code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase__ ( __UpperCamelCase , __UpperCamelCase=1 )-> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> Dict: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCamelCase = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCamelCase = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCamelCase = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCamelCase = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCamelCase = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> List[str]: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item UpperCamelCase = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCamelCase = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCamelCase = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCamelCase = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> str: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCamelCase = old_checkpoint[path] UpperCamelCase = old_tensor.shape[0] // 3 UpperCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCamelCase = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCamelCase = query.reshape(__UpperCamelCase ) UpperCamelCase = key.reshape(__UpperCamelCase ) UpperCamelCase = value.reshape(__UpperCamelCase ) for path in paths: UpperCamelCase = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCamelCase = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCamelCase = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCamelCase = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCamelCase = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCamelCase = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCamelCase = old_checkpoint[path["""old"""]] def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCamelCase = {} UpperCamelCase = checkpoint["""time_embed.0.weight"""] UpperCamelCase = checkpoint["""time_embed.0.bias"""] UpperCamelCase = checkpoint["""time_embed.2.weight"""] UpperCamelCase = checkpoint["""time_embed.2.bias"""] UpperCamelCase = checkpoint["""input_blocks.0.0.weight"""] UpperCamelCase = checkpoint["""input_blocks.0.0.bias"""] UpperCamelCase = checkpoint["""out.0.weight"""] UpperCamelCase = checkpoint["""out.0.bias"""] UpperCamelCase = checkpoint["""out.2.weight"""] UpperCamelCase = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): UpperCamelCase = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCamelCase = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.weight" ] UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} UpperCamelCase = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) UpperCamelCase = middle_blocks[0] UpperCamelCase = middle_blocks[1] UpperCamelCase = middle_blocks[2] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): UpperCamelCase = i // (config["""num_res_blocks"""] + 1) UpperCamelCase = i % (config["""num_res_blocks"""] + 1) UpperCamelCase = [shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] UpperCamelCase = {} for layer in output_block_layers: UpperCamelCase ,UpperCamelCase = layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: UpperCamelCase = [layer_name] if len(__UpperCamelCase ) > 1: UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCamelCase = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: UpperCamelCase = [] if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: UpperCamelCase = renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCamelCase = """.""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) UpperCamelCase = """.""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read()) SCREAMING_SNAKE_CASE__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE__ = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
705
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowercase__ ( __UpperCamelCase )-> Any: UpperCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase ,UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) UpperCamelCase = emb.weight.data return lin_layer def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] UpperCamelCase = mam_aaa["""model"""] remove_ignore_keys_(__UpperCamelCase ) UpperCamelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCamelCase = MaMaaaConfig( vocab_size=__UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) UpperCamelCase = state_dict["""decoder.embed_tokens.weight"""] UpperCamelCase = MaMaaaForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) UpperCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
35
0
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 3_2 def lowercase__ ( __UpperCamelCase )-> str: return int(x / 2**20 ) class a_ : def __enter__( self ) -> List[str]: """simple docstring""" gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase = torch.cuda.memory_allocated() return self def __exit__( self , *_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" gc.collect() torch.cuda.empty_cache() UpperCamelCase = torch.cuda.memory_allocated() UpperCamelCase = torch.cuda.max_memory_allocated() UpperCamelCase = bamb(self.end - self.begin ) UpperCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowercase__ ( __UpperCamelCase , __UpperCamelCase = 16 , __UpperCamelCase = "bert-base-cased" , __UpperCamelCase = 320 , __UpperCamelCase = 160 , )-> Dict: UpperCamelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) UpperCamelCase = load_dataset( """glue""" , """mrpc""" , split={"""train""": F"train[:{n_train}]", """validation""": F"validation[:{n_val}]"} ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[str]: # Initialize accelerator UpperCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = args.model_name_or_path set_seed(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = get_dataloaders(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase , return_dict=__UpperCamelCase ) # Instantiate optimizer UpperCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase = optimizer_cls(params=model.parameters() , lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase = 1 UpperCamelCase = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=0 , num_training_steps=__UpperCamelCase , ) else: UpperCamelCase = DummyScheduler(__UpperCamelCase , total_num_steps=__UpperCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase = 0 # Now we train the model UpperCamelCase = {} for epoch in range(__UpperCamelCase , __UpperCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCamelCase ): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=__UpperCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__UpperCamelCase , ) parser.add_argument( """--output_dir""" , type=__UpperCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=__UpperCamelCase , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=__UpperCamelCase , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=__UpperCamelCase , default=1 , help="""Number of train epochs.""" , ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
706
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a_ ( lowerCamelCase ): def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """depth_multiplier""" ) ) class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="relu6" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = min_depth UpperCamelCase = tf_padding UpperCamelCase = int(last_hidden_size * depth_multiplier ) UpperCamelCase = output_stride UpperCamelCase = hidden_act UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self ) -> Optional[Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModelTester(self ) UpperCamelCase = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 26 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase__ ( )-> Optional[Any]: UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
35
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: while b: UpperCamelCase ,UpperCamelCase = b, a % b return a def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: return a if b == 0 else euclidean_gcd_recursive(__UpperCamelCase , a % b ) def lowercase__ ( )-> List[Any]: print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
707
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE__ = { 'google/realm-cc-news-pretrained-embedder': 5_1_2, 'google/realm-cc-news-pretrained-encoder': 5_1_2, 'google/realm-cc-news-pretrained-scorer': 5_1_2, 'google/realm-cc-news-pretrained-openqa': 5_1_2, 'google/realm-orqa-nq-openqa': 5_1_2, 'google/realm-orqa-nq-reader': 5_1_2, 'google/realm-orqa-wq-openqa': 5_1_2, 'google/realm-orqa-wq-reader': 5_1_2, } SCREAMING_SNAKE_CASE__ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = RealmTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCamelCase = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_lower_case def A__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PaddingStrategy.MAX_LENGTH UpperCamelCase = text UpperCamelCase = kwargs.pop("""text_pair""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop("""return_tensors""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_SCREAMING_SNAKE_CASE ): if batch_text_pair is not None: UpperCamelCase = batch_text_pair[idx] else: UpperCamelCase = None UpperCamelCase = super().__call__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = encoded_candidates.get("""input_ids""" ) UpperCamelCase = encoded_candidates.get("""attention_mask""" ) UpperCamelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_SCREAMING_SNAKE_CASE ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_SCREAMING_SNAKE_CASE ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = {key: item for key, item in output_data.items() if len(_SCREAMING_SNAKE_CASE ) != 0} return BatchEncoding(_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Dict: """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class a_ ( unittest.TestCase ): @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCamelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) @slow def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) UpperCamelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""].detach() self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
709
'''simple docstring''' SCREAMING_SNAKE_CASE__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
35
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE__ = CLIPImageProcessor() SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 3_2 def lowercase__ ( __UpperCamelCase , __UpperCamelCase = 16 )-> Dict: UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ = mocked_dataloaders # noqa: F811 def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase ,UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def lowercase__ ( )-> List[Any]: UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__UpperCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
