_embeddings=lowercase ) SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""best_val_loss"""].item() logger.info(f'''model loaded: {round(n_params/1e6 , 1 )}M params, {round(lowercase , 3 )} loss''' ) model.eval() model.to(lowercase ) del checkpoint, state_dict return model def __magic_name__ ( lowercase , lowercase=False , lowercase="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() SCREAMING_SNAKE_CASE_: Optional[int] ="""cpu""" # do conversion on cpu SCREAMING_SNAKE_CASE_: Union[str, Any] =_get_ckpt_path(lowercase , use_small=lowercase ) SCREAMING_SNAKE_CASE_: Dict =_load_model(lowercase , lowercase , model_type=lowercase , use_small=lowercase ) # load bark initial model SCREAMING_SNAKE_CASE_: Union[str, Any] =_bark_load_model(lowercase , """cpu""" , model_type=lowercase , use_small=lowercase ) if model_type == "text": SCREAMING_SNAKE_CASE_: Any =bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowercase ) != bark_model.get_num_params(): raise ValueError("""initial and new models don't have the same number of parameters""" ) # check if same output as the bark model SCREAMING_SNAKE_CASE_: List[str] =5 SCREAMING_SNAKE_CASE_: Any =10 if model_type in ["text", "coarse"]: SCREAMING_SNAKE_CASE_: Optional[int] =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) SCREAMING_SNAKE_CASE_: Dict =bark_model(lowercase )[0] SCREAMING_SNAKE_CASE_: Optional[Any] =model(lowercase ) # take last logits SCREAMING_SNAKE_CASE_: List[str] =output_new_model_total.logits[:, [-1], :] else: SCREAMING_SNAKE_CASE_: str =3 SCREAMING_SNAKE_CASE_: Any =8 SCREAMING_SNAKE_CASE_: Tuple =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) SCREAMING_SNAKE_CASE_: Optional[int] =model(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =bark_model(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("""initial and new outputs don't have the same shape""" ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError("""initial and new outputs are not equal""" ) Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.join(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =BarkSemanticConfig.from_pretrained(os.path.join(lowercase , """config.json""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =BarkCoarseConfig.from_pretrained(os.path.join(lowercase , """config.json""" ) ) SCREAMING_SNAKE_CASE_: Tuple =BarkFineConfig.from_pretrained(os.path.join(lowercase , """config.json""" ) ) SCREAMING_SNAKE_CASE_: Optional[Any] =EncodecConfig.from_pretrained("""facebook/encodec_24khz""" ) SCREAMING_SNAKE_CASE_: int =BarkSemanticModel.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: Any =BarkCoarseModel.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: int =BarkFineModel.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =EncodecModel.from_pretrained("""facebook/encodec_24khz""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =BarkConfig.from_sub_model_configs( lowercase , lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) SCREAMING_SNAKE_CASE_: List[Any] =BarkModel(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =semantic SCREAMING_SNAKE_CASE_: int =coarseAcoustic SCREAMING_SNAKE_CASE_: str =fineAcoustic SCREAMING_SNAKE_CASE_: List[Any] =codec SCREAMING_SNAKE_CASE_: str =bark_generation_config Path(lowercase ).mkdir(exist_ok=lowercase ) bark.save_pretrained(lowercase , repo_id=lowercase , push_to_hub=lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") _UpperCAmelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
715
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: int =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Optional[int] =24 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Dict =[5, 11, 17, 23] SCREAMING_SNAKE_CASE_: Union[str, Any] =[256, 512, 1024, 1024] SCREAMING_SNAKE_CASE_: Union[str, Any] =(1, 384, 384) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =True SCREAMING_SNAKE_CASE_: int =150 SCREAMING_SNAKE_CASE_: Union[str, Any] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: List[str] ="""ade20k-id2label.json""" SCREAMING_SNAKE_CASE_: Tuple =json.load(open(cached_download(hf_hub_url(lowercase , lowercase , repo_type="""dataset""" ) ) , """r""" ) ) SCREAMING_SNAKE_CASE_: int ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] =idalabel SCREAMING_SNAKE_CASE_: Dict ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Dict =[1, 150, 480, 480] return config, expected_shape def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __magic_name__ ( lowercase ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE_: Dict =name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""proj""" , """projection""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: SCREAMING_SNAKE_CASE_: int =int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""pretrained""" , """dpt""" ) if "bn" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""bn""" , """batch_norm""" ) if "head" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def __magic_name__ ( lowercase , lowercase ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_: int =state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: Optional[int] =in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE_: Optional[Any] =in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Union[str, Any] =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: List[str] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: Any =in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: Tuple =in_proj_bias[-config.hidden_size :] def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: str ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: Optional[int] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =get_dpt_config(lowercase ) # load original state_dict from URL SCREAMING_SNAKE_CASE_: Dict =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(lowercase ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Any =val # read in qkv matrices read_in_q_k_v(lowercase , lowercase ) # load HuggingFace model SCREAMING_SNAKE_CASE_: List[Any] =DPTForSemanticSegmentation(lowercase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(lowercase ) model.load_state_dict(lowercase ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE_: Dict =480 if """ade""" in checkpoint_url else 384 SCREAMING_SNAKE_CASE_: List[str] =DPTImageProcessor(size=lowercase ) SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(lowercase , return_tensors="""pt""" ) # forward pass SCREAMING_SNAKE_CASE_: List[str] =model(**lowercase ).logits if """ade""" in checkpoint_url else model(**lowercase ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE_: int =torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(lowercase ) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowercase , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowercase ) ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowercase , ) image_processor.push_to_hub( repo_path_or_name=Path(lowercase , lowercase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowercase , ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) _UpperCAmelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
716
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class a ( UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase : Optional[int] = 'convnextv2' def __init__( self : str , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Tuple=1E-12 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=224 , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =num_channels SCREAMING_SNAKE_CASE_: Optional[Any] =patch_size SCREAMING_SNAKE_CASE_: str =num_stages SCREAMING_SNAKE_CASE_: List[Any] =[96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE_: str =[3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE_: int =hidden_act SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: str =layer_norm_eps SCREAMING_SNAKE_CASE_: Optional[int] =drop_path_rate SCREAMING_SNAKE_CASE_: Dict =image_size SCREAMING_SNAKE_CASE_: List[str] =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_: str =get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
717
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
0
"""simple docstring""" def __magic_name__ ( lowercase = 400_0000 ): SCREAMING_SNAKE_CASE_: Optional[Any] =[0, 1] SCREAMING_SNAKE_CASE_: Optional[int] =0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 SCREAMING_SNAKE_CASE_: Union[str, Any] =0 for j in range(len(lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
718
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class a ( UpperCAmelCase__ ): def __init__( self : Dict , **lowerCAmelCase : int ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase ) requires_backends(self , """vision""" ) requires_backends(self , """torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCAmelCase ) def lowerCamelCase__ ( self : Any , **lowerCAmelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ={} SCREAMING_SNAKE_CASE_: Union[str, Any] ={} SCREAMING_SNAKE_CASE_: Union[str, Any] ={} # preprocess args if "points_per_batch" in kwargs: SCREAMING_SNAKE_CASE_: Tuple =kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: SCREAMING_SNAKE_CASE_: Union[str, Any] =kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: SCREAMING_SNAKE_CASE_: Any =kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: SCREAMING_SNAKE_CASE_: List[Any] =kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: SCREAMING_SNAKE_CASE_: Tuple =kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: SCREAMING_SNAKE_CASE_: List[str] =kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: SCREAMING_SNAKE_CASE_: Optional[Any] =kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: SCREAMING_SNAKE_CASE_: List[str] =kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: SCREAMING_SNAKE_CASE_: Dict =kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: SCREAMING_SNAKE_CASE_: Union[str, Any] =kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : List[Any] , lowerCAmelCase : Union[str, Any] , *lowerCAmelCase : int , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Optional[int] ) -> str: '''simple docstring''' return super().__call__(lowerCAmelCase , *lowerCAmelCase , num_workers=lowerCAmelCase , batch_size=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : int = 0 , lowerCAmelCase : float = 512 / 1500 , lowerCAmelCase : Optional[int] = 32 , lowerCAmelCase : Optional[int] = 1 , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =load_image(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =self.image_processor.size["""longest_edge"""] SCREAMING_SNAKE_CASE_: int =self.image_processor.generate_crop_boxes( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": SCREAMING_SNAKE_CASE_: List[Any] =self.get_inference_context() with inference_context(): SCREAMING_SNAKE_CASE_: Union[str, Any] =self._ensure_tensor_on_device(lowerCAmelCase , device=self.device ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) SCREAMING_SNAKE_CASE_: List[Any] =image_embeddings SCREAMING_SNAKE_CASE_: Any =grid_points.shape[1] SCREAMING_SNAKE_CASE_: List[str] =points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 , lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =grid_points[:, i : i + points_per_batch, :, :] SCREAMING_SNAKE_CASE_: Dict =input_labels[:, i : i + points_per_batch] SCREAMING_SNAKE_CASE_: Dict =i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase__ ( self : int , lowerCAmelCase : int , lowerCAmelCase : List[str]=0.8_8 , lowerCAmelCase : List[str]=0.9_5 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Dict=1 , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =model_inputs.pop("""input_boxes""" ) SCREAMING_SNAKE_CASE_: List[str] =model_inputs.pop("""is_last""" ) SCREAMING_SNAKE_CASE_: Tuple =model_inputs.pop("""original_sizes""" ).tolist() SCREAMING_SNAKE_CASE_: Tuple =model_inputs.pop("""reshaped_input_sizes""" ).tolist() SCREAMING_SNAKE_CASE_: List[str] =self.model(**lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks SCREAMING_SNAKE_CASE_: Tuple =model_outputs["""pred_masks"""] SCREAMING_SNAKE_CASE_: str =self.image_processor.post_process_masks( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , binarize=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model_outputs["""iou_scores"""] SCREAMING_SNAKE_CASE_: Dict =self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : str=0.7 , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[] SCREAMING_SNAKE_CASE_: List[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) SCREAMING_SNAKE_CASE_: List[str] =torch.cat(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =torch.cat(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.image_processor.post_process_for_mask_generation( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =defaultdict(lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ={} if output_rle_mask: SCREAMING_SNAKE_CASE_: Dict =rle_mask if output_bboxes_mask: SCREAMING_SNAKE_CASE_: Union[str, Any] =bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
0
"""simple docstring""" import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _UpperCAmelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(UpperCAmelCase__ )} , ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) UpperCamelCase : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can't be used in combination with --config_name or --model_name_or_path""" ) @dataclass class a : UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase : Optional[str] = field(default=UpperCAmelCase__ , metadata={'help': 'The input training data file (a text file).'} ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'} , ) UpperCamelCase : Optional[str] = field( default=UpperCAmelCase__ , metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'} , ) UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) UpperCamelCase : Optional[int] = field( default=5 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) UpperCamelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated. Default to the max input length of the model.' ) } , ) UpperCamelCase : Optional[int] = field( default=UpperCAmelCase__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) UpperCamelCase : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) UpperCamelCase : bool = field( default=UpperCAmelCase__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' if self.train_file is not None: SCREAMING_SNAKE_CASE_: Any =self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: SCREAMING_SNAKE_CASE_: List[str] =self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def __magic_name__ ( lowercase , lowercase ): with open(lowercase , """r""" , encoding="""utf-8""" ) as f: SCREAMING_SNAKE_CASE_: int =[json.loads(lowercase ) for line in f.read().splitlines() if (len(lowercase ) > 0 and not line.isspace())] assert len(lowercase ) == len(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] ={c: dataset[c] for c in dataset.column_names} SCREAMING_SNAKE_CASE_: List[str] =refs return Dataset.from_dict(lowercase ) def __magic_name__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_: Any =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_: Optional[Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_: Dict =parser.parse_args_into_dataclasses() # Detecting last checkpoint. SCREAMING_SNAKE_CASE_: Union[str, Any] =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_: Tuple =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_: List[str] =load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): SCREAMING_SNAKE_CASE_: Optional[Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) SCREAMING_SNAKE_CASE_: Optional[int] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: SCREAMING_SNAKE_CASE_: List[Any] ={} if data_args.train_file is not None: SCREAMING_SNAKE_CASE_: List[str] =data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =data_args.validation_file SCREAMING_SNAKE_CASE_: Union[str, Any] =data_args.train_file.split(""".""" )[-1] if extension == "txt": SCREAMING_SNAKE_CASE_: Union[str, Any] ="""text""" SCREAMING_SNAKE_CASE_: Optional[int] =load_dataset(lowercase , data_files=lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_: Any ={ """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE_: int =AutoConfig.from_pretrained(model_args.config_name , **lowercase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_: Optional[Any] =AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: SCREAMING_SNAKE_CASE_: List[str] =CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) SCREAMING_SNAKE_CASE_: List[Any] ={ """cache_dir""": model_args.cache_dir, """use_fast""": model_args.use_fast_tokenizer, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: SCREAMING_SNAKE_CASE_: Dict =AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) SCREAMING_SNAKE_CASE_: str =AutoModelForMaskedLM.from_config(lowercase ) model.resize_token_embeddings(len(lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: SCREAMING_SNAKE_CASE_: str =datasets["""train"""].column_names else: SCREAMING_SNAKE_CASE_: List[Any] =datasets["""validation"""].column_names SCREAMING_SNAKE_CASE_: Dict ="""text""" if """text""" in column_names else column_names[0] SCREAMING_SNAKE_CASE_: List[str] ="""max_length""" if data_args.pad_to_max_length else False def tokenize_function(lowercase ): # Remove empty lines SCREAMING_SNAKE_CASE_: List[str] =[line for line in examples["""text"""] if len(lowercase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowercase , truncation=lowercase , max_length=data_args.max_seq_length ) SCREAMING_SNAKE_CASE_: int =datasets.map( lowercase , batched=lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: SCREAMING_SNAKE_CASE_: Dict =add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: SCREAMING_SNAKE_CASE_: List[Any] =add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer SCREAMING_SNAKE_CASE_: Dict =data_args.train_ref_file or data_args.validation_ref_file if has_ref: SCREAMING_SNAKE_CASE_: Tuple =False # Data collator # This one will take care of randomly masking the tokens. SCREAMING_SNAKE_CASE_: Tuple =DataCollatorForWholeWordMask(tokenizer=lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer SCREAMING_SNAKE_CASE_: Optional[Any] =Trainer( model=lowercase , args=lowercase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): SCREAMING_SNAKE_CASE_: Dict =model_args.model_name_or_path else: SCREAMING_SNAKE_CASE_: Union[str, Any] =None SCREAMING_SNAKE_CASE_: str =trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE_: Any =os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation SCREAMING_SNAKE_CASE_: List[str] ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE_: List[Any] =trainer.evaluate() SCREAMING_SNAKE_CASE_: Dict =math.exp(eval_output["""eval_loss"""] ) SCREAMING_SNAKE_CASE_: Tuple =perplexity SCREAMING_SNAKE_CASE_: List[str] =os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowercase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def __magic_name__ ( lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
720
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[Any] = 'decision_transformer' UpperCamelCase : Tuple = ['past_key_values'] UpperCamelCase : Optional[int] = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , lowerCAmelCase : Tuple=17 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Tuple=128 , lowerCAmelCase : Optional[Any]=4096 , lowerCAmelCase : Any=True , lowerCAmelCase : int=1 , lowerCAmelCase : str=1024 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[Any]="relu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Union[str, Any]=0.0_2 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Any=True , lowerCAmelCase : Optional[int]=5_0256 , lowerCAmelCase : str=5_0256 , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Tuple=False , **lowerCAmelCase : str , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =state_dim SCREAMING_SNAKE_CASE_: List[str] =act_dim SCREAMING_SNAKE_CASE_: Any =hidden_size SCREAMING_SNAKE_CASE_: Dict =max_ep_len SCREAMING_SNAKE_CASE_: Any =action_tanh SCREAMING_SNAKE_CASE_: str =vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] =n_positions SCREAMING_SNAKE_CASE_: str =n_layer SCREAMING_SNAKE_CASE_: List[str] =n_head SCREAMING_SNAKE_CASE_: Tuple =n_inner SCREAMING_SNAKE_CASE_: Any =activation_function SCREAMING_SNAKE_CASE_: Optional[int] =resid_pdrop SCREAMING_SNAKE_CASE_: Optional[Any] =embd_pdrop SCREAMING_SNAKE_CASE_: Any =attn_pdrop SCREAMING_SNAKE_CASE_: List[str] =layer_norm_epsilon SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: Any =scale_attn_weights SCREAMING_SNAKE_CASE_: Any =use_cache SCREAMING_SNAKE_CASE_: Dict =scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE_: Union[str, Any] =reorder_and_upcast_attn SCREAMING_SNAKE_CASE_: Tuple =bos_token_id SCREAMING_SNAKE_CASE_: List[Any] =eos_token_id super().__init__(bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase )
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class a ( UpperCAmelCase__ ): UpperCamelCase : int = 'sew' def __init__( self : Any , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Any=768 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : List[Any]=3072 , lowerCAmelCase : int=2 , lowerCAmelCase : str="gelu" , lowerCAmelCase : int=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : str=0.0 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Optional[Any]=1E-5 , lowerCAmelCase : Dict="group" , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Any=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCAmelCase : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCAmelCase : List[str]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : int=16 , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[Any]=0.0_5 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : str=10 , lowerCAmelCase : int=0 , lowerCAmelCase : Dict="mean" , lowerCAmelCase : Any=False , lowerCAmelCase : Dict=False , lowerCAmelCase : Optional[Any]=256 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : Tuple=2 , **lowerCAmelCase : Dict , ) -> str: '''simple docstring''' super().__init__(**lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =hidden_size SCREAMING_SNAKE_CASE_: Dict =feat_extract_norm SCREAMING_SNAKE_CASE_: Dict =feat_extract_activation SCREAMING_SNAKE_CASE_: Tuple =list(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =list(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =list(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =conv_bias SCREAMING_SNAKE_CASE_: Optional[Any] =num_conv_pos_embeddings SCREAMING_SNAKE_CASE_: Optional[Any] =num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE_: List[Any] =len(self.conv_dim ) SCREAMING_SNAKE_CASE_: Any =num_hidden_layers SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Tuple =squeeze_factor SCREAMING_SNAKE_CASE_: Dict =hidden_act SCREAMING_SNAKE_CASE_: Tuple =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =hidden_dropout SCREAMING_SNAKE_CASE_: int =attention_dropout SCREAMING_SNAKE_CASE_: Dict =activation_dropout SCREAMING_SNAKE_CASE_: List[str] =feat_proj_dropout SCREAMING_SNAKE_CASE_: Dict =final_dropout SCREAMING_SNAKE_CASE_: Optional[Any] =layerdrop SCREAMING_SNAKE_CASE_: Any =layer_norm_eps SCREAMING_SNAKE_CASE_: Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_: int =vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_: Dict =apply_spec_augment SCREAMING_SNAKE_CASE_: Optional[int] =mask_time_prob SCREAMING_SNAKE_CASE_: Optional[int] =mask_time_length SCREAMING_SNAKE_CASE_: Dict =mask_time_min_masks SCREAMING_SNAKE_CASE_: Dict =mask_feature_prob SCREAMING_SNAKE_CASE_: Tuple =mask_feature_length SCREAMING_SNAKE_CASE_: Tuple =mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE_: Union[str, Any] =ctc_loss_reduction SCREAMING_SNAKE_CASE_: List[Any] =ctc_zero_infinity # sequence classification SCREAMING_SNAKE_CASE_: str =use_weighted_layer_sum SCREAMING_SNAKE_CASE_: List[str] =classifier_proj_size @property def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
700
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github _UpperCAmelCase : Tuple = [ """good first issue""", """feature request""", """wip""", ] def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Github(os.environ["""GITHUB_TOKEN"""] ) SCREAMING_SNAKE_CASE_: List[str] =g.get_repo("""huggingface/accelerate""" ) SCREAMING_SNAKE_CASE_: Tuple =repo.get_issues(state="""open""" ) for issue in open_issues: SCREAMING_SNAKE_CASE_: int =sorted([comment for comment in issue.get_comments()] , key=lambda lowercase : i.created_at , reverse=lowercase ) SCREAMING_SNAKE_CASE_: int =comments[0] if len(lowercase ) > 0 else None SCREAMING_SNAKE_CASE_: Optional[int] =dt.utcnow() SCREAMING_SNAKE_CASE_: Optional[Any] =(current_time - issue.updated_at).days SCREAMING_SNAKE_CASE_: Tuple =(current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="""closed""" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
701
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Tuple =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE_: List[str] =[(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __magic_name__ ( lowercase , lowercase , lowercase=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE_: List[Any] ="""""" else: SCREAMING_SNAKE_CASE_: List[Any] ="""vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE_: Any =state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE_: Tuple =state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE_: List[Any] =in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE_: Tuple =in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE_: Dict =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE_: List[str] =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE_: Any =in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE_: Optional[Any] =in_proj_bias[-config.hidden_size :] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Tuple =dct.pop(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =val def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: List[str] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =ViTConfig() SCREAMING_SNAKE_CASE_: Dict =False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: Union[str, Any] =True SCREAMING_SNAKE_CASE_: List[str] =int(vit_name[-12:-10] ) SCREAMING_SNAKE_CASE_: int =int(vit_name[-9:-6] ) else: SCREAMING_SNAKE_CASE_: int =1000 SCREAMING_SNAKE_CASE_: Optional[int] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: int ="""imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE_: Optional[int] =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] =idalabel SCREAMING_SNAKE_CASE_: Optional[int] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[Any] =int(vit_name[-6:-4] ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): SCREAMING_SNAKE_CASE_: List[Any] =192 SCREAMING_SNAKE_CASE_: List[Any] =768 SCREAMING_SNAKE_CASE_: Dict =12 SCREAMING_SNAKE_CASE_: str =3 elif vit_name[9:].startswith("""small""" ): SCREAMING_SNAKE_CASE_: Optional[int] =384 SCREAMING_SNAKE_CASE_: Union[str, Any] =1536 SCREAMING_SNAKE_CASE_: int =12 SCREAMING_SNAKE_CASE_: Optional[int] =6 else: pass else: if vit_name[4:].startswith("""small""" ): SCREAMING_SNAKE_CASE_: Any =768 SCREAMING_SNAKE_CASE_: Tuple =2304 SCREAMING_SNAKE_CASE_: Optional[int] =8 SCREAMING_SNAKE_CASE_: Dict =8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): SCREAMING_SNAKE_CASE_: Tuple =1024 SCREAMING_SNAKE_CASE_: int =4096 SCREAMING_SNAKE_CASE_: List[str] =24 SCREAMING_SNAKE_CASE_: Any =16 elif vit_name[4:].startswith("""huge""" ): SCREAMING_SNAKE_CASE_: str =1280 SCREAMING_SNAKE_CASE_: List[Any] =5120 SCREAMING_SNAKE_CASE_: Any =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 # load original model from timm SCREAMING_SNAKE_CASE_: Union[str, Any] =timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE_: Dict =timm_model.state_dict() if base_model: remove_classification_head_(lowercase ) SCREAMING_SNAKE_CASE_: str =create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , lowercase ) # load HuggingFace model if vit_name[-5:] == "in21k": SCREAMING_SNAKE_CASE_: Optional[int] =ViTModel(lowercase ).eval() else: SCREAMING_SNAKE_CASE_: str =ViTForImageClassification(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: SCREAMING_SNAKE_CASE_: Optional[int] =DeiTImageProcessor(size=config.image_size ) else: SCREAMING_SNAKE_CASE_: Optional[int] =ViTImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: Optional[int] =image_processor(images=prepare_img() , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] =encoding["""pixel_values"""] SCREAMING_SNAKE_CASE_: Dict =model(lowercase ) if base_model: SCREAMING_SNAKE_CASE_: List[str] =timm_model.forward_features(lowercase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase , outputs.pooler_output , atol=1e-3 ) else: SCREAMING_SNAKE_CASE_: List[str] =timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
702
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
0
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def __magic_name__ ( lowercase , lowercase ): inspect_dataset(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[str] =path + """.py""" assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def __magic_name__ ( lowercase , lowercase ): inspect_metric(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: str =path + """.py""" assert script_name in os.listdir(lowercase ) assert "__pycache__" not in os.listdir(lowercase ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =get_dataset_config_info(lowercase , config_name=lowercase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): with pytest.raises(lowercase ): get_dataset_config_info(lowercase , config_name=lowercase ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =get_dataset_config_names(lowercase ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =get_dataset_infos(lowercase ) assert list(infos.keys() ) == expected_configs SCREAMING_SNAKE_CASE_: Dict =expected_configs[0] assert expected_config in infos SCREAMING_SNAKE_CASE_: List[str] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =get_dataset_infos(lowercase ) assert expected_config in infos SCREAMING_SNAKE_CASE_: Optional[int] =infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def __magic_name__ ( lowercase , lowercase , lowercase ): with pytest.raises(lowercase ): get_dataset_split_names(lowercase , config_name=lowercase )
703
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
0
from ..utils import DummyObject, requires_backends class a ( metaclass=UpperCAmelCase__ ): UpperCamelCase : str = ['note_seq'] def __init__( self : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str ) -> Dict: '''simple docstring''' requires_backends(self , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any ) -> Any: '''simple docstring''' requires_backends(cls , ["""note_seq"""] ) @classmethod def lowerCamelCase__ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ["""note_seq"""] )
704
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCAmelCase = """main""" # Default branch name _UpperCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _UpperCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _UpperCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __magic_name__ ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __magic_name__ ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[int] ) -> Any: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict ) -> Any: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : str , lowerCAmelCase : int ) -> Tuple: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): '''simple docstring''' pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_tf def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): '''simple docstring''' pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_flax def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) class a ( UpperCAmelCase__ ): '''simple docstring''' pass self.assertEqual(find_labels(lowerCAmelCase ) , [] )
705
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
0
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __magic_name__ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(lowercase ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def __magic_name__ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def __magic_name__ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(lowercase ): http_head("""https://huggingface.co""" )
706
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
0
"""simple docstring""" from __future__ import annotations from math import gcd def __magic_name__ ( lowercase , lowercase = 2 , lowercase = 1 , lowercase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase , lowercase , lowercase ) -> int: return (pow(lowercase , 2 ) + step) % modulus for _ in range(lowercase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE_: Any =seed SCREAMING_SNAKE_CASE_: Dict =seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE_: Optional[Any] =rand_fn(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Any =rand_fn(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =rand_fn(lowercase , lowercase , lowercase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE_: Optional[Any] =gcd(hare - tortoise , lowercase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE_: Dict =hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _UpperCAmelCase = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
707
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
0
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
708
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =len(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =len(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =[[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE_: List[Any] =True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE_: Optional[Any] =True if a[i].islower(): SCREAMING_SNAKE_CASE_: str =True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Dict , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , ) -> Any: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: str =nn.Parameter(torch.zeros(lowerCAmelCase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE_: List[str] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE_: Tuple =clip_extra_context_tokens SCREAMING_SNAKE_CASE_: Union[str, Any] =nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE_: List[str] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =nn.LayerNorm(lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , *, lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE_: Optional[int] =image_embeddings.shape[0] SCREAMING_SNAKE_CASE_: Any =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1 ) SCREAMING_SNAKE_CASE_: List[Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE_: Optional[Any] =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE_: Dict =self.embedding_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE_: Optional[Any] =self.clip_extra_context_tokens_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE_: str =clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.encoder_hidden_states_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self.text_encoder_hidden_states_norm(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
711
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
0
"""simple docstring""" import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : str , lowerCAmelCase : List[str] ) -> Dict: '''simple docstring''' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] ={"""source""": """What is love ?""", """target""": """life"""} SCREAMING_SNAKE_CASE_: List[Any] ={"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: SCREAMING_SNAKE_CASE_: Optional[Any] ="""\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(lowerCAmelCase , f'''{split}.{field}''' ) , """w""" ) as f: f.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : str = "pytorch" ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE_: Optional[int] =os.path.join(lowerCAmelCase , """output""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =os.path.join(lowerCAmelCase , """data""" ) self._create_dummy_data(data_dir=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append("""--fp16""" ) else: testargs.append("""--gpus=0""" ) testargs.append("""--distributed_backend=ddp_cpu""" ) testargs.append("""--num_processes=2""" ) SCREAMING_SNAKE_CASE_: Optional[int] =[sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(lowerCAmelCase , env=self.get_env() ) SCREAMING_SNAKE_CASE_: List[Any] =os.path.join(lowerCAmelCase , """metrics.json""" ) with open(lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE_: Any =json.load(lowerCAmelCase ) return result @require_torch_gpu def lowerCamelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_gpu @require_ray def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 ) @require_torch_multi_gpu @require_ray def lowerCamelCase__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self._run_finetune(gpus=1 , distributed_retriever="""ray""" ) self.assertGreaterEqual(result["""test"""][0]["""test_avg_em"""] , 0.2 )
712
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
0
"""simple docstring""" import numpy as np def __magic_name__ ( lowercase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( ): # Get the sagemaker specific mp parameters from smp_options variable. SCREAMING_SNAKE_CASE_: List[str] =os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. SCREAMING_SNAKE_CASE_: List[Any] =json.loads(lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. SCREAMING_SNAKE_CASE_: str =os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". SCREAMING_SNAKE_CASE_: Union[str, Any] =json.loads(lowercase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a ( UpperCAmelCase__ ): UpperCamelCase : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def lowerCamelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , lowerCAmelCase , ) @cached_property def lowerCamelCase__ ( self : str ) -> "torch.device": '''simple docstring''' logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: SCREAMING_SNAKE_CASE_: str =torch.device("""cpu""" ) SCREAMING_SNAKE_CASE_: List[str] =0 elif is_sagemaker_model_parallel_available(): SCREAMING_SNAKE_CASE_: Optional[int] =smp.local_rank() SCREAMING_SNAKE_CASE_: Tuple =torch.device("""cuda""" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE_: str =int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.device("""cuda""" , self.local_rank ) SCREAMING_SNAKE_CASE_: Union[str, Any] =1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. SCREAMING_SNAKE_CASE_: Any =torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE_: Dict =torch.device("""cuda""" , self.local_rank ) SCREAMING_SNAKE_CASE_: Tuple =1 if device.type == "cuda": torch.cuda.set_device(lowerCAmelCase ) return device @property def lowerCamelCase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' return False
714
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : Tuple = ['pixel_values'] def __init__( self : str , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , **lowerCAmelCase : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =size if size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE_: Union[str, Any] =get_size_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} SCREAMING_SNAKE_CASE_: Union[str, Any] =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: List[str] =do_resize SCREAMING_SNAKE_CASE_: List[str] =size SCREAMING_SNAKE_CASE_: Optional[int] =resample SCREAMING_SNAKE_CASE_: Any =do_center_crop SCREAMING_SNAKE_CASE_: Optional[Any] =crop_size SCREAMING_SNAKE_CASE_: Any =do_rescale SCREAMING_SNAKE_CASE_: Union[str, Any] =rescale_factor SCREAMING_SNAKE_CASE_: List[str] =do_normalize SCREAMING_SNAKE_CASE_: Tuple =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_: Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PIL.Image.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowerCAmelCase , size=(size["""height"""], size["""width"""]) , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ) -> Tuple: '''simple docstring''' return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : int , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: Optional[Any] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: Optional[int] =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: Dict =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Dict =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_: Optional[Any] =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_: Union[str, Any] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_: Union[str, Any] =size if size is not None else self.size SCREAMING_SNAKE_CASE_: List[str] =get_size_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: List[Any] =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: int =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Optional[Any] =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: List[str] =[self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_: Optional[Any] =[self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: Tuple =[self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_: str =[self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: List[str] =[to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: List[Any] ={"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase )
715
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _UpperCAmelCase = None _UpperCAmelCase = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _UpperCAmelCase = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class a : UpperCamelCase : bool = True UpperCamelCase : Optional[str] = None # Automatically constructed UpperCamelCase : ClassVar[str] = "PIL.Image.Image" UpperCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) UpperCamelCase : str = field(default='Image' , init=UpperCAmelCase__ , repr=UpperCAmelCase__ ) def __call__( self : List[str] ) -> Tuple: '''simple docstring''' return self.pa_type def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =np.array(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase , lowerCAmelCase ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase ) elif isinstance(lowerCAmelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : dict , lowerCAmelCase : Tuple=None ) -> "PIL.Image.Image": '''simple docstring''' if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE_: int ={} SCREAMING_SNAKE_CASE_: Optional[Any] =value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =PIL.Image.open(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: int =path.split("""::""" )[-1] try: SCREAMING_SNAKE_CASE_: Optional[int] =string_to_dict(lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] SCREAMING_SNAKE_CASE_: List[Any] =token_per_repo_id.get(lowerCAmelCase ) except ValueError: SCREAMING_SNAKE_CASE_: List[Any] =None with xopen(lowerCAmelCase , """rb""" , use_auth_token=lowerCAmelCase ) as f: SCREAMING_SNAKE_CASE_: int =BytesIO(f.read() ) SCREAMING_SNAKE_CASE_: Union[str, Any] =PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE_: int =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCamelCase__ ( self : Tuple ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE_: Dict =pa.array([None] * len(lowerCAmelCase ) , type=pa.binary() ) SCREAMING_SNAKE_CASE_: int =pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE_: Tuple =pa.array([None] * len(lowerCAmelCase ) , type=pa.string() ) SCREAMING_SNAKE_CASE_: Optional[Any] =pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: SCREAMING_SNAKE_CASE_: Optional[int] =storage.field("""bytes""" ) else: SCREAMING_SNAKE_CASE_: str =pa.array([None] * len(lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: SCREAMING_SNAKE_CASE_: List[str] =storage.field("""path""" ) else: SCREAMING_SNAKE_CASE_: Dict =pa.array([None] * len(lowerCAmelCase ) , type=pa.string() ) SCREAMING_SNAKE_CASE_: Optional[int] =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE_: Any =pa.array( [encode_np_array(np.array(lowerCAmelCase ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_: int =pa.array([None] * len(lowerCAmelCase ) , type=pa.string() ) SCREAMING_SNAKE_CASE_: Tuple =pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase , self.pa_type ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase : List[str] ): with xopen(lowerCAmelCase , """rb""" ) as f: SCREAMING_SNAKE_CASE_: List[Any] =f.read() return bytes_ SCREAMING_SNAKE_CASE_: int =pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_: Dict =pa.array( [os.path.basename(lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE_: Optional[int] =pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase , self.pa_type ) def __magic_name__ ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE_: Any =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE_: Optional[int] =image.format else: SCREAMING_SNAKE_CASE_: Any ="""PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(lowercase , format=lowercase ) return buffer.getvalue() def __magic_name__ ( lowercase ): if hasattr(lowercase , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase )} def __magic_name__ ( lowercase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) SCREAMING_SNAKE_CASE_: List[Any] =array.dtype SCREAMING_SNAKE_CASE_: List[Any] =dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE_: int =dtype.kind SCREAMING_SNAKE_CASE_: str =dtype.itemsize SCREAMING_SNAKE_CASE_: Optional[Any] =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE_: List[str] =np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE_: int =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE_: Any =dtype_byteorder + dtype_kind + str(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =np.dtype(lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) SCREAMING_SNAKE_CASE_: int =PIL.Image.fromarray(array.astype(lowercase ) ) return {"path": None, "bytes": image_to_bytes(lowercase )} def __magic_name__ ( lowercase ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: SCREAMING_SNAKE_CASE_: Union[str, Any] =first_non_null_value(lowercase ) if isinstance(lowercase , lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase , np.ndarray ): SCREAMING_SNAKE_CASE_: List[str] =no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] elif isinstance(lowercase , PIL.Image.Image ): SCREAMING_SNAKE_CASE_: List[Any] =no_op_if_value_is_null(lowercase ) return [obj_to_image_dict_func(lowercase ) for obj in objs] else: return objs else: return objs
716
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" import baseaa def __magic_name__( lowercase ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def __magic_name__( lowercase ): return baseaa.baadecode(lowercase ).decode("""utf-8""" ) if __name__ == "__main__": _UpperCAmelCase = """Hello World!""" _UpperCAmelCase = baseaa_encode(test) print(encoded) _UpperCAmelCase = baseaa_decode(encoded) print(decoded)
717
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
0
"""simple docstring""" _lowerCAmelCase = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _lowerCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _lowerCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
718
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : Tuple = ['pixel_values'] def __init__( self : Any , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 255 , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : str , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =size if size is not None else {"""shortest_edge""": 224} SCREAMING_SNAKE_CASE_: List[str] =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =crop_size if crop_size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE_: Any =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: Any =do_resize SCREAMING_SNAKE_CASE_: List[Any] =size SCREAMING_SNAKE_CASE_: str =resample SCREAMING_SNAKE_CASE_: Tuple =do_rescale SCREAMING_SNAKE_CASE_: Tuple =rescale_factor SCREAMING_SNAKE_CASE_: Optional[Any] =do_center_crop SCREAMING_SNAKE_CASE_: Any =crop_size SCREAMING_SNAKE_CASE_: List[Any] =do_flip_channel_order def lowerCamelCase__ ( self : int , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PIL.Image.BILINEAR , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_: Any =get_resize_output_image_size(lowerCAmelCase , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase ) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Any , ) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =get_size_dict(lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def lowerCamelCase__ ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: '''simple docstring''' return flip_channel_order(lowerCAmelCase , data_format=lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : ImageInput , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : bool = None , lowerCAmelCase : float = None , lowerCAmelCase : bool = None , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : bool = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : Dict , ) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_: List[str] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_: str =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_: Optional[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_: Tuple =do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_: Union[str, Any] =( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) SCREAMING_SNAKE_CASE_: List[str] =size if size is not None else self.size SCREAMING_SNAKE_CASE_: Dict =get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_: Optional[Any] =get_size_dict(lowerCAmelCase , param_name="""crop_size""" ) SCREAMING_SNAKE_CASE_: Tuple =make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_: Dict =[to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_: Any =[self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_: Union[str, Any] =[self.center_crop(image=lowerCAmelCase , size=lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_: str =[self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: SCREAMING_SNAKE_CASE_: Optional[Any] =[self.flip_channel_order(image=lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: int =[to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_: Optional[Any] ={"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase , tensor_type=lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Tuple] = None ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =target_sizes.numpy() SCREAMING_SNAKE_CASE_: int =[] for idx in range(len(lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_: Optional[int] =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[Any] = StableDiffusionInstructPixaPixPipeline UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[str] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE_: Any =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Any =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE_: int =CLIPTextModel(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE_: List[str] ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[Any]=0 ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_: str =Image.fromarray(np.uinta(lowerCAmelCase ) ).convert("""RGB""" ) if str(lowerCAmelCase ).startswith("""mps""" ): SCREAMING_SNAKE_CASE_: List[str] =torch.manual_seed(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_: List[str] =torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: Any =self.get_dummy_components() SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =sd_pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_: int =np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ="""french fries""" SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =output.images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_: List[Any] =np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: int =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Optional[int] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[inputs["""prompt"""]] * 2 SCREAMING_SNAKE_CASE_: str =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowerCAmelCase ).unsqueeze(0 ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =image / 2 + 0.5 SCREAMING_SNAKE_CASE_: List[str] =image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_: Optional[int] =image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE_: int =sd_pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Any =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE_: Tuple =np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: List[str] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: List[str] =EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" ) SCREAMING_SNAKE_CASE_: int =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =self.get_dummy_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: str =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[Any] =[round(lowerCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_: Tuple =np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase__ ( self : str ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.get_dummy_components() SCREAMING_SNAKE_CASE_: Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =VaeImageProcessor(do_resize=lowerCAmelCase , do_normalize=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase , input_image_type="""pt""" ) )[0] SCREAMING_SNAKE_CASE_: Optional[int] =components["""vae"""] SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_dummy_inputs_by_type(lowerCAmelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE_: Any =vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE_: Optional[Any] =pipe(**lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: int =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[Any]=0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) SCREAMING_SNAKE_CASE_: int ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: Dict =self.get_inputs() SCREAMING_SNAKE_CASE_: str =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Optional[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: str =np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: List[Any] =self.get_inputs() SCREAMING_SNAKE_CASE_: Tuple =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Union[str, Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: str =np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: Dict =self.get_inputs() SCREAMING_SNAKE_CASE_: Any =pipe(**lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_: Any =np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowerCamelCase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =0 def callback_fn(lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE_: str =True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE_: List[str] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_: str =latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Tuple =np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: SCREAMING_SNAKE_CASE_: int =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE_: Union[str, Any] =latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] =np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 SCREAMING_SNAKE_CASE_: Any =False SCREAMING_SNAKE_CASE_: int =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: List[str] =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: int =self.get_inputs() pipe(**lowerCAmelCase , callback=lowerCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: Union[str, Any] =pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_: Any =self.get_inputs() SCREAMING_SNAKE_CASE_: Dict =pipe(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCamelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE_: Optional[Any] =inputs["""image"""].resize((504, 504) ) SCREAMING_SNAKE_CASE_: List[str] ="""timbrooks/instruct-pix2pix""" SCREAMING_SNAKE_CASE_: str =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase , safety_checker=lowerCAmelCase , ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_: int =pipe(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =output.images[0] SCREAMING_SNAKE_CASE_: Optional[int] =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE_: List[str] =np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
720
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
0
"""simple docstring""" class a : def __init__( self : Optional[int] , lowerCAmelCase : list ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =set_counts SCREAMING_SNAKE_CASE_: Union[str, Any] =max(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =[1] * num_sets SCREAMING_SNAKE_CASE_: Union[str, Any] =list(range(lowerCAmelCase ) ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : int , lowerCAmelCase : int ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.get_parent(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.get_parent(lowerCAmelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE_: Union[str, Any] =0 SCREAMING_SNAKE_CASE_: Union[str, Any] =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE_: Any =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE_: List[str] =0 SCREAMING_SNAKE_CASE_: List[str] =src_parent SCREAMING_SNAKE_CASE_: Union[str, Any] =self.set_counts[src_parent] SCREAMING_SNAKE_CASE_: Tuple =max(self.max_set , lowerCAmelCase ) return True def lowerCamelCase__ ( self : Dict , lowerCAmelCase : int ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE_: Any =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
0
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase : str = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def __magic_name__ ( ): if os.name == "nt": SCREAMING_SNAKE_CASE_: str =CursorInfo() SCREAMING_SNAKE_CASE_: int =ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase , ctypes.byref(lowercase ) ) SCREAMING_SNAKE_CASE_: Tuple =False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase , ctypes.byref(lowercase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __magic_name__ ( ): if os.name == "nt": SCREAMING_SNAKE_CASE_: List[Any] =CursorInfo() SCREAMING_SNAKE_CASE_: Optional[int] =ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase , ctypes.byref(lowercase ) ) SCREAMING_SNAKE_CASE_: List[Any] =True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase , ctypes.byref(lowercase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __magic_name__ ( ): try: hide_cursor() yield finally: show_cursor()
700
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
0
"""simple docstring""" from __future__ import annotations _UpperCAmelCase : List[str] = 1.6021e-19 # units = C def __magic_name__ ( lowercase , lowercase , lowercase , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: Optional[Any] ="""imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE_: str =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Tuple ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[str] ="""std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_: Optional[int] =BitConfig( conv_layer=lowercase , num_labels=1000 , idalabel=lowercase , labelaid=lowercase , ) return config def __magic_name__ ( lowercase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""blocks""" , """layers""" ) if "head.fc" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): SCREAMING_SNAKE_CASE_: Optional[int] ="""bit.""" + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_: Any ="""bit.encoder.""" + name return name def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: List[Any] =get_config(lowercase ) # load original model from timm SCREAMING_SNAKE_CASE_: str =create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_: int =timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Tuple =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Any =val.squeeze() if """head""" in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_: int =BitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # create image processor SCREAMING_SNAKE_CASE_: Optional[Any] =create_transform(**resolve_data_config({} , model=lowercase ) ) SCREAMING_SNAKE_CASE_: Tuple =transform.transforms SCREAMING_SNAKE_CASE_: List[str] ={ """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_: int =BitImageProcessor( do_resize=lowercase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE_: Optional[int] =prepare_img() SCREAMING_SNAKE_CASE_: List[str] =transform(lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_: List[Any] =processor(lowercase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase , lowercase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_: str =model(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_: str =timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) _UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
702
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase = """true""" def __magic_name__ ( lowercase , lowercase=82 , lowercase=16 ): set_seed(42 ) SCREAMING_SNAKE_CASE_: List[str] =RegressionModel() SCREAMING_SNAKE_CASE_: Dict =deepcopy(lowercase ) SCREAMING_SNAKE_CASE_: str =RegressionDataset(length=lowercase ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(lowercase , batch_size=lowercase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.prepare(lowercase , lowercase ) return model, ddp_model, dataloader def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) SCREAMING_SNAKE_CASE_: List[str] =load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(lowercase ): SCREAMING_SNAKE_CASE_: int =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Optional[Any] =dataset.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) SCREAMING_SNAKE_CASE_: Dict =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): if use_longest: return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(lowercase , shuffle=lowercase , collate_fn=lowercase , batch_size=16 ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator(dispatch_batches=lowercase , split_batches=lowercase ) SCREAMING_SNAKE_CASE_: str =get_dataloader(lowercase , not dispatch_batches ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=lowercase ) SCREAMING_SNAKE_CASE_: Tuple =accelerator.prepare(lowercase , lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =[] for batch in dataloader: SCREAMING_SNAKE_CASE_: Dict =batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE_: Any =[], [] for logit, targ in logits_and_targets: logits.append(lowercase ) targs.append(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =torch.cat(lowercase ), torch.cat(lowercase ) return logits, targs def __magic_name__ ( lowercase , lowercase=82 , lowercase=False , lowercase=False , lowercase=16 ): SCREAMING_SNAKE_CASE_: Tuple =get_basic_setup(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: int =generate_predictions(lowercase , lowercase , lowercase ) assert ( len(lowercase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase )}''' def __magic_name__ ( lowercase = False , lowercase = False ): SCREAMING_SNAKE_CASE_: Dict =evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE_: List[str] =get_mrpc_setup(lowercase , lowercase ) # First do baseline SCREAMING_SNAKE_CASE_: Tuple =setup["""no"""] model.to(lowercase ) model.eval() for batch in dataloader: batch.to(lowercase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[int] =model(**lowercase ) SCREAMING_SNAKE_CASE_: int =outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase , references=batch["""labels"""] ) SCREAMING_SNAKE_CASE_: Optional[int] =metric.compute() # Then do distributed SCREAMING_SNAKE_CASE_: str =setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Any =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_: Dict =batch["""labels"""] SCREAMING_SNAKE_CASE_: Tuple =accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase , references=lowercase ) SCREAMING_SNAKE_CASE_: str =metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase , lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE_: Dict =Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) SCREAMING_SNAKE_CASE_: List[str] =Accelerator() test_torch_metrics(lowercase , 512 ) accelerator.state._reset_state() def __magic_name__ ( lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
703
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
0
from __future__ import annotations def __magic_name__ ( lowercase , lowercase = None ): SCREAMING_SNAKE_CASE_: Optional[int] =word_bank or [] # create a table SCREAMING_SNAKE_CASE_: int =len(lowercase ) + 1 SCREAMING_SNAKE_CASE_: list[list[list[str]]] =[] for _ in range(lowercase ): table.append([] ) # seed value SCREAMING_SNAKE_CASE_: Dict =[[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: SCREAMING_SNAKE_CASE_: list[list[str]] =[ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
704
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Any=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Dict=2 , lowerCAmelCase : int=0.0_2 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : str=True , lowerCAmelCase : Tuple="None" , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =parent SCREAMING_SNAKE_CASE_: int =batch_size SCREAMING_SNAKE_CASE_: int =seq_length SCREAMING_SNAKE_CASE_: str =is_training SCREAMING_SNAKE_CASE_: Optional[int] =use_input_mask SCREAMING_SNAKE_CASE_: List[Any] =use_token_type_ids SCREAMING_SNAKE_CASE_: str =use_labels SCREAMING_SNAKE_CASE_: List[Any] =vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] =hidden_size SCREAMING_SNAKE_CASE_: List[str] =num_hidden_layers SCREAMING_SNAKE_CASE_: Dict =num_attention_heads SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: List[Any] =hidden_act SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: Optional[int] =max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[int] =type_vocab_size SCREAMING_SNAKE_CASE_: List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_: Optional[Any] =initializer_range SCREAMING_SNAKE_CASE_: Dict =num_labels SCREAMING_SNAKE_CASE_: Tuple =num_choices SCREAMING_SNAKE_CASE_: Dict =relative_attention SCREAMING_SNAKE_CASE_: str =position_biased_input SCREAMING_SNAKE_CASE_: Any =pos_att_type SCREAMING_SNAKE_CASE_: List[str] =scope def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_: List[str] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_: Tuple =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_: Union[str, Any] =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_: int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_: int =None SCREAMING_SNAKE_CASE_: Dict =None SCREAMING_SNAKE_CASE_: Any =None if self.use_labels: SCREAMING_SNAKE_CASE_: str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: Dict =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_: Union[str, Any] =DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =TFDebertaVaModel(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} SCREAMING_SNAKE_CASE_: List[str] =[input_ids, input_mask] SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =TFDebertaVaForMaskedLM(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.num_labels SCREAMING_SNAKE_CASE_: int =TFDebertaVaForSequenceClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE_: Optional[int] =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.num_labels SCREAMING_SNAKE_CASE_: Optional[int] =TFDebertaVaForTokenClassification(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =TFDebertaVaForQuestionAnswering(config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={ """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): Optional[int] =config_and_inputs SCREAMING_SNAKE_CASE_: Tuple ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase : Optional[int] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : int = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : str = False def lowerCamelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =TFDebertaVaModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowerCamelCase__ ( self : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(lowerCAmelCase ) @require_tf class a ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) SCREAMING_SNAKE_CASE_: Dict =tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) SCREAMING_SNAKE_CASE_: Tuple =tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE_: List[str] =model(lowerCAmelCase , attention_mask=lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: Optional[int] =tf.constant( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase , atol=1E-4 )