35
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 SCREAMING_SNAKE_CASE__ = get_tests_dir('fixtures') class a_ ( unittest.TestCase ): def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=_SCREAMING_SNAKE_CASE ) as mock_head: UpperCamelCase = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) UpperCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @is_staging_test class a_ ( unittest.TestCase ): @classmethod def A__ ( cls ) -> List[Any]: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def A__ ( cls ) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""test-image-processor""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = ViTImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCamelCase = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def A__ ( self ) -> List[Any]: """simple docstring""" CustomImageProcessor.register_for_auto_class() UpperCamelCase = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) UpperCamelCase = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
711
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = ["""stem"""] UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> int: """simple docstring""" return def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("""Swin does not use inputs_embeds""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> List[Any]: """simple docstring""" pass def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): UpperCamelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" F" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , lowerCamelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
35
0
'''simple docstring''' import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def lowercase__ ( __UpperCamelCase=None )-> str: if subparsers is not None: UpperCamelCase = subparsers.add_parser("""tpu-config""" , description=_description ) else: UpperCamelCase = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments UpperCamelCase = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__UpperCamelCase , default=__UpperCamelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__UpperCamelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__UpperCamelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) UpperCamelCase = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__UpperCamelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): UpperCamelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase = defaults.commands if not args.tpu_name: UpperCamelCase = defaults.tpu_name if not args.tpu_zone: UpperCamelCase = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": UpperCamelCase = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __UpperCamelCase ): UpperCamelCase = F"accelerate=={args.accelerate_version}" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: UpperCamelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCamelCase ): UpperCamelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [F"pip install {args.accelerate_version}"] new_cmd += args.command UpperCamelCase = """; """.join(__UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"Running {' '.join(__UpperCamelCase )}" ) return subprocess.run(__UpperCamelCase ) print("""Successfully setup pod.""" ) def lowercase__ ( )-> Dict: UpperCamelCase = tpu_command_parser() UpperCamelCase = parser.parse_args() tpu_command_launcher(__UpperCamelCase )
712
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand() def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand(args.accelerate_config_file ) class a_ ( lowerCamelCase ): @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( """--accelerate-config_file""" , default=_SCREAMING_SNAKE_CASE , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = accelerate_config_file def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = """not installed""" if is_safetensors_available(): import safetensors UpperCamelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCamelCase = F"{safetensors.__version__} but is ignored because of PyTorch version too old." UpperCamelCase = """not installed""" UpperCamelCase = UpperCamelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCamelCase = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F"\t{accelerate_config}" ) UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_torch_available(): import torch UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_tf_available(): import tensorflow as tf UpperCamelCase = tf.__version__ try: # deprecated in v2.1 UpperCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCamelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCamelCase = flax.__version__ UpperCamelCase = jax.__version__ UpperCamelCase = jaxlib.__version__ UpperCamelCase = jax.lib.xla_bridge.get_backend().platform UpperCamelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
35
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: for attribute in key.split(""".""" ): UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if weight_type is not None: UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ).shape else: UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value else: UpperCamelCase = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(__UpperCamelCase )[0].split(""".""" )[-2] UpperCamelCase = mapped_key.replace("""*""" , __UpperCamelCase ) if "weight_g" in name: UpperCamelCase = """weight_g""" elif "weight_v" in name: UpperCamelCase = """weight_v""" elif "weight" in name: UpperCamelCase = """weight""" elif "bias" in name: UpperCamelCase = """bias""" else: UpperCamelCase = None set_recursively(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = full_name.split("""conv_layers.""" )[-1] UpperCamelCase = name.split(""".""" ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple: UpperCamelCase = SEWConfig() if is_finetuned: UpperCamelCase = model.wav_encoder.wav_model.cfg else: UpperCamelCase = model.cfg UpperCamelCase = fs_config.conv_bias UpperCamelCase = eval(fs_config.conv_feature_layers ) UpperCamelCase = [x[0] for x in conv_layers] UpperCamelCase = [x[1] for x in conv_layers] UpperCamelCase = [x[2] for x in conv_layers] UpperCamelCase = """gelu""" UpperCamelCase = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" UpperCamelCase = 0.0 UpperCamelCase = fs_config.activation_fn.name UpperCamelCase = fs_config.encoder_embed_dim UpperCamelCase = 0.02 UpperCamelCase = fs_config.encoder_ffn_embed_dim UpperCamelCase = 1E-5 UpperCamelCase = fs_config.encoder_layerdrop UpperCamelCase = fs_config.encoder_attention_heads UpperCamelCase = fs_config.conv_pos_groups UpperCamelCase = fs_config.conv_pos UpperCamelCase = len(__UpperCamelCase ) UpperCamelCase = fs_config.encoder_layers UpperCamelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCamelCase = model.cfg UpperCamelCase = fs_config.final_dropout UpperCamelCase = fs_config.layerdrop UpperCamelCase = fs_config.activation_dropout UpperCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCamelCase = fs_config.attention_dropout UpperCamelCase = fs_config.dropout_input UpperCamelCase = fs_config.dropout UpperCamelCase = fs_config.mask_channel_length UpperCamelCase = fs_config.mask_channel_prob UpperCamelCase = fs_config.mask_length UpperCamelCase = fs_config.mask_prob UpperCamelCase = """Wav2Vec2FeatureExtractor""" UpperCamelCase = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True )-> List[str]: if is_finetuned: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCamelCase ,UpperCamelCase ,UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: UpperCamelCase = SEWConfig.from_pretrained(__UpperCamelCase ) else: UpperCamelCase = convert_config(model[0] , __UpperCamelCase ) UpperCamelCase = model[0].eval() UpperCamelCase = True if config.feat_extract_norm == """layer""" else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__UpperCamelCase , return_attention_mask=__UpperCamelCase , ) if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(__UpperCamelCase , """vocab.json""" ) if not os.path.isdir(__UpperCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __UpperCamelCase ) UpperCamelCase = WavaVecaCTCTokenizer( __UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__UpperCamelCase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=__UpperCamelCase , tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) UpperCamelCase = SEWForCTC(__UpperCamelCase ) else: UpperCamelCase = SEWModel(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) recursively_load_weights(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
713
'''simple docstring''' from math import factorial def lowercase__ ( __UpperCamelCase = 20 )-> int: UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE__ = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE__ = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' SCREAMING_SNAKE_CASE__ = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __UpperCamelCase )-> Optional[Any]: def remove_articles(__UpperCamelCase ): UpperCamelCase = re.compile(R"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(__UpperCamelCase , """ """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase ): UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[Any]: UpperCamelCase = [any(compute_exact(__UpperCamelCase , __UpperCamelCase ) for ref in refs ) for pred, refs in zip(__UpperCamelCase , __UpperCamelCase )] return (sum(__UpperCamelCase ) / len(__UpperCamelCase )) * 100 def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCamelCase = Counter(__UpperCamelCase ) UpperCamelCase = Counter(__UpperCamelCase ) UpperCamelCase = Counter() for sgram, scount in sgramcounter.items(): UpperCamelCase = scount * numref UpperCamelCase = Counter(__UpperCamelCase ) UpperCamelCase = Counter() for cgram, ccount in cgramcounter.items(): UpperCamelCase = ccount * numref # KEEP UpperCamelCase = sgramcounter_rep & cgramcounter_rep UpperCamelCase = keepgramcounter_rep & rgramcounter UpperCamelCase = sgramcounter_rep & rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(__UpperCamelCase ) > 0: UpperCamelCase = keeptmpscorea / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCamelCase = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCamelCase = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCamelCase = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCamelCase = sgramcounter_rep - cgramcounter_rep UpperCamelCase = delgramcounter_rep - rgramcounter UpperCamelCase = sgramcounter_rep - rgramcounter UpperCamelCase = 0 UpperCamelCase = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 if len(__UpperCamelCase ) > 0: UpperCamelCase = deltmpscorea / len(__UpperCamelCase ) # ADDITION UpperCamelCase = set(__UpperCamelCase ) - set(__UpperCamelCase ) UpperCamelCase = set(__UpperCamelCase ) & set(__UpperCamelCase ) UpperCamelCase = set(__UpperCamelCase ) - set(__UpperCamelCase ) UpperCamelCase = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCamelCase = 1 UpperCamelCase = 1 if len(__UpperCamelCase ) > 0: UpperCamelCase = addtmpscore / len(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: UpperCamelCase = addtmpscore / len(__UpperCamelCase ) UpperCamelCase = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCamelCase = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: UpperCamelCase = len(__UpperCamelCase ) UpperCamelCase = ssent.split(""" """ ) UpperCamelCase = csent.split(""" """ ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] for rsent in rsents: UpperCamelCase = rsent.split(""" """ ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: UpperCamelCase = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: UpperCamelCase = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: UpperCamelCase = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) ragramslist.