705
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
0
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): if b == 0: return (1, 0) (SCREAMING_SNAKE_CASE_): List[str] =extended_euclid(lowercase , a % b ) SCREAMING_SNAKE_CASE_: Any =a // b return (y, x - k * y) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): (SCREAMING_SNAKE_CASE_): Dict =extended_euclid(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =na * na SCREAMING_SNAKE_CASE_: int =ra * x * na + ra * y * na return (n % m + m) % m def __magic_name__ ( lowercase , lowercase ): (SCREAMING_SNAKE_CASE_): str =extended_euclid(lowercase , lowercase ) if b < 0: SCREAMING_SNAKE_CASE_: Union[str, Any] =(b % n + n) % n return b def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Any =na * na SCREAMING_SNAKE_CASE_: Optional[Any] =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
706
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
0
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _UpperCAmelCase = get_logger(__name__) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[str] = None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =( os.path.join(lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) SCREAMING_SNAKE_CASE_: Dict =Extractor def lowerCamelCase__ ( self : int , lowerCAmelCase : str ) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.abspath(lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : bool ) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(lowerCAmelCase ) and not (os.path.isdir(lowerCAmelCase ) and os.listdir(lowerCAmelCase )) ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : bool = False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =self.extractor.infer_extractor_format(lowerCAmelCase ) if not extractor_format: return input_path SCREAMING_SNAKE_CASE_: int =self._get_output_path(lowerCAmelCase ) if self._do_extract(lowerCAmelCase , lowerCAmelCase ): self.extractor.extract(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return output_path class a ( UpperCAmelCase__ ): @classmethod @abstractmethod def lowerCamelCase__ ( cls : Any , lowerCAmelCase : Union[Path, str] , **lowerCAmelCase : List[Any] ) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' ... class a ( UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase : List[bytes] = [] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : int ) -> Dict: '''simple docstring''' with open(lowerCAmelCase , """rb""" ) as f: return f.read(lowerCAmelCase ) @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : Union[Path, str] , lowerCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if not magic_number: SCREAMING_SNAKE_CASE_: str =max(len(lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: SCREAMING_SNAKE_CASE_: Any =cls.read_magic_number(lowerCAmelCase , lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class a ( UpperCAmelCase__ ): @classmethod def lowerCamelCase__ ( cls : str , lowerCAmelCase : Union[Path, str] , **lowerCAmelCase : Optional[Any] ) -> bool: '''simple docstring''' return tarfile.is_tarfile(lowerCAmelCase ) @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' def resolved(lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(lowerCAmelCase ) ) def badpath(lowerCAmelCase : str , lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(lowerCAmelCase , lowerCAmelCase ) ).startswith(lowerCAmelCase ) def badlink(lowerCAmelCase : List[Any] , lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link SCREAMING_SNAKE_CASE_: str =resolved(os.path.join(lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =resolved(lowerCAmelCase ) for finfo in members: if badpath(finfo.name , lowerCAmelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(lowerCAmelCase , lowerCAmelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(lowerCAmelCase , lowerCAmelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =tarfile.open(lowerCAmelCase ) tar_file.extractall(lowerCAmelCase , members=TarExtractor.safemembers(lowerCAmelCase , lowerCAmelCase ) ) tar_file.close() class a ( UpperCAmelCase__ ): UpperCamelCase : str = [B'\x1F\x8B'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with gzip.open(lowerCAmelCase , """rb""" ) as gzip_file: with open(lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) class a ( UpperCAmelCase__ ): UpperCamelCase : Dict = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Union[Path, str] , lowerCAmelCase : bytes = b"" ) -> bool: '''simple docstring''' if super().is_extractable(lowerCAmelCase , magic_number=lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(lowerCAmelCase , """rb""" ) as fp: SCREAMING_SNAKE_CASE_: int =_EndRecData(lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: SCREAMING_SNAKE_CASE_: List[Any] =fp.read(lowerCAmelCase ) # CD is where we expect it to be if len(lowerCAmelCase ) == sizeCentralDir: SCREAMING_SNAKE_CASE_: Tuple =struct.unpack(lowerCAmelCase , lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) with zipfile.ZipFile(lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(lowerCAmelCase ) zip_file.close() class a ( UpperCAmelCase__ ): UpperCamelCase : List[Any] = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with lzma.open(lowerCAmelCase ) as compressed_file: with open(lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) class a ( UpperCAmelCase__ ): UpperCamelCase : List[str] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =rarfile.RarFile(lowerCAmelCase ) rf.extractall(lowerCAmelCase ) rf.close() class a ( UpperCAmelCase__ ): UpperCamelCase : List[str] = [B'\x28\xb5\x2F\xFD'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd SCREAMING_SNAKE_CASE_: int =zstd.ZstdDecompressor() with open(lowerCAmelCase , """rb""" ) as ifh, open(lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(lowerCAmelCase , lowerCAmelCase ) class a ( UpperCAmelCase__ ): UpperCamelCase : int = [B'\x42\x5A\x68'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' with bza.open(lowerCAmelCase , """rb""" ) as compressed_file: with open(lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) class a ( UpperCAmelCase__ ): UpperCamelCase : int = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) with pyazr.SevenZipFile(lowerCAmelCase , """r""" ) as archive: archive.extractall(lowerCAmelCase ) class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[int] = [B'\x04\x22\x4D\x18'] @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] ) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(lowerCAmelCase , """rb""" ) as compressed_file: with open(lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(lowerCAmelCase , lowerCAmelCase ) class a : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) UpperCamelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def lowerCamelCase__ ( cls : List[Any] ) -> Optional[int]: '''simple docstring''' return max( len(lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(lowerCAmelCase , lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def lowerCamelCase__ ( lowerCAmelCase : Union[Path, str] , lowerCAmelCase : int ) -> Tuple: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase , magic_number_length=lowerCAmelCase ) except OSError: return b"" @classmethod def lowerCamelCase__ ( cls : str , lowerCAmelCase : Union[Path, str] , lowerCAmelCase : bool = False ) -> bool: '''simple docstring''' warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Union[str, Any] =cls.infer_extractor_format(lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def lowerCamelCase__ ( cls : Any , lowerCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =cls._get_magic_number_max_length() SCREAMING_SNAKE_CASE_: Optional[Any] =cls._read_magic_number(lowerCAmelCase , lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(lowerCAmelCase , magic_number=lowerCAmelCase ): return extractor_format @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Union[Path, str] , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(lowerCAmelCase ) , exist_ok=lowerCAmelCase ) # Prevent parallel extractions SCREAMING_SNAKE_CASE_: Dict =str(Path(lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(lowerCAmelCase ): shutil.rmtree(lowerCAmelCase , ignore_errors=lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(lowerCAmelCase , lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Any =extractor if extractor != """deprecated""" else extractor_format else: SCREAMING_SNAKE_CASE_: Any =cls.extractors[extractor_format] return extractor.extract(lowerCAmelCase , lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(lowerCAmelCase ): return extractor.extract(lowerCAmelCase , lowerCAmelCase )
707
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
0
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
708
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" from ... import PretrainedConfig _UpperCAmelCase = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : str = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCamelCase : Optional[Any] = 'nezha' def __init__( self : Dict , lowerCAmelCase : List[str]=2_1128 , lowerCAmelCase : Any=768 , lowerCAmelCase : Optional[Any]=12 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : Optional[Any]=3072 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Any=64 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Union[str, Any]=0.0_2 , lowerCAmelCase : List[Any]=1E-12 , lowerCAmelCase : int=0.1 , lowerCAmelCase : int=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : int=True , **lowerCAmelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_attention_heads SCREAMING_SNAKE_CASE_: Any =hidden_act SCREAMING_SNAKE_CASE_: Optional[int] =intermediate_size SCREAMING_SNAKE_CASE_: int =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Any =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Optional[int] =max_relative_position SCREAMING_SNAKE_CASE_: Union[str, Any] =type_vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =initializer_range SCREAMING_SNAKE_CASE_: Any =layer_norm_eps SCREAMING_SNAKE_CASE_: List[str] =classifier_dropout SCREAMING_SNAKE_CASE_: str =use_cache
709
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
0
"""simple docstring""" from __future__ import annotations import time _UpperCAmelCase = list[tuple[int, int]] _UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class a : def __init__( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Node | None ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =pos_x SCREAMING_SNAKE_CASE_: Optional[int] =pos_y SCREAMING_SNAKE_CASE_: List[str] =(pos_y, pos_x) SCREAMING_SNAKE_CASE_: Any =goal_x SCREAMING_SNAKE_CASE_: List[Any] =goal_y SCREAMING_SNAKE_CASE_: List[str] =parent class a : def __init__( self : int , lowerCAmelCase : tuple[int, int] , lowerCAmelCase : tuple[int, int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =Node(start[1] , start[0] , goal[1] , goal[0] , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =[self.start] SCREAMING_SNAKE_CASE_: Tuple =False def lowerCamelCase__ ( self : str ) -> Path | None: '''simple docstring''' while self.node_queue: SCREAMING_SNAKE_CASE_: Dict =self.node_queue.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE_: Optional[Any] =True return self.retrace_path(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.get_successors(lowerCAmelCase ) for node in successors: self.node_queue.append(lowerCAmelCase ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Node ) -> list[Node]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =[] for action in delta: SCREAMING_SNAKE_CASE_: Optional[Any] =parent.pos_x + action[1] SCREAMING_SNAKE_CASE_: Dict =parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCAmelCase , lowerCAmelCase , self.target.pos_y , self.target.pos_x , lowerCAmelCase ) ) return successors def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Node | None ) -> Path: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =node SCREAMING_SNAKE_CASE_: int =[] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE_: str =current_node.parent path.reverse() return path class a : def __init__( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =BreadthFirstSearch(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =BreadthFirstSearch(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =False def lowerCamelCase__ ( self : Union[str, Any] ) -> Path | None: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE_: Optional[int] =self.fwd_bfs.node_queue.pop(0 ) SCREAMING_SNAKE_CASE_: List[str] =self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE_: Any =True return self.retrace_bidirectional_path( lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =current_bwd_node SCREAMING_SNAKE_CASE_: Dict =current_fwd_node SCREAMING_SNAKE_CASE_: List[str] ={ self.fwd_bfs: self.fwd_bfs.get_successors(lowerCAmelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCAmelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCAmelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Node , lowerCAmelCase : Node ) -> Path: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.fwd_bfs.retrace_path(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =self.bwd_bfs.retrace_path(lowerCAmelCase ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE_: Any =fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _UpperCAmelCase = (0, 0) _UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _UpperCAmelCase = time.time() _UpperCAmelCase = BreadthFirstSearch(init, goal) _UpperCAmelCase = bfs.search() _UpperCAmelCase = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) _UpperCAmelCase = time.time() _UpperCAmelCase = BidirectionalBreadthFirstSearch(init, goal) _UpperCAmelCase = bd_bfs.search() _UpperCAmelCase = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
710
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a ( UpperCAmelCase__ ): UpperCamelCase : str = CustomTokenizer pass
711
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
712
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
0
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) class a : def __init__( self : Any , lowerCAmelCase : str = None , lowerCAmelCase : uuid.UUID = None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None ) -> Optional[Any]: '''simple docstring''' if not conversation_id: SCREAMING_SNAKE_CASE_: Optional[Any] =uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE_: Tuple =[] if generated_responses is None: SCREAMING_SNAKE_CASE_: Any =[] SCREAMING_SNAKE_CASE_: uuid.UUID =conversation_id SCREAMING_SNAKE_CASE_: List[str] =past_user_inputs SCREAMING_SNAKE_CASE_: List[str] =generated_responses SCREAMING_SNAKE_CASE_: Optional[str] =text def __eq__( self : Optional[int] , lowerCAmelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' if not isinstance(lowerCAmelCase , lowerCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : bool = False ) -> Union[str, Any]: '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' f'''with: "{text}".''' ) SCREAMING_SNAKE_CASE_: Optional[int] =text else: logger.warning( f'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' f'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: SCREAMING_SNAKE_CASE_: int =text def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE_: Optional[int] =None def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : str ) -> Any: '''simple docstring''' self.generated_responses.append(lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =f'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE_: List[Any] ="""user""" if is_user else """bot""" output += f'''{name} >> {text} \n''' return output @add_end_docstrings( UpperCAmelCase__ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class a ( UpperCAmelCase__ ): def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : str ) -> Any: '''simple docstring''' super().__init__(*lowerCAmelCase , **lowerCAmelCase ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE_: Tuple =self.tokenizer.eos_token def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ={} SCREAMING_SNAKE_CASE_: str ={} SCREAMING_SNAKE_CASE_: str ={} if min_length_for_response is not None: SCREAMING_SNAKE_CASE_: List[Any] =min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE_: str =minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE_: Optional[Any] =generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE_: Dict =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowerCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[int] , lowerCAmelCase : Union[Conversation, List[Conversation]] , lowerCAmelCase : Any=0 , **lowerCAmelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =super().__call__(lowerCAmelCase , num_workers=lowerCAmelCase , **lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) == 1: return outputs[0] return outputs def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Conversation , lowerCAmelCase : List[str]=32 ) -> Dict[str, Any]: '''simple docstring''' if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): SCREAMING_SNAKE_CASE_: List[Any] =self.tokenizer._build_conversation_input_ids(lowerCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE_: List[Any] =self._legacy_parse_and_tokenize(lowerCAmelCase ) if self.framework == "pt": SCREAMING_SNAKE_CASE_: Optional[Any] =torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE_: str =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : str=10 , **lowerCAmelCase : int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =generate_kwargs.get("""max_length""" , self.model.config.max_length ) SCREAMING_SNAKE_CASE_: str =model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) SCREAMING_SNAKE_CASE_: Tuple =max_length - minimum_tokens SCREAMING_SNAKE_CASE_: int =model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE_: Optional[Any] =model_inputs["""attention_mask"""][:, -trim:] SCREAMING_SNAKE_CASE_: Union[str, Any] =model_inputs.pop("""conversation""" ) SCREAMING_SNAKE_CASE_: List[Any] =max_length SCREAMING_SNAKE_CASE_: Union[str, Any] =self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE_: List[str] =1 else: SCREAMING_SNAKE_CASE_: Tuple =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]=True ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =model_outputs["""output_ids"""] SCREAMING_SNAKE_CASE_: List[str] =self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Optional[Any] =model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(lowerCAmelCase ) return conversation def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Conversation ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE_: List[Any] =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) ) if len(lowerCAmelCase ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE_: List[Any] =input_ids[-self.tokenizer.model_max_length :] return input_ids
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
714
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class a ( UpperCAmelCase__ ): UpperCamelCase : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase : ClassVar[Features] = Features({'image': Image()} ) UpperCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) UpperCamelCase : str = "image" UpperCamelCase : str = "labels" def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Any ) -> Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE_: int =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_: Optional[int] =self.label_schema.copy() SCREAMING_SNAKE_CASE_: int =features[self.label_column] SCREAMING_SNAKE_CASE_: Optional[int] =label_schema return task_template @property def lowerCamelCase__ ( self : Optional[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
715
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
716
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _UpperCAmelCase = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
717
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def __magic_name__ ( lowercase ): return "".join(sorted(lowercase ) ) def __magic_name__ ( lowercase ): return word_by_signature[signature(lowercase )] _lowerCAmelCase = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) _lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
718