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: UpperCamelCase = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: UpperCamelCase = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: UpperCamelCase = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(__UpperCamelCase ) for i in range(0 , len(__UpperCamelCase ) - 1 ): if i < len(__UpperCamelCase ) - 1: UpperCamelCase = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 2: UpperCamelCase = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(__UpperCamelCase ) if i < len(__UpperCamelCase ) - 3: UpperCamelCase = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(__UpperCamelCase ) ((UpperCamelCase) ,(UpperCamelCase) ,(UpperCamelCase)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((UpperCamelCase) ,(UpperCamelCase) ,(UpperCamelCase)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((UpperCamelCase) ,(UpperCamelCase) ,(UpperCamelCase)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ((UpperCamelCase) ,(UpperCamelCase) ,(UpperCamelCase)) = SARIngram(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCamelCase = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCamelCase = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCamelCase = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __UpperCamelCase , __UpperCamelCase = True , __UpperCamelCase = "13a" , __UpperCamelCase = True )-> Union[str, Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: UpperCamelCase = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCamelCase = sacrebleu.metrics.bleu._get_tokenizer(__UpperCamelCase )()(__UpperCamelCase ) else: UpperCamelCase = sacrebleu.TOKENIZERS[tokenizer]()(__UpperCamelCase ) elif tokenizer == "moses": UpperCamelCase = sacremoses.MosesTokenizer().tokenize(__UpperCamelCase , return_str=__UpperCamelCase , escape=__UpperCamelCase ) elif tokenizer == "penn": UpperCamelCase = sacremoses.MosesTokenizer().penn_tokenize(__UpperCamelCase , return_str=__UpperCamelCase ) else: UpperCamelCase = sentence if not return_str: UpperCamelCase = normalized_sent.split() return normalized_sent def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: if not (len(__UpperCamelCase ) == len(__UpperCamelCase ) == len(__UpperCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) UpperCamelCase = 0 for src, pred, refs in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): sari_score += SARIsent(normalize(__UpperCamelCase ) , normalize(__UpperCamelCase ) , [normalize(__UpperCamelCase ) for sent in refs] ) UpperCamelCase = sari_score / len(__UpperCamelCase ) return 100 * sari_score def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase="exp" , __UpperCamelCase=None , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=False , )-> List[Any]: UpperCamelCase = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCamelCase = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] UpperCamelCase = sacrebleu.corpus_bleu( __UpperCamelCase , __UpperCamelCase , smooth_method=__UpperCamelCase , smooth_value=__UpperCamelCase , force=__UpperCamelCase , lowercase=__UpperCamelCase , use_effective_order=__UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} result.update({"""sari""": compute_sari(sources=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )} ) result.update({"""exact""": compute_em(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )} ) return result
714
'''simple docstring''' from math import sqrt def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def lowercase__ ( __UpperCamelCase = 10000 )-> int: UpperCamelCase = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
0
'''simple docstring''' import unittest from knapsack import knapsack as k class a_ ( unittest.TestCase ): def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = [0] UpperCamelCase = [0] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 0 ) UpperCamelCase = [60] UpperCamelCase = [10] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 0 ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = 3 UpperCamelCase = [1, 2, 3] UpperCamelCase = [3, 2, 1] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 5 ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = 50 UpperCamelCase = [60, 100, 120] UpperCamelCase = [10, 20, 30] UpperCamelCase = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 220 ) if __name__ == "__main__": unittest.main()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration SCREAMING_SNAKE_CASE__ = 'facebook/wmt19-en-de' SCREAMING_SNAKE_CASE__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model SCREAMING_SNAKE_CASE__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE__ = tokenizer(['Making tiny model'], return_tensors='pt') SCREAMING_SNAKE_CASE__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save SCREAMING_SNAKE_CASE__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
716
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) UpperCamelCase = """""" while len(__UpperCamelCase ) % 3 != 0: UpperCamelCase = """0""" + bin_string UpperCamelCase = [ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase = 0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
35
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class a_ ( enum.Enum ): '''simple docstring''' lowercase = """all_checks""" lowercase = """basic_checks""" lowercase = """no_checks""" class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None )-> int: if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) UpperCamelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCamelCase = """ for """ + verification_name if verification_name is not None else """""" if len(__UpperCamelCase ) > 0: raise NonMatchingChecksumError( F"Checksums didn't match{for_verification_name}:\n" F"{bad_urls}\n" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass class a_ ( lowerCamelCase ): '''simple docstring''' pass def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[str]: if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) UpperCamelCase = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__UpperCamelCase ) ) logger.info("""All the splits matched successfully.""" ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase = True )-> dict: if record_checksum: UpperCamelCase = shaaaa() with open(__UpperCamelCase , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"""""" ): m.update(__UpperCamelCase ) UpperCamelCase = m.hexdigest() else: UpperCamelCase = None return {"num_bytes": os.path.getsize(__UpperCamelCase ), "checksum": checksum} def lowercase__ ( __UpperCamelCase )-> List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
717
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( __UpperCamelCase=None )-> Union[str, Any]: if subparsers is not None: UpperCamelCase = subparsers.add_parser("""env""" ) else: UpperCamelCase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__UpperCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = is_xpu_available() UpperCamelCase = is_npu_available() UpperCamelCase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): UpperCamelCase = load_config_from_file(args.config_file ).to_dict() UpperCamelCase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(__UpperCamelCase ), """PyTorch NPU available""": str(__UpperCamelCase ), """System RAM""": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: UpperCamelCase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F"\t{accelerate_config}" ) print(__UpperCamelCase ) UpperCamelCase = accelerate_config return info def lowercase__ ( )-> int: UpperCamelCase = env_command_parser() UpperCamelCase = parser.parse_args() env_command(__UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
35
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline SCREAMING_SNAKE_CASE__ = { 'n_samples': 6_4, 'horizon': 3_2, 'num_inference_steps': 2_0, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = 'hopper-medium-v2' SCREAMING_SNAKE_CASE__ = gym.make(env_name) SCREAMING_SNAKE_CASE__ = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) SCREAMING_SNAKE_CASE__ = env.reset() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1_0_0_0 SCREAMING_SNAKE_CASE__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy SCREAMING_SNAKE_CASE__ = pipeline(obs, planning_horizon=3_2) # execute action in environment SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = env.step(denorm_actions) SCREAMING_SNAKE_CASE__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) SCREAMING_SNAKE_CASE__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
718
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) UpperCamelCase = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
35
0
import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase__ ( __UpperCamelCase )-> Dict: UpperCamelCase = {} UpperCamelCase = job["""started_at"""] UpperCamelCase = job["""completed_at"""] UpperCamelCase = date_parser.parse(__UpperCamelCase ) UpperCamelCase = date_parser.parse(__UpperCamelCase ) UpperCamelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCamelCase = start UpperCamelCase = end UpperCamelCase = duration_in_min return job_info def lowercase__ ( __UpperCamelCase , __UpperCamelCase=None )-> Union[str, Any]: UpperCamelCase = None if token is not None: UpperCamelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} UpperCamelCase = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCamelCase = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() UpperCamelCase = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(__UpperCamelCase ) for job in result["""jobs"""]} ) UpperCamelCase = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(__UpperCamelCase ): UpperCamelCase = requests.get(url + F"&page={i + 2}" , headers=__UpperCamelCase ).json() job_time.update({job["""name"""]: extract_time_from_single_job(__UpperCamelCase ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE__ = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'{k}: {v["duration"]}')
719
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase__ ( __UpperCamelCase , __UpperCamelCase=1 )-> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> Dict: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCamelCase = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCamelCase = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCamelCase = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCamelCase = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCamelCase = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> List[str]: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item UpperCamelCase = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCamelCase = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCamelCase = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCamelCase = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> str: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCamelCase = old_checkpoint[path] UpperCamelCase = old_tensor.shape[0] // 3 UpperCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCamelCase = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCamelCase = query.reshape(__UpperCamelCase ) UpperCamelCase = key.reshape(__UpperCamelCase ) UpperCamelCase = value.reshape(__UpperCamelCase ) for path in paths: UpperCamelCase = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCamelCase = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCamelCase = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCamelCase = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCamelCase = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCamelCase = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCamelCase = old_checkpoint[path["""old"""]] def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCamelCase = {} UpperCamelCase = checkpoint["""time_embed.0.weight"""] UpperCamelCase = checkpoint["""time_embed.0.bias"""] UpperCamelCase = checkpoint["""time_embed.2.weight"""] UpperCamelCase = checkpoint["""time_embed.2.bias"""] UpperCamelCase = checkpoint["""input_blocks.0.0.weight"""] UpperCamelCase = checkpoint["""input_blocks.0.0.bias"""] UpperCamelCase = checkpoint["""out.0.weight"""] UpperCamelCase = checkpoint["""out.0.bias"""] UpperCamelCase = checkpoint["""out.2.weight"""] UpperCamelCase = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): UpperCamelCase = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCamelCase = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.weight" ] UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} UpperCamelCase = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) UpperCamelCase = middle_blocks[0] UpperCamelCase = middle_blocks[1] UpperCamelCase = middle_blocks[2] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): UpperCamelCase = i // (config["""num_res_blocks"""] + 1) UpperCamelCase = i % (config["""num_res_blocks"""] + 1) UpperCamelCase = [shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] UpperCamelCase = {} for layer in output_block_layers: UpperCamelCase ,UpperCamelCase = layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: UpperCamelCase = [layer_name] if len(__UpperCamelCase ) > 1: UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCamelCase = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: UpperCamelCase = [] if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: UpperCamelCase = renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCamelCase = """.""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) UpperCamelCase = """.""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read()) SCREAMING_SNAKE_CASE__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE__ = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
35
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = ["""stem"""] UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> int: """simple docstring""" return def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("""Swin does not use inputs_embeds""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> List[Any]: """simple docstring""" pass def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): UpperCamelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" F" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , lowerCamelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
720
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py SCREAMING_SNAKE_CASE__ = 'src/diffusers' SCREAMING_SNAKE_CASE__ = '.' # This is to make sure the diffusers module imported is the one in the repo. SCREAMING_SNAKE_CASE__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) SCREAMING_SNAKE_CASE__ = spec.loader.load_module() def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: return line.startswith(__UpperCamelCase ) or len(__UpperCamelCase ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , __UpperCamelCase ) is not None def lowercase__ ( __UpperCamelCase )-> Optional[Any]: UpperCamelCase = object_name.split(""".""" ) UpperCamelCase = 0 # First let's find the module where our object lives. UpperCamelCase = parts[i] while i < len(__UpperCamelCase ) and not os.path.isfile(os.path.join(__UpperCamelCase , F"{module}.py" ) ): i += 1 if i < len(__UpperCamelCase ): UpperCamelCase = os.path.join(__UpperCamelCase , parts[i] ) if i >= len(__UpperCamelCase ): raise ValueError(F"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(__UpperCamelCase , F"{module}.py" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() # Now let's find the class / func in the code! UpperCamelCase = """""" UpperCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(__UpperCamelCase ) and re.search(RF"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(__UpperCamelCase ): raise ValueError(F" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase = line_index while line_index < len(__UpperCamelCase ) and _should_continue(lines[line_index] , __UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase = lines[start_index:line_index] return "".join(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') SCREAMING_SNAKE_CASE__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') SCREAMING_SNAKE_CASE__ = re.compile(R'<FILL\s+[^>]*>') def lowercase__ ( __UpperCamelCase )-> Dict: UpperCamelCase = code.split("""\n""" ) UpperCamelCase = 0 while idx < len(__UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(__UpperCamelCase ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def lowercase__ ( __UpperCamelCase )-> Dict: UpperCamelCase = len(get_indent(__UpperCamelCase ) ) > 0 if has_indent: UpperCamelCase = F"class Bla:\n{code}" UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=__UpperCamelCase ) UpperCamelCase = black.format_str(__UpperCamelCase , mode=__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = style_docstrings_in_code(__UpperCamelCase ) return result[len("""class Bla:\n""" ) :] if has_indent else result def lowercase__ ( __UpperCamelCase , __UpperCamelCase=False )-> Tuple: with open(__UpperCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [] UpperCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(__UpperCamelCase ): UpperCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase ,UpperCamelCase ,UpperCamelCase = search.groups() UpperCamelCase = find_code_in_diffusers(__UpperCamelCase ) UpperCamelCase = get_indent(__UpperCamelCase ) UpperCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase = theoretical_indent UpperCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase = True while line_index < len(__UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(__UpperCamelCase ): break UpperCamelCase = lines[line_index] UpperCamelCase = _should_continue(__UpperCamelCase , __UpperCamelCase ) and re.search(F"^{indent}# End copy" , __UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 UpperCamelCase = lines[start_index:line_index] UpperCamelCase = """""".join(__UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(__UpperCamelCase ) is None] UpperCamelCase = """\n""".join(__UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(__UpperCamelCase ) > 0: UpperCamelCase = replace_pattern.replace("""with""" , """""" ).split(""",""" ) UpperCamelCase = [_re_replace_pattern.search(__UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase ,UpperCamelCase ,UpperCamelCase = pattern.groups() UpperCamelCase = re.sub(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if option.strip() == "all-casing": UpperCamelCase = re.sub(obja.lower() , obja.lower() , __UpperCamelCase ) UpperCamelCase = re.sub(obja.upper() , obja.upper() , __UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase = blackify(lines[start_index - 1] + theoretical_code ) UpperCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: UpperCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase = start_index + 1 if overwrite and len(__UpperCamelCase ) > 0: # Warn the user a file has been modified. print(F"Detected changes, rewriting {filename}." ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__UpperCamelCase ) return diffs def lowercase__ ( __UpperCamelCase = False )-> Any: UpperCamelCase = glob.glob(os.path.join(__UpperCamelCase , """**/*.py""" ) , recursive=__UpperCamelCase ) UpperCamelCase = [] for filename in all_files: UpperCamelCase = is_copy_consistent(__UpperCamelCase , __UpperCamelCase ) diffs += [F"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(__UpperCamelCase ) > 0: UpperCamelCase = """\n""".join(__UpperCamelCase ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') SCREAMING_SNAKE_CASE__ = parser.parse_args() check_copies(args.fix_and_overwrite)
721
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration SCREAMING_SNAKE_CASE__ = 'facebook/wmt19-en-de' SCREAMING_SNAKE_CASE__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model SCREAMING_SNAKE_CASE__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE__ = tokenizer(['Making tiny model'], return_tensors='pt') SCREAMING_SNAKE_CASE__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save SCREAMING_SNAKE_CASE__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