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: List[str] =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =-1 SCREAMING_SNAKE_CASE_: List[str] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Optional[Any] =TextStreamer(lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Optional[int] =cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: Dict =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =-1 SCREAMING_SNAKE_CASE_: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE_: Optional[Any] =TextIteratorStreamer(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] ={"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE_: Dict =Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() SCREAMING_SNAKE_CASE_: Dict ="""""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: List[Any] =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =-1 SCREAMING_SNAKE_CASE_: str =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE_: Any =tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Tuple =TextStreamer(lowerCAmelCase , skip_prompt=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=10 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE_: Any =cs.out[:-1] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =AutoTokenizer.from_pretrained("""distilgpt2""" ) SCREAMING_SNAKE_CASE_: int =AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =-1 SCREAMING_SNAKE_CASE_: Optional[int] =torch.ones((1, 5) , device=lowerCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE_: Optional[int] =TextStreamer(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) model.generate(lowerCAmelCase , max_new_tokens=1 , do_sample=lowerCAmelCase , streamer=lowerCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE_: int =cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE_: List[str] =tokenizer(lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) SCREAMING_SNAKE_CASE_: str =AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =-1 SCREAMING_SNAKE_CASE_: List[Any] =ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =TextIteratorStreamer(lowerCAmelCase , timeout=0.0_0_1 ) SCREAMING_SNAKE_CASE_: Optional[Any] ={"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} SCREAMING_SNAKE_CASE_: List[str] =Thread(target=model.generate , kwargs=lowerCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple ="""""" for new_text in streamer: streamer_text += new_text
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = """▁""" _UpperCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} _UpperCAmelCase = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _UpperCAmelCase = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase : List[str] = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any]="<s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[Any]="<s>" , lowerCAmelCase : Union[str, Any]="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[str] , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token SCREAMING_SNAKE_CASE_: List[Any] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[Any] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_: Optional[int] ={"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_: Optional[Any] =1 SCREAMING_SNAKE_CASE_: List[str] =len(self.sp_model ) + self.fairseq_offset SCREAMING_SNAKE_CASE_: List[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.__dict__.copy() SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: Dict =self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , lowerCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE_: List[str] ={} SCREAMING_SNAKE_CASE_: Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_: List[str] =[self.cls_token_id] SCREAMING_SNAKE_CASE_: Dict =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE_: List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : str ) -> Any: '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ={self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_: Dict =self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Any ) -> Optional[int]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict ="""""".join(lowerCAmelCase ).replace(lowerCAmelCase , """ """ ).strip() return out_string def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_: Any =os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE_: Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
720
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
0
"""simple docstring""" from math import factorial _UpperCAmelCase = {str(d): factorial(d) for d in range(1_0)} def __magic_name__ ( lowercase ): return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
721
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
0
from __future__ import annotations class _snake_case : def __init__( self : Tuple, __lowercase : int ): lowercase__ = order # a_{0} ... a_{k} lowercase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowercase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowercase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowercase__ = [0.0] * self.order def A__ ( self : int, __lowercase : list[float], __lowercase : list[float] ): if len(__lowercase ) < self.order: lowercase__ = [1.0, *a_coeffs] if len(__lowercase ) != self.order + 1: lowercase__ = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__lowercase )}''' ) raise ValueError(__lowercase ) if len(__lowercase ) != self.order + 1: lowercase__ = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(__lowercase )}''' ) raise ValueError(__lowercase ) lowercase__ = a_coeffs lowercase__ = b_coeffs def A__ ( self : List[Any], __lowercase : float ): lowercase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1, self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowercase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowercase__ = self.input_history[:-1] lowercase__ = self.output_history[:-1] lowercase__ = sample lowercase__ = result return result
37
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if numbers[j] < numbers[i]: lowercase__ , lowercase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(exchange_sort(unsorted))
37
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _snake_case ( lowercase__): def __init__( self : Dict, __lowercase : Tuple, __lowercase : Optional[Any]=13, __lowercase : int=7, __lowercase : Union[str, Any]=True, __lowercase : List[Any]=True, __lowercase : Optional[int]=False, __lowercase : Dict=True, __lowercase : List[Any]=99, __lowercase : str=32, __lowercase : int=5, __lowercase : int=4, __lowercase : Any=64, __lowercase : str="gelu", __lowercase : List[Any]=0.1, __lowercase : Optional[Any]=0.1, __lowercase : Any=512, __lowercase : List[str]=16, __lowercase : int=2, __lowercase : str=0.02, __lowercase : Optional[int]=3, __lowercase : str=4, __lowercase : List[Any]=None, __lowercase : str=2, __lowercase : Dict=2, __lowercase : Any=2, __lowercase : Dict=2, __lowercase : str=4, __lowercase : Union[str, Any]=1, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = q_groups lowercase__ = k_groups lowercase__ = v_groups lowercase__ = post_attention_groups lowercase__ = intermediate_groups lowercase__ = output_groups def A__ ( self : List[Any] ): lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Optional[int] ): return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def A__ ( self : Optional[Any], __lowercase : Optional[Any], __lowercase : Optional[int], __lowercase : List[str], __lowercase : List[Any], __lowercase : Tuple, __lowercase : int ): lowercase__ = SqueezeBertModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, __lowercase ) lowercase__ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : List[str], __lowercase : Optional[int], __lowercase : Optional[Any], __lowercase : List[Any], __lowercase : Tuple, __lowercase : Optional[Any], __lowercase : Optional[int] ): lowercase__ = SqueezeBertForMaskedLM(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, attention_mask=__lowercase, labels=__lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : List[Any], __lowercase : int, __lowercase : Tuple, __lowercase : int, __lowercase : str, __lowercase : Union[str, Any], __lowercase : List[Any] ): lowercase__ = SqueezeBertForQuestionAnswering(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model( __lowercase, attention_mask=__lowercase, start_positions=__lowercase, end_positions=__lowercase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A__ ( self : Tuple, __lowercase : Optional[int], __lowercase : str, __lowercase : Any, __lowercase : List[Any], __lowercase : Dict, __lowercase : Optional[Any] ): lowercase__ = self.num_labels lowercase__ = SqueezeBertForSequenceClassification(__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, attention_mask=__lowercase, labels=__lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A__ ( self : int, __lowercase : str, __lowercase : Tuple, __lowercase : Any, __lowercase : Union[str, Any], __lowercase : Any, __lowercase : Union[str, Any] ): lowercase__ = self.num_labels lowercase__ = SqueezeBertForTokenClassification(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase, attention_mask=__lowercase, labels=__lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int, __lowercase : Optional[Any], __lowercase : Tuple, __lowercase : Optional[int], __lowercase : List[str], __lowercase : List[str], __lowercase : Dict ): lowercase__ = self.num_choices lowercase__ = SqueezeBertForMultipleChoice(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() lowercase__ = model( __lowercase, attention_mask=__lowercase, labels=__lowercase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def A__ ( self : Union[str, Any] ): lowercase__ = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) = config_and_inputs lowercase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Tuple =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase__ : List[str] =( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Dict =True UpperCamelCase__ : Union[str, Any] =False def A__ ( self : Any ): lowercase__ = SqueezeBertModelTester(self ) lowercase__ = ConfigTester(self, config_class=__lowercase, dim=37 ) def A__ ( self : Tuple ): self.config_tester.run_common_tests() def A__ ( self : str ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__lowercase ) def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__lowercase ) def A__ ( self : int ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__lowercase ) def A__ ( self : Dict ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__lowercase ) def A__ ( self : Union[str, Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__lowercase ) @slow def A__ ( self : Dict ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = SqueezeBertModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_sentencepiece @require_tokenizers @require_torch class _snake_case ( unittest.TestCase): @slow def A__ ( self : List[Any] ): lowercase__ = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) lowercase__ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) lowercase__ = model(__lowercase )[0] lowercase__ = torch.Size((1, 3) ) self.assertEqual(output.shape, __lowercase ) lowercase__ = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(__lowercase, __lowercase, atol=1e-4 ) )
37
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) lowercase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase__ = 1 if upper_limit > 0: lowercase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: lowercase_ = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
37
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = """<""" if sys.byteorder == """little""" else """>""" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("""|b1"""), np.dtype("""|u1"""), np.dtype("""<u2"""), np.dtype(""">u2"""), np.dtype("""<i2"""), np.dtype(""">i2"""), np.dtype("""<u4"""), np.dtype(""">u4"""), np.dtype("""<i4"""), np.dtype(""">i4"""), np.dtype("""<f4"""), np.dtype(""">f4"""), np.dtype("""<f8"""), np.dtype(""">f8"""), ] @dataclass class _snake_case : UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="PIL.Image.Image" UpperCamelCase__ : ClassVar[Any] =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()}) UpperCamelCase__ : str =field(default="""Image""" , init=lowercase__ , repr=lowercase__) def __call__( self : Tuple ): return self.pa_type def A__ ( self : Union[str, Any], __lowercase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(__lowercase, __lowercase ): lowercase__ = np.array(__lowercase ) if isinstance(__lowercase, __lowercase ): return {"path": value, "bytes": None} elif isinstance(__lowercase, __lowercase ): return {"path": None, "bytes": value} elif isinstance(__lowercase, np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowercase ) elif isinstance(__lowercase, PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowercase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A__ ( self : Optional[int], __lowercase : dict, __lowercase : Optional[Any]=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: lowercase__ = {} lowercase__ , lowercase__ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(__lowercase ): lowercase__ = PIL.Image.open(__lowercase ) else: lowercase__ = path.split("::" )[-1] try: lowercase__ = string_to_dict(__lowercase, config.HUB_DATASETS_URL )["repo_id"] lowercase__ = token_per_repo_id.get(__lowercase ) except ValueError: lowercase__ = None with xopen(__lowercase, "rb", use_auth_token=__lowercase ) as f: lowercase__ = BytesIO(f.read() ) lowercase__ = PIL.Image.open(bytes_ ) else: lowercase__ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def A__ ( self : str ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def A__ ( self : str, __lowercase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase__ = pa.array([None] * len(__lowercase ), type=pa.binary() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ = pa.array([None] * len(__lowercase ), type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowercase__ = storage.field("bytes" ) else: lowercase__ = pa.array([None] * len(__lowercase ), type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowercase__ = storage.field("path" ) else: lowercase__ = pa.array([None] * len(__lowercase ), type=pa.string() ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase__ = pa.array( [encode_np_array(np.array(__lowercase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()], type=pa.binary(), ) lowercase__ = pa.array([None] * len(__lowercase ), type=pa.string() ) lowercase__ = pa.StructArray.from_arrays( [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(__lowercase, self.pa_type ) def A__ ( self : Optional[Any], __lowercase : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__lowercase : List[Any] ): with xopen(__lowercase, "rb" ) as f: lowercase__ = f.read() return bytes_ lowercase__ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ], type=pa.binary(), ) lowercase__ = pa.array( [os.path.basename(__lowercase ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), ) lowercase__ = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() ) return array_cast(__lowercase, self.pa_type ) def __lowerCAmelCase ( ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase__ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = BytesIO() if image.format in list_image_compression_formats(): lowercase__ = image.format else: lowercase__ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(SCREAMING_SNAKE_CASE_ , format=SCREAMING_SNAKE_CASE_ ) return buffer.getvalue() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if hasattr(SCREAMING_SNAKE_CASE_ , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE_ )} def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowercase__ = array.dtype lowercase__ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowercase__ = dtype.kind lowercase__ = dtype.itemsize lowercase__ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase__ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase__ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase__ = dtype_byteorder + dtype_kind + str(SCREAMING_SNAKE_CASE_ ) lowercase__ = np.dtype(SCREAMING_SNAKE_CASE_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase__ = PIL.Image.fromarray(array.astype(SCREAMING_SNAKE_CASE_ ) ) return {"path": None, "bytes": image_to_bytes(SCREAMING_SNAKE_CASE_ )} def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowercase__ , lowercase__ = first_non_null_value(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): lowercase__ = no_op_if_value_is_null(SCREAMING_SNAKE_CASE_ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE_ ) for obj in objs] elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ): lowercase__ = no_op_if_value_is_null(SCREAMING_SNAKE_CASE_ ) return [obj_to_image_dict_func(SCREAMING_SNAKE_CASE_ ) for obj in objs] else: return objs else: return objs
37
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ , lowercase__ = len(SCREAMING_SNAKE_CASE_ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE_ , row + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , row - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col + 1 , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col - 1 , SCREAMING_SNAKE_CASE_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
37
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") lowercase__ = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f'''bert/{name}''' def create_tf_var(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = session.run(SCREAMING_SNAKE_CASE_ ) print(f'''Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}''' ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_=None ): lowercase__ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory in which to save tensorflow model" ) lowercase__ = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
1
from math import sqrt def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = 0 for i in range(1 , int(sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) ): if n % i == 0 and i != sqrt(SCREAMING_SNAKE_CASE_ ): total += i + n // i elif i == sqrt(SCREAMING_SNAKE_CASE_ ): total += i return total - n def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 1_0000 ): lowercase__ = sum( i for i in range(1 , SCREAMING_SNAKE_CASE_ ) if sum_of_divisors(sum_of_divisors(SCREAMING_SNAKE_CASE_ ) ) == i and sum_of_divisors(SCREAMING_SNAKE_CASE_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
37
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
1
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(SCREAMING_SNAKE_CASE_ ) , version.parse(SCREAMING_SNAKE_CASE_ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): lowercase__ = f'''\n{hint}''' if hint is not None else "" # non-versioned check if re.match(r"^[\w_\-\d]+$" , SCREAMING_SNAKE_CASE_ ): lowercase__ , lowercase__ , lowercase__ = requirement, None, None else: lowercase__ = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , SCREAMING_SNAKE_CASE_ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f''' got {requirement}''' ) lowercase__ , lowercase__ = match[0] lowercase__ = want_full.split("," ) # there could be multiple requirements lowercase__ = {} for w in want_range: lowercase__ = re.findall(r"^([\s!=<>]{1,2})(.+)" , SCREAMING_SNAKE_CASE_ ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f''' but got {requirement}''' ) lowercase__ , lowercase__ = match[0] lowercase__ = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": lowercase__ = ".".join([str(SCREAMING_SNAKE_CASE_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return # check if any version is installed try: lowercase__ = importlib.metadata.version(SCREAMING_SNAKE_CASE_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
37
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True ): if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) lowercase__ = config_class.from_json_file(SCREAMING_SNAKE_CASE_ ) lowercase__ = True lowercase__ = True print(f'''Building TensorFlow model from configuration: {config}''' ) lowercase__ = model_class(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowercase__ = cached_file( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowercase__ = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if compare_with_pt_model: lowercase__ = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE_ ) # build the network lowercase__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) lowercase__ = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , state_dict=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowercase__ = pt_model(**pt_model.dummy_inputs ) lowercase__ = pto[0].numpy() lowercase__ = tfo[0].numpy() lowercase__ = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(SCREAMING_SNAKE_CASE_ , save_format="h5" ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , ): if args_model_type is None: lowercase__ = list(MODEL_CLASSES.keys() ) else: lowercase__ = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE_ , start=1 ): print("=" * 100 ) print(f''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE_ )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowercase__ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowercase__ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue lowercase__ = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE_ )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) else: lowercase__ = config_shortcut_name if model_shortcut_name in aws_model_maps: lowercase__ = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , force_download=not use_cached_models ) else: lowercase__ = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE_ ): lowercase__ = "converted_model" convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE_ , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE_ , config_file=SCREAMING_SNAKE_CASE_ , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE_ , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=SCREAMING_SNAKE_CASE_ , ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE_ ) os.remove(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F'Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
37