35
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def lowercase__ ( __UpperCamelCase )-> Optional[int]: # getting number of pixels in the image UpperCamelCase ,UpperCamelCase = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): UpperCamelCase = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image __a = imread('image_data/lena.jpg', 1) # convert to its negative __a = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
700
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE__ = CLIPImageProcessor() SCREAMING_SNAKE_CASE__ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
35
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 3_2 def lowercase__ ( __UpperCamelCase , __UpperCamelCase = 16 )-> Dict: UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ = mocked_dataloaders # noqa: F811 def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase ,UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def lowercase__ ( )-> List[Any]: UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__UpperCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
701
'''simple docstring''' from __future__ import annotations from typing import Any class a_ : def __init__( self , _SCREAMING_SNAKE_CASE = 6 ) -> None: """simple docstring""" UpperCamelCase = None UpperCamelCase = None self.create_linked_list(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = Node() UpperCamelCase = current_node UpperCamelCase = current_node UpperCamelCase = current_node for _ in range(1 , _SCREAMING_SNAKE_CASE ): UpperCamelCase = Node() UpperCamelCase = current_node UpperCamelCase = previous_node UpperCamelCase = current_node UpperCamelCase = self.front UpperCamelCase = previous_node def A__ ( self ) -> bool: """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A__ ( self ) -> Any | None: """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def A__ ( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCamelCase = self.rear.next if self.rear: UpperCamelCase = data def A__ ( self ) -> Any: """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCamelCase = self.front.data UpperCamelCase = None return data UpperCamelCase = self.front UpperCamelCase = old_front.next UpperCamelCase = old_front.data UpperCamelCase = None return data def A__ ( self ) -> None: """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""" ) def A__ ( self ) -> None: """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class a_ : def __init__( self ) -> None: """simple docstring""" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ : lowercase = None @experimental def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return _map_with_joblib(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple: UpperCamelCase = num_proc if num_proc <= len(__UpperCamelCase ) else len(__UpperCamelCase ) UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(__UpperCamelCase ): UpperCamelCase = len(__UpperCamelCase ) // num_proc UpperCamelCase = len(__UpperCamelCase ) % num_proc UpperCamelCase = div * index + min(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__UpperCamelCase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(__UpperCamelCase )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(__UpperCamelCase )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) UpperCamelCase ,UpperCamelCase = None, None if not disable_tqdm: UpperCamelCase ,UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(__UpperCamelCase , initargs=__UpperCamelCase , initializer=__UpperCamelCase ) as pool: UpperCamelCase = pool.map(__UpperCamelCase , __UpperCamelCase ) logger.info(F"Finished {num_proc} processes" ) UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(__UpperCamelCase )} objects" ) return mapped def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple: # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__UpperCamelCase ): return joblib.Parallel()( joblib.delayed(__UpperCamelCase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: UpperCamelCase = None
702
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase )-> int: UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()] UpperCamelCase = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] UpperCamelCase = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
35
0
from argparse import ArgumentParser from .env import EnvironmentCommand def lowercase__ ( )-> Any: UpperCamelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) UpperCamelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCamelCase ) # Let's go UpperCamelCase = parser.parse_args() if not hasattr(__UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run UpperCamelCase = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
703
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> tuple[float, list[float]]: UpperCamelCase = list(range(len(__UpperCamelCase ) ) ) UpperCamelCase = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) UpperCamelCase = 0 UpperCamelCase = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a_ ( unittest.TestCase ): def A__ ( self ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase ,UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase = replicate(_SCREAMING_SNAKE_CASE ) UpperCamelCase = shard(_SCREAMING_SNAKE_CASE ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCamelCase = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase = images[0, 253:256, 253:256, -1] UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase = jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = """stabilityai/stable-diffusion-2""" UpperCamelCase ,UpperCamelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder="""scheduler""" ) UpperCamelCase ,UpperCamelCase = FlaxStableDiffusionPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , revision="""bf16""" , dtype=jnp.bfloataa , ) UpperCamelCase = scheduler_params UpperCamelCase = """A painting of a squirrel eating a burger""" UpperCamelCase = jax.device_count() UpperCamelCase = num_samples * [prompt] UpperCamelCase = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase = replicate(_SCREAMING_SNAKE_CASE ) UpperCamelCase = shard(_SCREAMING_SNAKE_CASE ) UpperCamelCase = jax.random.PRNGKey(0 ) UpperCamelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) UpperCamelCase = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) UpperCamelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCamelCase = images[0, 253:256, 253:256, -1] UpperCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase = jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
704
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( lowerCamelCase ): lowercase = """deformable_detr""" lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = backbone_config.get("""model_type""" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = use_timm_backbone UpperCamelCase = backbone_config UpperCamelCase = num_channels UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type UpperCamelCase = backbone UpperCamelCase = use_pretrained_backbone UpperCamelCase = dilation # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def A__ ( self ) -> int: """simple docstring""" return self.d_model def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
35
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = backbone_out_indices UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = backbone_featmap_shape UpperCamelCase = scope UpperCamelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 1 def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowercase = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = DPTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def A__ ( self ) -> int: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def A__ ( self ) -> Any: """simple docstring""" pass def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = False UpperCamelCase = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone UpperCamelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self ) -> Any: """simple docstring""" pass @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = """add""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def lowercase__ ( )-> Optional[Any]: UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) UpperCamelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = outputs.predicted_depth # verify the predicted depth UpperCamelCase = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
705
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowercase__ ( __UpperCamelCase )-> Any: UpperCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase , __UpperCamelCase ) def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase ,UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) UpperCamelCase = emb.weight.data return lin_layer def lowercase__ ( __UpperCamelCase )-> str: UpperCamelCase = torch.load(__UpperCamelCase , map_location="""cpu""" ) UpperCamelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] UpperCamelCase = mam_aaa["""model"""] remove_ignore_keys_(__UpperCamelCase ) UpperCamelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0] UpperCamelCase = MaMaaaConfig( vocab_size=__UpperCamelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) UpperCamelCase = state_dict["""decoder.embed_tokens.weight"""] UpperCamelCase = MaMaaaForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase , strict=__UpperCamelCase ) UpperCamelCase = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
35
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class a_ ( metaclass=lowerCamelCase ): lowercase = ["""speech"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" requires_backends(self , ["""speech"""] ) class a_ ( metaclass=lowerCamelCase ): lowercase = ["""speech"""] def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""speech"""] )
706
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class a_ ( lowerCamelCase ): def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """depth_multiplier""" ) ) class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="relu6" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = min_depth UpperCamelCase = tf_padding UpperCamelCase = int(last_hidden_size * depth_multiplier ) UpperCamelCase = output_stride UpperCamelCase = hidden_act UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def A__ ( self ) -> Optional[Any]: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowercase = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MobileNetVaModelTester(self ) UpperCamelCase = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""MobileNetV1 does not output attentions""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> int: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 26 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def A__ ( self ) -> Dict: """simple docstring""" for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase__ ( )-> Optional[Any]: UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
35
0
'''simple docstring''' from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE__ = '\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n' SCREAMING_SNAKE_CASE__ = '\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {\'recall\': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {\'recall\': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {\'recall\': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric(\'recall\')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\')\n >>> print(results)\n {\'recall\': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'recall\': array([1., 0., 0.])}\n' SCREAMING_SNAKE_CASE__ = '\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> str: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE="binary" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="warn" , ) -> int: """simple docstring""" UpperCamelCase = recall_score( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , pos_label=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE , sample_weight=_SCREAMING_SNAKE_CASE , zero_division=_SCREAMING_SNAKE_CASE , ) return {"recall": float(_SCREAMING_SNAKE_CASE ) if score.size == 1 else score}
707
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-1' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-2' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-3' SCREAMING_SNAKE_CASE__ = 'CompVis/stable-diffusion-v1-4' class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , ) -> Any: """simple docstring""" super()._init_() UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = StableDiffusionPipeline( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , requires_safety_checker=_SCREAMING_SNAKE_CASE , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , _SCREAMING_SNAKE_CASE ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , _SCREAMING_SNAKE_CASE = "auto" ) -> Optional[Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return self.pipea( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = 7.5 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1 , **_SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" UpperCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(_SCREAMING_SNAKE_CASE ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCamelCase = self.textaimg_sda_a( prompt=_SCREAMING_SNAKE_CASE , height=_SCREAMING_SNAKE_CASE , width=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , negative_prompt=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , latents=_SCREAMING_SNAKE_CASE , output_type=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , callback=_SCREAMING_SNAKE_CASE , callback_steps=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
709
'''simple docstring''' SCREAMING_SNAKE_CASE__ = 8.31_44_62 # Unit - J mol-1 K-1 def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
35
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class a_ ( lowerCamelCase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
710
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ = 1_6 SCREAMING_SNAKE_CASE__ = 3_2 def lowercase__ ( __UpperCamelCase , __UpperCamelCase = 16 )-> Dict: UpperCamelCase = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCamelCase = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) UpperCamelCase = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ = mocked_dataloaders # noqa: F811 def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps ) UpperCamelCase = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["""num_epochs"""] ) UpperCamelCase = int(config["""seed"""] ) UpperCamelCase = int(config["""batch_size"""] ) UpperCamelCase = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**__UpperCamelCase ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase ,UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def lowercase__ ( )-> List[Any]: UpperCamelCase = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__UpperCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
35
0
'''simple docstring''' class a_ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = arr.split(""",""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [int(self.array[0] )] * len(self.array ) UpperCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input('please input some numbers:') SCREAMING_SNAKE_CASE__ = SubArray(whole_array) SCREAMING_SNAKE_CASE__ = array.solve_sub_array() print(('the results is:', re))
711
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = ["""stem"""] UpperCamelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowercase = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> int: """simple docstring""" return def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip("""Swin does not use inputs_embeds""" ) def A__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Swin does not support feedforward chunking""" ) def A__ ( self ) -> Dict: """simple docstring""" pass def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def A__ ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def A__ ( self ) -> List[str]: """simple docstring""" pass def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def A__ ( self ) -> List[Any]: """simple docstring""" pass def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): UpperCamelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" F" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:" F" {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has" F" `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}." ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {"""output_hidden_states""": True} ) @require_torch class a_ ( unittest.TestCase , lowerCamelCase ): lowercase = (MaskFormerSwinBackbone,) if is_torch_available() else () lowercase = MaskFormerSwinConfig def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MaskFormerSwinModelTester(self ) def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: UpperCamelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: UpperCamelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
35
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) UpperCamelCase = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == """1""" and char_b == """1""" ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand() def lowercase__ ( __UpperCamelCase )-> str: return EnvironmentCommand(args.accelerate_config_file ) class a_ ( lowerCamelCase ): @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( """--accelerate-config_file""" , default=_SCREAMING_SNAKE_CASE , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = accelerate_config_file def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = """not installed""" if is_safetensors_available(): import safetensors UpperCamelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCamelCase = F"{safetensors.__version__} but is ignored because of PyTorch version too old." UpperCamelCase = """not installed""" UpperCamelCase = UpperCamelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCamelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCamelCase = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else F"\t{accelerate_config}" ) UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_torch_available(): import torch UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_tf_available(): import tensorflow as tf UpperCamelCase = tf.__version__ try: # deprecated in v2.1 UpperCamelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCamelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """not installed""" UpperCamelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCamelCase = flax.__version__ UpperCamelCase = jax.__version__ UpperCamelCase = jaxlib.__version__ UpperCamelCase = jax.lib.xla_bridge.get_backend().platform UpperCamelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def A__ ( _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
35
0
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a_ ( unittest.TestCase ): lowercase = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowercase = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = AudioClassificationPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) # test with a raw waveform UpperCamelCase = np.zeros((34000,) ) UpperCamelCase = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase ,UpperCamelCase = examples UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE ) # by default a model is initialized with num_labels=2 self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) self.run_torchaudio(_SCREAMING_SNAKE_CASE ) @require_torchaudio def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" import datasets # test with a local file UpperCamelCase = datasets.load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) UpperCamelCase = dataset[0]["""audio"""]["""array"""] UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, {"""score""": ANY(_SCREAMING_SNAKE_CASE ), """label""": ANY(_SCREAMING_SNAKE_CASE )}, ] , ) @require_torch def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = """anton-l/wav2vec2-random-tiny-classifier""" UpperCamelCase = pipeline("""audio-classification""" , model=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.ones((8000,) ) UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) UpperCamelCase = [ {"""score""": 0.0_8_4_2, """label""": """no"""}, {"""score""": 0.0_8_3_8, """label""": """up"""}, {"""score""": 0.0_8_3_7, """label""": """go"""}, {"""score""": 0.0_8_3_4, """label""": """right"""}, ] UpperCamelCase = [ {"""score""": 0.0_8_4_5, """label""": """stop"""}, {"""score""": 0.0_8_4_4, """label""": """on"""}, {"""score""": 0.0_8_4_1, """label""": """right"""}, {"""score""": 0.0_8_3_4, """label""": """left"""}, ] self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) UpperCamelCase = {"""array""": np.ones((8000,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) self.assertIn(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def A__ ( self ) -> int: """simple docstring""" import datasets UpperCamelCase = """superb/wav2vec2-base-superb-ks""" UpperCamelCase = pipeline("""audio-classification""" , model=_SCREAMING_SNAKE_CASE ) UpperCamelCase = datasets.load_dataset("""anton-l/superb_dummy""" , """ks""" , split="""test""" ) UpperCamelCase = np.array(dataset[3]["""speech"""] , dtype=np.floataa ) UpperCamelCase = audio_classifier(_SCREAMING_SNAKE_CASE , top_k=4 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=3 ) , [ {"""score""": 0.9_8_1, """label""": """go"""}, {"""score""": 0.0_0_7, """label""": """up"""}, {"""score""": 0.0_0_6, """label""": """_unknown_"""}, {"""score""": 0.0_0_1, """label""": """down"""}, ] , ) @require_tf @unittest.skip("""Audio classification is not implemented for TF""" ) def A__ ( self ) -> Dict: """simple docstring""" pass