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowercase_ = random.Random() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ): if rng is None: lowercase__ = global_rng lowercase__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _snake_case ( unittest.TestCase): def __init__( self : Any, __lowercase : List[str], __lowercase : Optional[int]=7, __lowercase : Dict=400, __lowercase : Dict=2000, __lowercase : List[Any]=10, __lowercase : Optional[int]=160, __lowercase : Tuple=8, __lowercase : Tuple=0.0, __lowercase : Optional[Any]=4000, __lowercase : str=False, __lowercase : Dict=True, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = min_seq_length lowercase__ = max_seq_length lowercase__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ = padding_value lowercase__ = sampling_rate lowercase__ = return_attention_mask lowercase__ = do_normalize lowercase__ = feature_size lowercase__ = chunk_length lowercase__ = hop_length def A__ ( self : Optional[int] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A__ ( self : Optional[int], __lowercase : Optional[int]=False, __lowercase : Union[str, Any]=False ): def _flatten(__lowercase : Any ): return list(itertools.chain(*__lowercase ) ) if equal_length: lowercase__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: lowercase__ = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : str =WhisperFeatureExtractor if is_speech_available() else None def A__ ( self : int ): lowercase__ = WhisperFeatureExtractionTester(self ) def A__ ( self : List[Any] ): lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) lowercase__ = self.feature_extraction_class.from_pretrained(__lowercase ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase, __lowercase ) ) self.assertEqual(__lowercase, __lowercase ) def A__ ( self : Any ): lowercase__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(__lowercase, "feat_extract.json" ) feat_extract_first.to_json_file(__lowercase ) lowercase__ = self.feature_extraction_class.from_json_file(__lowercase ) lowercase__ = feat_extract_first.to_dict() lowercase__ = feat_extract_second.to_dict() lowercase__ = feat_extract_first.mel_filters lowercase__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase, __lowercase ) ) self.assertEqual(__lowercase, __lowercase ) def A__ ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ = [floats_list((1, x) )[0] for x in range(800, 1400, 200 )] lowercase__ = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test feature size lowercase__ = feature_extractor(__lowercase, padding="max_length", return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase__ = feature_extractor(speech_inputs[0], return_tensors="np" ).input_features lowercase__ = feature_extractor(np_speech_inputs[0], return_tensors="np" ).input_features self.assertTrue(np.allclose(__lowercase, __lowercase, atol=1e-3 ) ) # Test batched lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase, __lowercase ): self.assertTrue(np.allclose(__lowercase, __lowercase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ = np.asarray(__lowercase ) lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase, __lowercase ): self.assertTrue(np.allclose(__lowercase, __lowercase, atol=1e-3 ) ) # Test truncation required lowercase__ = [floats_list((1, x) )[0] for x in range(200, (feature_extractor.n_samples + 500), 200 )] lowercase__ = [np.asarray(__lowercase ) for speech_input in speech_inputs] lowercase__ = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase__ = [np.asarray(__lowercase ) for speech_input in speech_inputs_truncated] lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features lowercase__ = feature_extractor(__lowercase, return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase, __lowercase ): self.assertTrue(np.allclose(__lowercase, __lowercase, atol=1e-3 ) ) def A__ ( self : Dict ): import torch lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = np.random.rand(100, 32 ).astype(np.floataa ) lowercase__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A__ ( self : Any, __lowercase : Optional[int] ): lowercase__ = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation" ) # automatic decoding with librispeech lowercase__ = ds.sort("id" ).select(range(__lowercase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def A__ ( self : Optional[int] ): # fmt: off lowercase__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on lowercase__ = self._load_datasamples(1 ) lowercase__ = WhisperFeatureExtractor() lowercase__ = feature_extractor(__lowercase, return_tensors="pt" ).input_features self.assertEqual(input_features.shape, (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30], __lowercase, atol=1e-4 ) ) def A__ ( self : Any ): lowercase__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ = self._load_datasamples(1 )[0] lowercase__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue lowercase__ = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=__lowercase )[0] self.assertTrue(np.all(np.mean(__lowercase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase ) - 1 ) < 1e-3 ) )
37
import math def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase_ = """Enter the base and the power separated by a comma: """ lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) lowercase_ , lowercase_ = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. lowercase_ = res(xa, ya) lowercase_ = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
37
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") lowercase__ = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) lowercase__ = model.state_dict() def to_tf_var_name(SCREAMING_SNAKE_CASE_ ): for patt, repl in iter(SCREAMING_SNAKE_CASE_ ): lowercase__ = name.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return f'''bert/{name}''' def create_tf_var(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ = tf.get_variable(dtype=SCREAMING_SNAKE_CASE_ , shape=tensor.shape , name=SCREAMING_SNAKE_CASE_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(SCREAMING_SNAKE_CASE_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ = to_tf_var_name(SCREAMING_SNAKE_CASE_ ) lowercase__ = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ = torch_tensor.T lowercase__ = create_tf_var(tensor=SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ , session=SCREAMING_SNAKE_CASE_ ) tf.keras.backend.set_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase__ = session.run(SCREAMING_SNAKE_CASE_ ) print(f'''Successfully created {tf_name}: {np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}''' ) lowercase__ = tf.train.Saver(tf.trainable_variables() ) saver.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_=None ): lowercase__ = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="Directory in which to save tensorflow model" ) lowercase__ = parser.parse_args(SCREAMING_SNAKE_CASE_ ) lowercase__ = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=SCREAMING_SNAKE_CASE_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
import pickle import numpy as np from matplotlib import pyplot as plt class _snake_case : def __init__( self : Tuple, __lowercase : Union[str, Any], __lowercase : int, __lowercase : Union[str, Any], __lowercase : str, __lowercase : List[Any], __lowercase : List[str]=0.2, __lowercase : List[str]=0.2 ): lowercase__ = bp_numa lowercase__ = bp_numa lowercase__ = bp_numa lowercase__ = conva_get[:2] lowercase__ = conva_get[2] lowercase__ = size_pa lowercase__ = rate_w lowercase__ = rate_t lowercase__ = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase__ = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) lowercase__ = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) lowercase__ = -2 * np.random.rand(self.conva[1] ) + 1 lowercase__ = -2 * np.random.rand(self.num_bpa ) + 1 lowercase__ = -2 * np.random.rand(self.num_bpa ) + 1 def A__ ( self : Any, __lowercase : List[str] ): # save model dict with pickle lowercase__ = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(__lowercase, "wb" ) as f: pickle.dump(__lowercase, __lowercase ) print(F'''Model saved: {save_path}''' ) @classmethod def A__ ( cls : Dict, __lowercase : Union[str, Any] ): # read saved model with open(__lowercase, "rb" ) as f: lowercase__ = pickle.load(__lowercase ) # noqa: S301 lowercase__ = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowercase__ = model_dic.get("size_pooling1" ) lowercase__ = model_dic.get("num_bp1" ) lowercase__ = model_dic.get("num_bp2" ) lowercase__ = model_dic.get("num_bp3" ) lowercase__ = model_dic.get("rate_weight" ) lowercase__ = model_dic.get("rate_thre" ) # create model instance lowercase__ = CNN(__lowercase, __lowercase, __lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) # modify model parameter lowercase__ = model_dic.get("w_conv1" ) lowercase__ = model_dic.get("wkj" ) lowercase__ = model_dic.get("vji" ) lowercase__ = model_dic.get("thre_conv1" ) lowercase__ = model_dic.get("thre_bp2" ) lowercase__ = model_dic.get("thre_bp3" ) return conv_ins def A__ ( self : str, __lowercase : List[Any] ): return 1 / (1 + np.exp(-1 * x )) def A__ ( self : List[str], __lowercase : Optional[Any] ): return round(__lowercase, 3 ) def A__ ( self : Optional[Any], __lowercase : Dict, __lowercase : Optional[int], __lowercase : Optional[int], __lowercase : Optional[Any], __lowercase : str ): # convolution process lowercase__ = convs[0] lowercase__ = convs[1] lowercase__ = np.shape(__lowercase )[0] # get the data slice of original image data, data_focus lowercase__ = [] for i_focus in range(0, size_data - size_conv + 1, __lowercase ): for j_focus in range(0, size_data - size_conv + 1, __lowercase ): lowercase__ = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase__ = [] lowercase__ = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__lowercase ): lowercase__ = [] for i_focus in range(len(__lowercase ) ): lowercase__ = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__lowercase ) ) lowercase__ = np.asmatrix(__lowercase ).reshape( __lowercase, __lowercase ) data_featuremap.append(__lowercase ) # expanding the data slice to One dimenssion lowercase__ = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__lowercase ) ) lowercase__ = np.asarray(__lowercase ) return focus_list, data_featuremap def A__ ( self : List[Any], __lowercase : Any, __lowercase : List[Any], __lowercase : Union[str, Any]="average_pool" ): # pooling process lowercase__ = len(featuremaps[0] ) lowercase__ = int(size_map / size_pooling ) lowercase__ = [] for i_map in range(len(__lowercase ) ): lowercase__ = featuremaps[i_map] lowercase__ = [] for i_focus in range(0, __lowercase, __lowercase ): for j_focus in range(0, __lowercase, __lowercase ): lowercase__ = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__lowercase ) ) lowercase__ = np.asmatrix(__lowercase ).reshape(__lowercase, __lowercase ) featuremap_pooled.append(__lowercase ) return featuremap_pooled def A__ ( self : str, __lowercase : Optional[Any] ): # expanding three dimension data to one dimension list lowercase__ = [] for i in range(len(__lowercase ) ): lowercase__ = np.shape(data[i] ) lowercase__ = data[i].reshape(1, shapes[0] * shapes[1] ) lowercase__ = data_listed.getA().tolist()[0] data_expanded.extend(__lowercase ) lowercase__ = np.asarray(__lowercase ) return data_expanded def A__ ( self : Optional[int], __lowercase : Optional[int] ): # expanding matrix to one dimension list lowercase__ = np.asarray(__lowercase ) lowercase__ = np.shape(__lowercase ) lowercase__ = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def A__ ( self : str, __lowercase : Tuple, __lowercase : List[Any], __lowercase : Any, __lowercase : Union[str, Any], __lowercase : Tuple ): lowercase__ = [] lowercase__ = 0 for i_map in range(__lowercase ): lowercase__ = np.ones((size_map, size_map) ) for i in range(0, __lowercase, __lowercase ): for j in range(0, __lowercase, __lowercase ): lowercase__ = pd_pool[ i_pool ] lowercase__ = i_pool + 1 lowercase__ = np.multiply( __lowercase, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(__lowercase ) return pd_all def A__ ( self : Tuple, __lowercase : int, __lowercase : Optional[Any], __lowercase : List[Any], __lowercase : Optional[Any], __lowercase : List[Any], __lowercase : List[str]=bool ): # model traning print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(__lowercase )) ) print((" - - Shape: Teach_Data ", np.shape(__lowercase )) ) lowercase__ = 0 lowercase__ = [] lowercase__ = 1_0000 while rp < n_repeat and mse >= error_accuracy: lowercase__ = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(__lowercase ) ): # print('------------Learning Image: %d--------------'%p) lowercase__ = np.asmatrix(datas_train[p] ) lowercase__ = np.asarray(datas_teach[p] ) lowercase__ , lowercase__ = self.convolute( __lowercase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase__ = self.pooling(__lowercase, self.size_poolinga ) lowercase__ = np.shape(__lowercase ) lowercase__ = self._expand(__lowercase ) lowercase__ = data_bp_input lowercase__ = np.dot(__lowercase, self.vji.T ) - self.thre_bpa lowercase__ = self.sig(__lowercase ) lowercase__ = np.dot(__lowercase, self.wkj.T ) - self.thre_bpa lowercase__ = self.sig(__lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase__ = np.multiply( (data_teach - bp_outa), np.multiply(__lowercase, (1 - bp_outa) ) ) lowercase__ = np.multiply( np.dot(__lowercase, self.wkj ), np.multiply(__lowercase, (1 - bp_outa) ) ) lowercase__ = np.dot(__lowercase, self.vji ) lowercase__ = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase__ = pd_conva_pooled.T.getA().tolist() lowercase__ = self._calculate_gradient_from_pool( __lowercase, __lowercase, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase__ = self._expand_mat(pd_conva_all[k_conv] ) lowercase__ = self.rate_weight * np.dot(__lowercase, __lowercase ) lowercase__ = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase__ = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase__ = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase__ = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase__ = self.thre_bpa - pd_k_all * self.rate_thre lowercase__ = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase__ = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase__ = rp + 1 lowercase__ = error_count / patterns all_mse.append(__lowercase ) def draw_error(): lowercase__ = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__lowercase, "+-" ) plt.plot(__lowercase, "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(__lowercase, alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A__ ( self : List[str], __lowercase : Optional[int] ): # model predict lowercase__ = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(__lowercase )) ) for p in range(len(__lowercase ) ): lowercase__ = np.asmatrix(datas_test[p] ) lowercase__ , lowercase__ = self.convolute( __lowercase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase__ = self.pooling(__lowercase, self.size_poolinga ) lowercase__ = self._expand(__lowercase ) lowercase__ = data_bp_input lowercase__ = bp_outa * self.vji.T - self.thre_bpa lowercase__ = self.sig(__lowercase ) lowercase__ = bp_outa * self.wkj.T - self.thre_bpa lowercase__ = self.sig(__lowercase ) produce_out.extend(bp_outa.getA().tolist() ) lowercase__ = [list(map(self.do_round, __lowercase ) ) for each in produce_out] return np.asarray(__lowercase ) def A__ ( self : int, __lowercase : Any ): # return the data of image after convoluting process so we can check it out lowercase__ = np.asmatrix(__lowercase ) lowercase__ , lowercase__ = self.convolute( __lowercase, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase__ = self.pooling(__lowercase, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
37
1
from __future__ import annotations import numpy as np def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return np.maximum(0 , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
37
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = "huggingface/label-files" lowercase__ = "imagenet-1k-id2label.json" lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase__ = BitConfig( conv_layer=SCREAMING_SNAKE_CASE_ , num_labels=1000 , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if "stem.conv" in name: lowercase__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowercase__ = name.replace("blocks" , "layers" ) if "head.fc" in name: lowercase__ = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): lowercase__ = "bit." + name if "bit" not in name and "classifier" not in name: lowercase__ = "bit.encoder." + name return name def __lowerCAmelCase ( ): lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase__ = get_config(SCREAMING_SNAKE_CASE_ ) # load original model from timm lowercase__ = create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model lowercase__ = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val.squeeze() if "head" in key else val # load HuggingFace model lowercase__ = BitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE_ ) ) lowercase__ = transform.transforms lowercase__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowercase__ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase__ = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = r"\w+[.]\d+" lowercase__ = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: lowercase__ = key.replace(SCREAMING_SNAKE_CASE_ , "_".join(pat.split("." ) ) ) return key def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase__ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase__ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase__ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowercase__ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase__ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase__ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=42 ): # Step 1: Convert pytorch tensor to numpy lowercase__ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase__ = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase__ = rename_key(SCREAMING_SNAKE_CASE_ ) lowercase__ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowercase__ , lowercase__ = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase__ = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
37
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _snake_case ( lowercase__): def __init__( self : Optional[Any], __lowercase : str = "▁", __lowercase : bool = True, __lowercase : Union[str, AddedToken] = "<unk>", __lowercase : Union[str, AddedToken] = "</s>", __lowercase : Union[str, AddedToken] = "<pad>", ): lowercase__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } lowercase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowercase__ = token_dict["token"] lowercase__ = Tokenizer(Unigram() ) lowercase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ), " " ), normalizers.Lowercase(), ] ) lowercase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ), pre_tokenizers.Digits(individual_digits=__lowercase ), pre_tokenizers.Punctuation(), ] ) lowercase__ = decoders.Metaspace(replacement=__lowercase, add_prefix_space=__lowercase ) lowercase__ = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''', special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) lowercase__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(__lowercase, __lowercase ) def A__ ( self : Union[str, Any], __lowercase : Union[str, List[str]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) if isinstance(__lowercase, __lowercase ): lowercase__ = [files] self._tokenizer.train(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : List[Any], __lowercase : Union[Iterator[str], Iterator[Iterator[str]]], __lowercase : int = 8000, __lowercase : bool = True, ): lowercase__ = trainers.UnigramTrainer( vocab_size=__lowercase, special_tokens=self.special_tokens_list, show_progress=__lowercase, ) self._tokenizer.train_from_iterator(__lowercase, trainer=__lowercase ) self.add_unk_id() def A__ ( self : str ): lowercase__ = json.loads(self._tokenizer.to_str() ) lowercase__ = self.special_tokens["unk"]["id"] lowercase__ = Tokenizer.from_str(json.dumps(__lowercase ) )
37
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self : Optional[Any], __lowercase : Tuple, __lowercase : Optional[int]=3, __lowercase : str=32, __lowercase : Any=3, __lowercase : int=10, __lowercase : Optional[Any]=[10, 20, 30, 40], __lowercase : int=[1, 1, 2, 1], __lowercase : Any=True, __lowercase : Dict=True, __lowercase : Union[str, Any]="relu", __lowercase : Optional[int]=3, __lowercase : str=None, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(__lowercase ) def A__ ( self : Tuple ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self : Any ): return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def A__ ( self : int, __lowercase : Tuple, __lowercase : Union[str, Any], __lowercase : str ): lowercase__ = TFRegNetModel(config=__lowercase ) lowercase__ = model(__lowercase, training=__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def A__ ( self : Union[str, Any], __lowercase : List[Any], __lowercase : Union[str, Any], __lowercase : Union[str, Any] ): lowercase__ = self.num_labels lowercase__ = TFRegNetForImageClassification(__lowercase ) lowercase__ = model(__lowercase, labels=__lowercase, training=__lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] ): lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[int] =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase__ : List[str] =( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ : int =False UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =False def A__ ( self : str ): lowercase__ = TFRegNetModelTester(self ) lowercase__ = ConfigTester(self, config_class=__lowercase, has_text_modality=__lowercase ) def A__ ( self : Tuple ): return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def A__ ( self : Tuple ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def A__ ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def A__ ( self : Tuple ): pass def A__ ( self : List[Any] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) lowercase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], __lowercase ) def A__ ( self : List[str] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self : int ): def check_hidden_states_output(__lowercase : Dict, __lowercase : Optional[int], __lowercase : Optional[int] ): lowercase__ = model_class(__lowercase ) lowercase__ = model(**self._prepare_for_class(__lowercase, __lowercase ), training=__lowercase ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(__lowercase ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(__lowercase, __lowercase, __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(__lowercase, __lowercase, __lowercase ) def A__ ( self : int ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__lowercase : Any, __lowercase : int, __lowercase : Dict, __lowercase : str={} ): lowercase__ = model(__lowercase, return_dict=__lowercase, **__lowercase ) lowercase__ = model(__lowercase, return_dict=__lowercase, **__lowercase ).to_tuple() def recursive_check(__lowercase : List[Any], __lowercase : Dict ): if isinstance(__lowercase, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowercase, __lowercase ): recursive_check(__lowercase, __lowercase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowercase, __lowercase ) ), msg=( "Tuple and dict output are not equal. Difference:" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ), ) recursive_check(__lowercase, __lowercase ) for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase ) check_equivalence(__lowercase, __lowercase, __lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) check_equivalence(__lowercase, __lowercase, __lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase ) check_equivalence(__lowercase, __lowercase, __lowercase, {"output_hidden_states": True} ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) check_equivalence(__lowercase, __lowercase, __lowercase, {"output_hidden_states": True} ) def A__ ( self : Any ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def A__ ( self : Tuple ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFRegNetModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase): @cached_property def A__ ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A__ ( self : List[Any] ): lowercase__ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=__lowercase, return_tensors="tf" ) # forward pass lowercase__ = model(**__lowercase, training=__lowercase ) # verify the logits lowercase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, __lowercase ) lowercase__ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3], __lowercase, atol=1e-4 )