713
'''simple docstring''' from math import factorial def lowercase__ ( __UpperCamelCase = 20 )-> int: UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase = n // 2 return int(factorial(__UpperCamelCase ) / (factorial(__UpperCamelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: SCREAMING_SNAKE_CASE__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
35
0
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a_ ( lowerCamelCase ): lowercase = CustomTokenizer pass
714
'''simple docstring''' from math import sqrt def lowercase__ ( __UpperCamelCase )-> int: UpperCamelCase = 0 for i in range(1 , int(sqrt(__UpperCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__UpperCamelCase ): total += i + n // i elif i == sqrt(__UpperCamelCase ): total += i return total - n def lowercase__ ( __UpperCamelCase = 10000 )-> int: UpperCamelCase = sum( i for i in range(1 , __UpperCamelCase ) if sum_of_divisors(sum_of_divisors(__UpperCamelCase ) ) == i and sum_of_divisors(__UpperCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
35
0
'''simple docstring''' import numpy as np class a_ : def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[Any]: """simple docstring""" self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Optional[int]: """simple docstring""" if red is not None: UpperCamelCase = red if green is not None: UpperCamelCase = green if blue is not None: UpperCamelCase = blue if red_edge is not None: UpperCamelCase = red_edge if nir is not None: UpperCamelCase = nir return True def A__ ( self , _SCREAMING_SNAKE_CASE="" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> List[Any]: """simple docstring""" self.set_matricies(red=_SCREAMING_SNAKE_CASE , green=_SCREAMING_SNAKE_CASE , blue=_SCREAMING_SNAKE_CASE , red_edge=_SCREAMING_SNAKE_CASE , nir=_SCREAMING_SNAKE_CASE ) UpperCamelCase = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def A__ ( self ) -> Any: """simple docstring""" return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def A__ ( self ) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def A__ ( self ) -> Dict: """simple docstring""" return self.nir * (self.red / (self.green**2)) def A__ ( self ) -> List[Any]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def A__ ( self ) -> List[Any]: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def A__ ( self ) -> List[str]: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def A__ ( self ) -> Any: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def A__ ( self ) -> List[str]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def A__ ( self ) -> Dict: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def A__ ( self ) -> List[Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def A__ ( self , _SCREAMING_SNAKE_CASE=0.0_8 , _SCREAMING_SNAKE_CASE=1.2_2 , _SCREAMING_SNAKE_CASE=0.0_3 ) -> Tuple: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def A__ ( self ) -> int: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def A__ ( self ) -> Dict: """simple docstring""" return (self.nir / self.green) - 1 def A__ ( self ) -> List[Any]: """simple docstring""" return (self.nir / self.redEdge) - 1 def A__ ( self ) -> Any: """simple docstring""" return (self.red - self.blue) / self.red def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def A__ ( self ) -> Any: """simple docstring""" return self.nir - self.green def A__ ( self ) -> str: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def A__ ( self , _SCREAMING_SNAKE_CASE=0.1_6 ) -> Optional[Any]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def A__ ( self , _SCREAMING_SNAKE_CASE=0.5 ) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def A__ ( self ) -> str: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def A__ ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> str: """simple docstring""" return (self.nir - b) / (a * self.red) def A__ ( self ) -> str: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def A__ ( self ) -> Tuple: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def A__ ( self ) -> Tuple: """simple docstring""" return self.nir / self.red def A__ ( self ) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def A__ ( self ) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def A__ ( self ) -> str: """simple docstring""" return self.green / (self.nir + self.red + self.green) def A__ ( self ) -> Optional[int]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def A__ ( self ) -> List[str]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def A__ ( self ) -> Optional[int]: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def A__ ( self ) -> int: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def A__ ( self ) -> str: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def A__ ( self ) -> Any: """simple docstring""" return self.nir / self.red def A__ ( self ) -> Union[str, Any]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def A__ ( self ) -> str: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE__ = { 'camembert-base': 5_1_2, } SCREAMING_SNAKE_CASE__ = '▁' class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = CamembertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=["<s>NOTUSED", "</s>NOTUSED"] , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" UpperCamelCase = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
716
'''simple docstring''' def lowercase__ ( __UpperCamelCase )-> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) UpperCamelCase = """""" while len(__UpperCamelCase ) % 3 != 0: UpperCamelCase = """0""" + bin_string UpperCamelCase = [ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: UpperCamelCase = 0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
35
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: if exponent == 1: return base if exponent % 2 == 0: UpperCamelCase = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def lowercase__ ( __UpperCamelCase = 1777 , __UpperCamelCase = 1855 , __UpperCamelCase = 8 )-> int: UpperCamelCase = base for _ in range(1 , __UpperCamelCase ): UpperCamelCase = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
717
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( __UpperCamelCase=None )-> Union[str, Any]: if subparsers is not None: UpperCamelCase = subparsers.add_parser("""env""" ) else: UpperCamelCase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__UpperCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = is_xpu_available() UpperCamelCase = is_npu_available() UpperCamelCase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): UpperCamelCase = load_config_from_file(args.config_file ).to_dict() UpperCamelCase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(__UpperCamelCase ), """PyTorch NPU available""": str(__UpperCamelCase ), """System RAM""": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: UpperCamelCase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F"\t{accelerate_config}" ) print(__UpperCamelCase ) UpperCamelCase = accelerate_config return info def lowercase__ ( )-> int: UpperCamelCase = env_command_parser() UpperCamelCase = parser.parse_args() env_command(__UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> str: if not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) UpperCamelCase = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
35
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) logging.set_verbosity_info() def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple: if "xprophetnet" in prophetnet_checkpoint_path: UpperCamelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) else: UpperCamelCase = ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = ProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) UpperCamelCase = ["""key_proj""", """value_proj""", """query_proj"""] UpperCamelCase = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: UpperCamelCase = key.split(""".""" ) if attributes[0] == "lm_head": UpperCamelCase = prophet UpperCamelCase = prophet_old else: UpperCamelCase = prophet.prophetnet UpperCamelCase = prophet_old.model UpperCamelCase = False for attribute in attributes: if attribute in mapping: UpperCamelCase = mapping[attribute] if not hasattr(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) > 0: UpperCamelCase = attribute elif hasattr(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" UpperCamelCase = old_model.weight logger.info(F"{attribute} is initialized." ) UpperCamelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" UpperCamelCase = old_model.bias logger.info(F"{attribute} is initialized" ) UpperCamelCase = True break elif attribute in special_keys and hasattr(__UpperCamelCase , """in_proj_weight""" ): UpperCamelCase = old_model.in_proj_weight.shape[0] // 3 UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": UpperCamelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) UpperCamelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": UpperCamelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) UpperCamelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": UpperCamelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) UpperCamelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) UpperCamelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." UpperCamelCase = nn.Parameter(old_model.embed_positions.weight[:512, :] ) UpperCamelCase = True break if attribute.isdigit(): UpperCamelCase = model[int(__UpperCamelCase )] UpperCamelCase = old_model[int(__UpperCamelCase )] else: UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if old_attribute == "": UpperCamelCase = old_model else: if not hasattr(__UpperCamelCase , __UpperCamelCase ): raise ValueError(F"{old_model} does not have {old_attribute}" ) UpperCamelCase = getattr(__UpperCamelCase , __UpperCamelCase ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
719