37
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase__ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowercase__ = f'''{src_lang}-{tgt_lang}''' lowercase__ = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE_ , "README.md" ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) # make sure we are under the root of the project lowercase_ = Path(__file__).resolve().parent.parent.parent lowercase_ = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase_ , lowercase_ , lowercase_ = model_name.split("""-""") lowercase_ = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
37
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _snake_case ( lowercase__): UpperCamelCase__ : Union[str, Any] ="""unispeech-sat""" def __init__( self : Union[str, Any], __lowercase : str=32, __lowercase : Any=768, __lowercase : Tuple=12, __lowercase : List[str]=12, __lowercase : int=3072, __lowercase : Optional[Any]="gelu", __lowercase : Tuple=0.1, __lowercase : List[Any]=0.1, __lowercase : Optional[int]=0.1, __lowercase : Optional[Any]=0.0, __lowercase : Optional[Any]=0.0, __lowercase : List[str]=0.1, __lowercase : str=0.1, __lowercase : Optional[int]=0.02, __lowercase : Optional[int]=1e-5, __lowercase : Any="group", __lowercase : Dict="gelu", __lowercase : List[Any]=(512, 512, 512, 512, 512, 512, 512), __lowercase : Dict=(5, 2, 2, 2, 2, 2, 2), __lowercase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2), __lowercase : List[Any]=False, __lowercase : Union[str, Any]=128, __lowercase : Optional[int]=16, __lowercase : Union[str, Any]=False, __lowercase : Optional[int]=True, __lowercase : List[Any]=0.05, __lowercase : Any=10, __lowercase : Tuple=2, __lowercase : Optional[Any]=0.0, __lowercase : str=10, __lowercase : List[Any]=0, __lowercase : Dict=320, __lowercase : str=2, __lowercase : Optional[int]=0.1, __lowercase : int=100, __lowercase : Any=256, __lowercase : str=256, __lowercase : Tuple=0.1, __lowercase : Dict="mean", __lowercase : Optional[Any]=False, __lowercase : Optional[Any]=False, __lowercase : Optional[Any]=256, __lowercase : Optional[int]=(512, 512, 512, 512, 1500), __lowercase : Optional[Any]=(5, 3, 3, 1, 1), __lowercase : Optional[int]=(1, 2, 3, 1, 1), __lowercase : Tuple=512, __lowercase : Tuple=0, __lowercase : str=1, __lowercase : Optional[Any]=2, __lowercase : List[str]=504, **__lowercase : Optional[int], ): super().__init__(**__lowercase, pad_token_id=__lowercase, bos_token_id=__lowercase, eos_token_id=__lowercase ) lowercase__ = hidden_size lowercase__ = feat_extract_norm lowercase__ = feat_extract_activation lowercase__ = list(__lowercase ) lowercase__ = list(__lowercase ) lowercase__ = list(__lowercase ) lowercase__ = conv_bias lowercase__ = num_conv_pos_embeddings lowercase__ = num_conv_pos_embedding_groups lowercase__ = len(self.conv_dim ) lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_attention_heads lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = feat_proj_dropout lowercase__ = final_dropout lowercase__ = layerdrop lowercase__ = layer_norm_eps lowercase__ = initializer_range lowercase__ = vocab_size lowercase__ = num_clusters lowercase__ = do_stable_layer_norm lowercase__ = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__ = apply_spec_augment lowercase__ = mask_time_prob lowercase__ = mask_time_length lowercase__ = mask_time_min_masks lowercase__ = mask_feature_prob lowercase__ = mask_feature_length lowercase__ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase__ = num_codevectors_per_group lowercase__ = num_codevector_groups lowercase__ = contrastive_logits_temperature lowercase__ = feat_quantizer_dropout lowercase__ = num_negatives lowercase__ = codevector_dim lowercase__ = proj_codevector_dim lowercase__ = diversity_loss_weight # ctc loss lowercase__ = ctc_loss_reduction lowercase__ = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__ = list(__lowercase ) lowercase__ = list(__lowercase ) lowercase__ = list(__lowercase ) lowercase__ = xvector_output_dim @property def A__ ( self : List[str] ): return functools.reduce(operator.mul, self.conv_stride, 1 )
37
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Dict =TransfoXLTokenizer UpperCamelCase__ : List[Any] =False UpperCamelCase__ : List[Any] =False def A__ ( self : Union[str, Any] ): super().setUp() lowercase__ = [ "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un", "running", ",", "low", "l", ] lowercase__ = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A__ ( self : Union[str, Any], **__lowercase : Any ): lowercase__ = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **__lowercase ) def A__ ( self : Tuple, __lowercase : Optional[int] ): lowercase__ = "<unk> UNwanted , running" lowercase__ = "<unk> unwanted, running" return input_text, output_text def A__ ( self : str ): lowercase__ = TransfoXLTokenizer(vocab_file=self.vocab_file, lower_case=__lowercase ) lowercase__ = tokenizer.tokenize("<unk> UNwanted , running" ) self.assertListEqual(__lowercase, ["<unk>", "unwanted", ",", "running"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ), [0, 4, 8, 7] ) def A__ ( self : Tuple ): lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ), ["hello", "!", "how", "are", "you", "?"] ) def A__ ( self : Tuple ): lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def A__ ( self : str ): lowercase__ = TransfoXLTokenizer(lower_case=__lowercase ) lowercase__ = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?" lowercase__ = [ "Hello", "(", "bracket", ")", "and", "side", "@-@", "scrolled", "[", "and", "]", "Henry", "'s", "$", "5", "@,@", "000", "with", "3", "@.@", "34", "m", ".", "What", "'s", "up", "!", "?", ] self.assertListEqual(tokenizer.tokenize(__lowercase ), __lowercase ) self.assertEqual(tokenizer.convert_tokens_to_string(__lowercase ), __lowercase ) def A__ ( self : List[str] ): lowercase__ = self.get_tokenizer() lowercase__ = len(__lowercase ) tokenizer.add_tokens(["new1", "new2"] ) tokenizer.move_added_token("new1", 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(__lowercase ), original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode("new1" ), [1] ) self.assertEqual(tokenizer.decode([1] ), "new1" )
37
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _snake_case : def __init__( self : Tuple, __lowercase : Union[str, Any], __lowercase : Union[str, Any]=2, __lowercase : List[str]=True, __lowercase : Dict=False, __lowercase : Dict=10, __lowercase : List[Any]=3, __lowercase : Union[str, Any]=32 * 8, __lowercase : Optional[int]=32 * 8, __lowercase : List[str]=4, __lowercase : Tuple=64, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = is_training lowercase__ = use_auxiliary_loss lowercase__ = num_queries lowercase__ = num_channels lowercase__ = min_size lowercase__ = max_size lowercase__ = num_labels lowercase__ = hidden_dim lowercase__ = hidden_dim def A__ ( self : Optional[Any] ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowercase ) lowercase__ = torch.ones([self.batch_size, self.min_size, self.max_size], device=__lowercase ) lowercase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=__lowercase ) > 0.5 ).float() lowercase__ = (torch.rand((self.batch_size, self.num_labels), device=__lowercase ) > 0.5).long() lowercase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self : Dict ): lowercase__ = MaskaFormerConfig( hidden_size=self.hidden_dim, ) lowercase__ = self.num_queries lowercase__ = self.num_labels lowercase__ = [1, 1, 1, 1] lowercase__ = self.num_channels lowercase__ = 64 lowercase__ = 128 lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim return config def A__ ( self : str ): lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.prepare_config_and_inputs() lowercase__ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def A__ ( self : str, __lowercase : Tuple, __lowercase : int ): lowercase__ = output.encoder_hidden_states lowercase__ = output.pixel_decoder_hidden_states lowercase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowercase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowercase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowercase ), config.decoder_layers ) def A__ ( self : List[Any], __lowercase : Optional[Any], __lowercase : List[str], __lowercase : List[str], __lowercase : Optional[Any]=False ): with torch.no_grad(): lowercase__ = MaskaFormerModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(pixel_values=__lowercase, pixel_mask=__lowercase ) lowercase__ = model(__lowercase, output_hidden_states=__lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowercase, __lowercase ) def A__ ( self : Union[str, Any], __lowercase : str, __lowercase : int, __lowercase : str, __lowercase : Union[str, Any], __lowercase : str ): lowercase__ = MaskaFormerForUniversalSegmentation(config=__lowercase ) model.to(__lowercase ) model.eval() def comm_check_on_output(__lowercase : int ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase__ = model(pixel_values=__lowercase, pixel_mask=__lowercase ) lowercase__ = model(__lowercase ) comm_check_on_output(__lowercase ) lowercase__ = model( pixel_values=__lowercase, pixel_mask=__lowercase, mask_labels=__lowercase, class_labels=__lowercase ) comm_check_on_output(__lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Any =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase__ : Tuple ={"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase__ : int =False UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : List[str] =False def A__ ( self : List[str] ): lowercase__ = MaskaFormerModelTester(self ) lowercase__ = ConfigTester(self, config_class=__lowercase, has_text_modality=__lowercase ) def A__ ( self : str ): self.config_tester.run_common_tests() def A__ ( self : Optional[Any] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowercase, **__lowercase, output_hidden_states=__lowercase ) def A__ ( self : List[str] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*__lowercase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def A__ ( self : Optional[Any] ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def A__ ( self : int ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def A__ ( self : List[str] ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def A__ ( self : Any ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def A__ ( self : Union[str, Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self : Optional[int] ): pass def A__ ( self : int ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], __lowercase ) @slow def A__ ( self : Optional[int] ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase__ = MaskaFormerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def A__ ( self : Optional[int] ): lowercase__ = (self.model_tester.min_size,) * 2 lowercase__ = { "pixel_values": torch.randn((2, 3, *size), device=__lowercase ), "mask_labels": torch.randn((2, 10, *size), device=__lowercase ), "class_labels": torch.zeros(2, 10, device=__lowercase ).long(), } lowercase__ = self.model_tester.get_config() lowercase__ = MaskaFormerForUniversalSegmentation(__lowercase ).to(__lowercase ) lowercase__ = model(**__lowercase ) self.assertTrue(outputs.loss is not None ) def A__ ( self : Optional[Any] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(__lowercase, **__lowercase, output_hidden_states=__lowercase ) def A__ ( self : Optional[int] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ).to(__lowercase ) lowercase__ = model(**__lowercase, output_attentions=__lowercase ) self.assertTrue(outputs.attentions is not None ) def A__ ( self : Optional[int] ): if not self.model_tester.is_training: return lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.train() lowercase__ = model(__lowercase, mask_labels=__lowercase, class_labels=__lowercase ).loss loss.backward() def A__ ( self : Dict ): lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = True lowercase__ = True lowercase__ = model_class(__lowercase ).to(__lowercase ) model.train() lowercase__ = model(__lowercase, mask_labels=__lowercase, class_labels=__lowercase ) lowercase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase_ = 1e-4 def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _snake_case ( unittest.TestCase): @cached_property def A__ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self : List[Any] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self : List[Any] ): lowercase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(__lowercase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(__lowercase, return_tensors="pt" ).to(__lowercase ) lowercase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowercase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**__lowercase ) lowercase__ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], __lowercase, atol=__lowercase ) ) lowercase__ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], __lowercase, atol=__lowercase ) ) lowercase__ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(__lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], __lowercase, atol=__lowercase ) ) def A__ ( self : List[str] ): lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowercase ).eval() lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(__lowercase, return_tensors="pt" ).to(__lowercase ) lowercase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__lowercase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**__lowercase ) # masks_queries_logits lowercase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase__ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase__ = torch.tensor(__lowercase ).to(__lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], __lowercase, atol=__lowercase ) ) # class_queries_logits lowercase__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase__ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], __lowercase, atol=__lowercase ) ) def A__ ( self : Optional[Any] ): lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(__lowercase ).eval() lowercase__ = self.default_image_processor lowercase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="pt", ) lowercase__ = inputs["pixel_values"].to(__lowercase ) lowercase__ = [el.to(__lowercase ) for el in inputs["mask_labels"]] lowercase__ = [el.to(__lowercase ) for el in inputs["class_labels"]] with torch.no_grad(): lowercase__ = model(**__lowercase ) self.assertTrue(outputs.loss is not None )
37
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowerCAmelCase ( ): lowercase__ = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) lowercase__ = parser.parse_args_into_dataclasses()[0] lowercase__ = TensorFlowBenchmark(args=SCREAMING_SNAKE_CASE_ ) try: lowercase__ = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase__ = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowercase__ = " ".join(str(SCREAMING_SNAKE_CASE_ ).split(" " )[:-1] ) lowercase__ = "" lowercase__ = eval(str(SCREAMING_SNAKE_CASE_ ).split(" " )[-1] ) lowercase__ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__ = full_error_msg + begin_error_msg + str(SCREAMING_SNAKE_CASE_ ) raise ValueError(SCREAMING_SNAKE_CASE_ ) benchmark.run() if __name__ == "__main__": main()
37
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_ = """<<<<<<< This should probably be modified because it mentions: """ lowercase_ = """======= >>>>>>> """ lowercase_ = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase_ = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class _snake_case ( lowercase__): @staticmethod def A__ ( __lowercase : ArgumentParser ): lowercase__ = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=__lowercase, required=__lowercase, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=__lowercase, required=__lowercase, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple, __lowercase : str, __lowercase : str, *__lowercase : Tuple ): lowercase__ = get_logger("datasets-cli/converting" ) lowercase__ = tfds_path lowercase__ = datasets_directory def A__ ( self : Any ): if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(__lowercase ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) if not os.path.isfile(__lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowercase, encoding="utf-8" ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here lowercase__ = "" continue elif "from absl import logging" in out_line: lowercase__ = "from datasets import logging\n" elif "getLogger" in out_line: lowercase__ = out_line.replace("getLogger", "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda __lowercase : e in out_line, __lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowercase ) + "\n" ) out_lines.append(__lowercase ) out_lines.append(__lowercase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(__lowercase, __lowercase, __lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)", __lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) lowercase__ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(__lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace(".py", "" ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) os.makedirs(__lowercase, exist_ok=__lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowercase ) if needs_manual_update: with_manual_update.append(__lowercase ) with open(__lowercase, "w", encoding="utf-8" ) as f: f.writelines(__lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(__lowercase ) lowercase__ = imports_to_builder_map[f_name.replace(".py", "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__lowercase, __lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_ = """<<<<<<< This should probably be modified because it mentions: """ lowercase_ = """======= >>>>>>> """ lowercase_ = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] lowercase_ = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class _snake_case ( lowercase__): @staticmethod def A__ ( __lowercase : ArgumentParser ): lowercase__ = parser.add_parser( "convert", help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.", ) train_parser.add_argument( "--tfds_path", type=__lowercase, required=__lowercase, help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.", ) train_parser.add_argument( "--datasets_directory", type=__lowercase, required=__lowercase, help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowercase ) def __init__( self : Tuple, __lowercase : str, __lowercase : str, *__lowercase : Tuple ): lowercase__ = get_logger("datasets-cli/converting" ) lowercase__ = tfds_path lowercase__ = datasets_directory def A__ ( self : Any ): if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(__lowercase ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) if not os.path.isfile(__lowercase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowercase, encoding="utf-8" ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here lowercase__ = "" continue elif "from absl import logging" in out_line: lowercase__ = "from datasets import logging\n" elif "getLogger" in out_line: lowercase__ = out_line.replace("getLogger", "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda __lowercase : e in out_line, __lowercase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowercase ) + "\n" ) out_lines.append(__lowercase ) out_lines.append(__lowercase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(__lowercase, __lowercase, __lowercase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)", __lowercase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) lowercase__ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(__lowercase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace(".py", "" ) lowercase__ = os.path.join(__lowercase, __lowercase ) lowercase__ = os.path.join(__lowercase, __lowercase ) os.makedirs(__lowercase, exist_ok=__lowercase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowercase ) if needs_manual_update: with_manual_update.append(__lowercase ) with open(__lowercase, "w", encoding="utf-8" ) as f: f.writelines(__lowercase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(__lowercase ) lowercase__ = imports_to_builder_map[f_name.replace(".py", "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__lowercase, __lowercase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
1
import gc import threading import time import psutil import torch class _snake_case : def __init__( self : Optional[int] ): lowercase__ = psutil.Process() lowercase__ = False def A__ ( self : Dict ): lowercase__ = -1 while True: lowercase__ = max(self.process.memory_info().rss, self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A__ ( self : Optional[Any] ): lowercase__ = True lowercase__ = threading.Thread(target=self.peak_monitor ) lowercase__ = True self.thread.start() def A__ ( self : str ): lowercase__ = False self.thread.join() return self.cpu_memory_peak lowercase_ = PeakCPUMemory() def __lowerCAmelCase ( ): # Time lowercase__ = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ = torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) torch.cuda.reset_peak_memory_stats() return measures def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): # Time lowercase__ = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem lowercase__ = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 lowercase__ = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): lowercase__ = (torch.cuda.memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 lowercase__ = (torch.cuda.max_memory_allocated(SCREAMING_SNAKE_CASE_ ) - start_measures[str(SCREAMING_SNAKE_CASE_ )]) / 2**20 return measures def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): print(f'''{description}:''' ) print(f'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(f'''- GPU {i} allocated: {measures[str(SCREAMING_SNAKE_CASE_ )]:.2f}MiB''' ) lowercase__ = measures[f'''{i}-peak'''] print(f'''- GPU {i} peak: {peak:.2f}MiB''' ) print(f'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(f'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
37
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowercase_ = { """allenai/led-base-16384""": 1_6384, } class _snake_case ( lowercase__): UpperCamelCase__ : int =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[Any] =LEDTokenizer UpperCamelCase__ : Tuple =["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any], __lowercase : Optional[Any]=None, __lowercase : Dict=None, __lowercase : Tuple=None, __lowercase : Union[str, Any]="replace", __lowercase : Tuple="<s>", __lowercase : Optional[Any]="</s>", __lowercase : Tuple="</s>", __lowercase : List[str]="<s>", __lowercase : Tuple="<unk>", __lowercase : Dict="<pad>", __lowercase : Dict="<mask>", __lowercase : Any=False, __lowercase : Any=True, **__lowercase : List[Any], ): super().__init__( __lowercase, __lowercase, tokenizer_file=__lowercase, errors=__lowercase, bos_token=__lowercase, eos_token=__lowercase, sep_token=__lowercase, cls_token=__lowercase, unk_token=__lowercase, pad_token=__lowercase, mask_token=__lowercase, add_prefix_space=__lowercase, trim_offsets=__lowercase, **__lowercase, ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = getattr(__lowercase, pre_tok_state.pop("type" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**__lowercase ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = "post_processor" lowercase__ = getattr(self.backend_tokenizer, __lowercase, __lowercase ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["sep"] ) if "cls" in state: lowercase__ = tuple(state["cls"] ) lowercase__ = False if state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("trim_offsets", __lowercase ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(__lowercase, state.pop("type" ) ) lowercase__ = component_class(**__lowercase ) setattr(self.backend_tokenizer, __lowercase, __lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A__ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self : Optional[int], __lowercase : Dict ): lowercase__ = AddedToken(__lowercase, lstrip=__lowercase, rstrip=__lowercase ) if isinstance(__lowercase, __lowercase ) else value lowercase__ = value def A__ ( self : Any, *__lowercase : List[Any], **__lowercase : Optional[Any] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase, **__lowercase ) def A__ ( self : int, *__lowercase : Union[str, Any], **__lowercase : List[str] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase, **__lowercase ) def A__ ( self : Optional[Any], __lowercase : str, __lowercase : Optional[str] = None ): lowercase__ = self._tokenizer.model.save(__lowercase, name=__lowercase ) return tuple(__lowercase ) def A__ ( self : List[str], __lowercase : int, __lowercase : Optional[int]=None ): lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self : int, __lowercase : List[int], __lowercase : Optional[List[int]] = None ): lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Union[str, Any], __lowercase : Union[Dict[str, EncodedInput], BatchEncoding], __lowercase : Optional[int] = None, __lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, __lowercase : Optional[int] = None, __lowercase : Optional[bool] = None, ): lowercase__ = super()._pad( encoded_inputs=__lowercase, max_length=__lowercase, padding_strategy=__lowercase, pad_to_multiple_of=__lowercase, return_attention_mask=__lowercase, ) # Load from model defaults if return_attention_mask is None: lowercase__ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ = len(encoded_inputs["global_attention_mask"] ) != len(__lowercase ) if needs_to_be_padded: lowercase__ = len(__lowercase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase__ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = 50 ): lowercase__ = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
37
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCAmelCase ( ): lowercase__ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowercase__ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowercase__ = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , "func" ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
37
1
from __future__ import annotations from collections.abc import Callable def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 100 , ): lowercase__ = x_start lowercase__ = fnc(SCREAMING_SNAKE_CASE_ ) lowercase__ = 0.0 for _ in range(SCREAMING_SNAKE_CASE_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area lowercase__ = (x_end - x_start) / steps + xa lowercase__ = fnc(SCREAMING_SNAKE_CASE_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step lowercase__ = xa lowercase__ = fxa return area if __name__ == "__main__": def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") lowercase_ = 10 while i <= 10_0000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
37
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _snake_case ( unittest.TestCase): def __init__( self : Dict, __lowercase : int, __lowercase : Union[str, Any]=7, __lowercase : Union[str, Any]=3, __lowercase : Any=18, __lowercase : Union[str, Any]=30, __lowercase : Any=400, __lowercase : List[str]=True, __lowercase : Dict=None, __lowercase : List[str]=True, __lowercase : int=False, __lowercase : Union[str, Any]=True, __lowercase : str=True, __lowercase : Optional[int]=[0.5, 0.5, 0.5], __lowercase : List[Any]=[0.5, 0.5, 0.5], ): lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {"height": 18, "width": 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def A__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[int] =DonutImageProcessor if is_vision_available() else None def A__ ( self : str ): lowercase__ = DonutImageProcessingTester(self ) @property def A__ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[Any] ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "do_resize" ) ) self.assertTrue(hasattr(__lowercase, "size" ) ) self.assertTrue(hasattr(__lowercase, "do_thumbnail" ) ) self.assertTrue(hasattr(__lowercase, "do_align_long_axis" ) ) self.assertTrue(hasattr(__lowercase, "do_pad" ) ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "image_mean" ) ) self.assertTrue(hasattr(__lowercase, "image_std" ) ) def A__ ( self : str ): lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"height": 18, "width": 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict, size=(42, 84) ) self.assertEqual(image_processor.size, {"height": 84, "width": 42} ) def A__ ( self : List[str] ): pass @is_flaky() def A__ ( self : Dict ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Optional[Any] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) @is_flaky() def A__ ( self : Tuple ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ), )
37
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): # initialize config if "resnet-50" in model_name: lowercase__ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: lowercase__ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) lowercase__ = DetrConfig(use_timm_backbone=SCREAMING_SNAKE_CASE_ , backbone_config=SCREAMING_SNAKE_CASE_ ) # set label attributes lowercase__ = "panoptic" in model_name if is_panoptic: lowercase__ = 250 else: lowercase__ = 91 lowercase__ = "huggingface/label-files" lowercase__ = "coco-detection-id2label.json" lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): # here we list all keys to be renamed (original name on the left, our name on the right) lowercase__ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase__ = "" if is_panoptic: lowercase__ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:256, :] lowercase__ = in_proj_bias_cross_attn[:256] lowercase__ = in_proj_weight_cross_attn[256:512, :] lowercase__ = in_proj_bias_cross_attn[256:512] lowercase__ = in_proj_weight_cross_attn[-256:, :] lowercase__ = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( ): lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ): lowercase__ , lowercase__ = get_detr_config(SCREAMING_SNAKE_CASE_ ) # load original model from torch hub lowercase__ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) lowercase__ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=SCREAMING_SNAKE_CASE_ ).eval() lowercase__ = detr.state_dict() # rename keys for src, dest in create_rename_keys(SCREAMING_SNAKE_CASE_ ): if is_panoptic: lowercase__ = "detr." + src rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE_ , is_panoptic=SCREAMING_SNAKE_CASE_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = DetrForSegmentation(SCREAMING_SNAKE_CASE_ ) if is_panoptic else DetrForObjectDetection(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # verify our conversion on an image lowercase__ = "coco_panoptic" if is_panoptic else "coco_detection" lowercase__ = DetrImageProcessor(format=SCREAMING_SNAKE_CASE_ ) lowercase__ = processor(images=prepare_img() , return_tensors="pt" ) lowercase__ = encoding["pixel_values"] lowercase__ = detr(SCREAMING_SNAKE_CASE_ ) lowercase__ = model(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") lowercase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _snake_case ( lowercase__): def A__ ( self : Optional[Any], __lowercase : str ): with open(__lowercase, encoding="utf-8" ) as input_file: lowercase__ = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) lowercase__ = input_file.read() lowercase__ = regexp.search(__lowercase ) return match def A__ ( self : str, __lowercase : str ): with open(__lowercase, encoding="utf-8" ) as input_file: lowercase__ = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()", re.DOTALL ) lowercase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowercase__ = regexp.finditer(__lowercase ) lowercase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self : Union[str, Any] ): lowercase__ = Path("./datasets" ) lowercase__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowercase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def A__ ( self : Union[str, Any] ): lowercase__ = Path("./datasets" ) lowercase__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowercase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
37
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _snake_case ( datasets.BeamBasedBuilder): def A__ ( self : Dict ): return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ), supervised_keys=__lowercase, ) def A__ ( self : int, __lowercase : Union[str, Any], __lowercase : List[Any] ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_dummy_examples()} )] def A__ ( self : Any, __lowercase : Any, __lowercase : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase ) class _snake_case ( datasets.BeamBasedBuilder): def A__ ( self : Tuple ): return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ), supervised_keys=__lowercase, ) def A__ ( self : List[Any], __lowercase : List[str], __lowercase : Any ): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"examples": get_test_nested_examples()} ) ] def A__ ( self : List[Any], __lowercase : Dict, __lowercase : Tuple ): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__lowercase ) def __lowerCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def __lowerCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class _snake_case ( lowercase__): @require_beam def A__ ( self : Any ): lowercase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ = DummyBeamDataset(cache_dir=__lowercase, beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase, builder.name, "default", "0.0.0", F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string" )} ) ) lowercase__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __lowercase ) self.assertDictEqual(dset["train"][0], get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowercase, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self : List[str] ): import apache_beam as beam lowercase__ = beam.io.parquetio.WriteToParquet lowercase__ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ = DummyBeamDataset(cache_dir=__lowercase, beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: lowercase__ = partial(__lowercase, num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __lowercase, builder.name, "default", "0.0.0", F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( __lowercase, builder.name, "default", "0.0.0", F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features, datasets.Features({"content": datasets.Value("string" )} ) ) lowercase__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __lowercase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ), sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(__lowercase, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset @require_beam def A__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ = DummyBeamDataset(cache_dir=__lowercase ) self.assertRaises(datasets.builder.MissingBeamOptions, builder.download_and_prepare ) @require_beam def A__ ( self : Any ): lowercase__ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: lowercase__ = NestedBeamDataset(cache_dir=__lowercase, beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__lowercase, builder.name, "default", "0.0.0", F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features, datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) lowercase__ = builder.as_dataset() self.assertEqual(dset["train"].num_rows, __lowercase ) self.assertEqual(dset["train"].info.splits["train"].num_examples, __lowercase ) self.assertDictEqual(dset["train"][0], get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1], get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__lowercase, builder.name, "default", "0.0.0", "dataset_info.json" ) ) ) del dset
37
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase): def A__ ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights lowercase__ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=__lowercase, cache_dir=__lowercase ) lowercase__ = [t[-1] for t in os.walk(os.path.join(__lowercase, os.listdir(__lowercase )[0], "snapshots" ) )] lowercase__ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _snake_case ( unittest.TestCase): def A__ ( self : Any ): lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=__lowercase ) lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 4 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng lowercase__ = replicate(__lowercase ) lowercase__ = jax.random.split(__lowercase, __lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 4.1514745 ) < 1e-3 assert np.abs(np.abs(__lowercase, dtype=np.floataa ).sum() - 49947.875 ) < 5e-1 lowercase__ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__lowercase ) == num_samples def A__ ( self : Union[str, Any] ): lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="flax", safety_checker=__lowercase ) lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng lowercase__ = replicate(__lowercase ) lowercase__ = jax.random.split(__lowercase, __lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.05652401) ) < 1e-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2383808.2) ) < 5e-1 def A__ ( self : int ): lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=__lowercase ) lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng lowercase__ = replicate(__lowercase ) lowercase__ = jax.random.split(__lowercase, __lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def A__ ( self : Dict ): lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa ) lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng lowercase__ = replicate(__lowercase ) lowercase__ = jax.random.split(__lowercase, __lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.04003906) ) < 1e-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2373516.75) ) < 5e-1 def A__ ( self : Union[str, Any] ): lowercase__ = FlaxDDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", set_alpha_to_one=__lowercase, steps_offset=1, ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, scheduler=__lowercase, safety_checker=__lowercase, ) lowercase__ = scheduler.create_state() lowercase__ = scheduler_state lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.random.PRNGKey(0 ) lowercase__ = 50 lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = pipeline.prepare_inputs(__lowercase ) # shard inputs and rng lowercase__ = replicate(__lowercase ) lowercase__ = jax.random.split(__lowercase, __lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:], dtype=np.floataa ).sum() - 0.045043945) ) < 1e-3 assert np.abs((np.abs(__lowercase, dtype=np.floataa ).sum() - 2347693.5) ) < 5e-1 def A__ ( self : Dict ): lowercase__ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) lowercase__ = jax.device_count() lowercase__ = num_samples * [prompt] lowercase__ = jax.random.split(jax.random.PRNGKey(0 ), __lowercase ) lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=__lowercase, ) lowercase__ = replicate(__lowercase ) lowercase__ = pipeline.prepare_inputs(__lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # With memory efficient attention lowercase__ , lowercase__ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jnp.bfloataa, safety_checker=__lowercase, use_memory_efficient_attention=__lowercase, ) lowercase__ = replicate(__lowercase ) lowercase__ = pipeline.prepare_inputs(__lowercase ) lowercase__ = shard(__lowercase ) lowercase__ = pipeline(__lowercase, __lowercase, __lowercase, jit=__lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) lowercase__ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
37
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase_ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _snake_case ( unittest.TestCase): def __init__( self : List[Any], __lowercase : int, __lowercase : Optional[int]=7, __lowercase : List[str]=3, __lowercase : Tuple=18, __lowercase : List[Any]=30, __lowercase : Tuple=400, __lowercase : Any=None, __lowercase : Optional[int]=True, __lowercase : List[str]=True, __lowercase : Union[str, Any]=None, ): lowercase__ = size if size is not None else {"height": 20, "width": 20} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = size lowercase__ = do_normalize lowercase__ = do_convert_rgb lowercase__ = [512, 1024, 2048, 4096] lowercase__ = patch_size if patch_size is not None else {"height": 16, "width": 16} def A__ ( self : List[str] ): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def A__ ( self : Any ): lowercase__ = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" lowercase__ = Image.open(requests.get(__lowercase, stream=__lowercase ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Any =PixaStructImageProcessor if is_vision_available() else None def A__ ( self : Any ): lowercase__ = PixaStructImageProcessingTester(self ) @property def A__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[Any] ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "do_convert_rgb" ) ) def A__ ( self : Optional[int] ): lowercase__ = self.image_processor_tester.prepare_dummy_image() lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = 2048 lowercase__ = image_processor(__lowercase, return_tensors="pt", max_patches=__lowercase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606 ), atol=1e-3, rtol=1e-3 ) ) def A__ ( self : Union[str, Any] ): # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( __lowercase, return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def A__ ( self : int ): # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 lowercase__ = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(__lowercase ): lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase ).flattened_patches lowercase__ = "Hello" lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase, header_text=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( __lowercase, return_tensors="pt", max_patches=__lowercase, header_text=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def A__ ( self : Tuple ): # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) lowercase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( __lowercase, return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def A__ ( self : Any ): # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( __lowercase, return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Optional[int] =PixaStructImageProcessor if is_vision_available() else None def A__ ( self : Optional[int] ): lowercase__ = PixaStructImageProcessingTester(self, num_channels=4 ) lowercase__ = 3 @property def A__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Dict ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "do_convert_rgb" ) ) def A__ ( self : Union[str, Any] ): # Initialize image_processor lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ = image_processor( image_inputs[0], return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched lowercase__ = image_processor( __lowercase, return_tensors="pt", max_patches=__lowercase ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
37
1
from __future__ import annotations def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = len(SCREAMING_SNAKE_CASE_ ) // 2 # choose the middle 3 elements lowercase__ = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
37
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ , lowercase__ = len(SCREAMING_SNAKE_CASE_ ), len(grid[0] ) if ( min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase__ = 0 count += depth_first_search(SCREAMING_SNAKE_CASE_ , row + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , row - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col + 1 , SCREAMING_SNAKE_CASE_ ) count += depth_first_search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , col - 1 , SCREAMING_SNAKE_CASE_ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
37
1