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowercase__ ( __UpperCamelCase , __UpperCamelCase=1 )-> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split(""".""" )[n_shave_prefix_segments:] ) else: return ".".join(path.split(""".""" )[:n_shave_prefix_segments] ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> Dict: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item.replace("""in_layers.0""" , """norm1""" ) UpperCamelCase = new_item.replace("""in_layers.2""" , """conv1""" ) UpperCamelCase = new_item.replace("""out_layers.0""" , """norm2""" ) UpperCamelCase = new_item.replace("""out_layers.3""" , """conv2""" ) UpperCamelCase = new_item.replace("""emb_layers.1""" , """time_emb_proj""" ) UpperCamelCase = new_item.replace("""skip_connection""" , """conv_shortcut""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase=0 )-> List[str]: UpperCamelCase = [] for old_item in old_list: UpperCamelCase = old_item UpperCamelCase = new_item.replace("""norm.weight""" , """group_norm.weight""" ) UpperCamelCase = new_item.replace("""norm.bias""" , """group_norm.bias""" ) UpperCamelCase = new_item.replace("""proj_out.weight""" , """proj_attn.weight""" ) UpperCamelCase = new_item.replace("""proj_out.bias""" , """proj_attn.bias""" ) UpperCamelCase = shave_segments(__UpperCamelCase , n_shave_prefix_segments=__UpperCamelCase ) mapping.append({"""old""": old_item, """new""": new_item} ) return mapping def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None )-> str: assert isinstance(__UpperCamelCase , __UpperCamelCase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCamelCase = old_checkpoint[path] UpperCamelCase = old_tensor.shape[0] // 3 UpperCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCamelCase = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase = old_tensor.split(channels // num_heads , dim=1 ) UpperCamelCase = query.reshape(__UpperCamelCase ) UpperCamelCase = key.reshape(__UpperCamelCase ) UpperCamelCase = value.reshape(__UpperCamelCase ) for path in paths: UpperCamelCase = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCamelCase = new_path.replace("""middle_block.0""" , """mid_block.resnets.0""" ) UpperCamelCase = new_path.replace("""middle_block.1""" , """mid_block.attentions.0""" ) UpperCamelCase = new_path.replace("""middle_block.2""" , """mid_block.resnets.1""" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCamelCase = new_path.replace(replacement["""old"""] , replacement["""new"""] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCamelCase = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCamelCase = old_checkpoint[path["""old"""]] def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Optional[int]: UpperCamelCase = {} UpperCamelCase = checkpoint["""time_embed.0.weight"""] UpperCamelCase = checkpoint["""time_embed.0.bias"""] UpperCamelCase = checkpoint["""time_embed.2.weight"""] UpperCamelCase = checkpoint["""time_embed.2.bias"""] UpperCamelCase = checkpoint["""input_blocks.0.0.weight"""] UpperCamelCase = checkpoint["""input_blocks.0.0.bias"""] UpperCamelCase = checkpoint["""out.0.weight"""] UpperCamelCase = checkpoint["""out.0.bias"""] UpperCamelCase = checkpoint["""out.2.weight"""] UpperCamelCase = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """input_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"input_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the middle blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """middle_block""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"middle_block.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the output blocks only UpperCamelCase = len({""".""".join(layer.split(""".""" )[:2] ) for layer in checkpoint if """output_blocks""" in layer} ) UpperCamelCase = { layer_id: [key for key in checkpoint if F"output_blocks.{layer_id}" in key] for layer_id in range(__UpperCamelCase ) } for i in range(1 , __UpperCamelCase ): UpperCamelCase = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCamelCase = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.0" in key] UpperCamelCase = [key for key in input_blocks[i] if F"input_blocks.{i}.1" in key] if F"input_blocks.{i}.0.op.weight" in checkpoint: UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.weight" ] UpperCamelCase = checkpoint[ F"input_blocks.{i}.0.op.bias" ] continue UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"input_blocks.{i}.0", """new""": F"down_blocks.{block_id}.resnets.{layer_in_block_id}"} UpperCamelCase = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path, resnet_op] , config=__UpperCamelCase ) if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"input_blocks.{i}.1", """new""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"input_blocks.{i}.1.qkv.bias": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"input_blocks.{i}.1.qkv.weight": { """key""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase , ) UpperCamelCase = middle_blocks[0] UpperCamelCase = middle_blocks[1] UpperCamelCase = middle_blocks[2] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , config=__UpperCamelCase ) UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , attention_paths_to_split=__UpperCamelCase , config=__UpperCamelCase ) for i in range(__UpperCamelCase ): UpperCamelCase = i // (config["""num_res_blocks"""] + 1) UpperCamelCase = i % (config["""num_res_blocks"""] + 1) UpperCamelCase = [shave_segments(__UpperCamelCase , 2 ) for name in output_blocks[i]] UpperCamelCase = {} for layer in output_block_layers: UpperCamelCase ,UpperCamelCase = layer.split(""".""" )[0], shave_segments(__UpperCamelCase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(__UpperCamelCase ) else: UpperCamelCase = [layer_name] if len(__UpperCamelCase ) > 1: UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.0" in key] UpperCamelCase = [key for key in output_blocks[i] if F"output_blocks.{i}.1" in key] UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = renew_resnet_paths(__UpperCamelCase ) UpperCamelCase = {"""old""": F"output_blocks.{i}.0", """new""": F"up_blocks.{block_id}.resnets.{layer_in_block_id}"} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCamelCase = list(output_block_list.values() ).index(["""conv.weight""", """conv.bias"""] ) UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.weight" ] UpperCamelCase = checkpoint[ F"output_blocks.{i}.{index}.conv.bias" ] # Clear attentions as they have been attributed above. if len(__UpperCamelCase ) == 2: UpperCamelCase = [] if len(__UpperCamelCase ): UpperCamelCase = renew_attention_paths(__UpperCamelCase ) UpperCamelCase = { """old""": F"output_blocks.{i}.1", """new""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}", } UpperCamelCase = { F"output_blocks.{i}.1.qkv.bias": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias", }, F"output_blocks.{i}.1.qkv.weight": { """key""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight", """query""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight", """value""": F"up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight", }, } assign_to_checkpoint( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("""qkv""" in key for key in attentions ) else None , config=__UpperCamelCase , ) else: UpperCamelCase = renew_resnet_paths(__UpperCamelCase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCamelCase = """.""".join(["""output_blocks""", str(__UpperCamelCase ), path["""old"""]] ) UpperCamelCase = """.""".join(["""up_blocks""", str(__UpperCamelCase ), """resnets""", str(__UpperCamelCase ), path["""new"""]] ) UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE__ = json.loads(f.read()) SCREAMING_SNAKE_CASE__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE__ = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
35
0
from __future__ import annotations def lowercase__ ( __UpperCamelCase )-> None: create_state_space_tree(__UpperCamelCase , [] , 0 , [0 for i in range(len(__UpperCamelCase ) )] ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , )-> None: if index == len(__UpperCamelCase ): print(__UpperCamelCase ) return for i in range(len(__UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCamelCase = True create_state_space_tree(__UpperCamelCase , __UpperCamelCase , index + 1 , __UpperCamelCase ) current_sequence.pop() UpperCamelCase = False SCREAMING_SNAKE_CASE__ = [3, 1, 2, 4] generate_all_permutations(sequence) SCREAMING_SNAKE_CASE__ = ['A', 'B', 'C'] generate_all_permutations(sequence_a)
720
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Tuple: UpperCamelCase = [] for part_id in partition_order: UpperCamelCase = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(__UpperCamelCase ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> str: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(__UpperCamelCase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> Any: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(2 ) UpperCamelCase = [1, 0] UpperCamelCase = _generate_iterable_examples(__UpperCamelCase , __UpperCamelCase ) # Reverse the partitions. UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , __UpperCamelCase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase ,UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> Tuple: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(1 ) UpperCamelCase = SparkExamplesIterable(__UpperCamelCase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> Union[str, Any]: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: UpperCamelCase = lambda __UpperCamelCase : x.reverse() UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [2, 1, 0] ) UpperCamelCase = SparkExamplesIterable(__UpperCamelCase ).shuffle_data_sources(__UpperCamelCase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): UpperCamelCase ,UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> List[Any]: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): UpperCamelCase ,UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase = SparkExamplesIterable(__UpperCamelCase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(__UpperCamelCase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__UpperCamelCase ): UpperCamelCase ,UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowercase__ ( )-> Tuple: UpperCamelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(__UpperCamelCase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
721
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration SCREAMING_SNAKE_CASE__ = 'facebook/wmt19-en-de' SCREAMING_SNAKE_CASE__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model SCREAMING_SNAKE_CASE__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE__ = tokenizer(['Making tiny model'], return_tensors='pt') SCREAMING_SNAKE_CASE__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save SCREAMING_SNAKE_CASE__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
35
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
36
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Dict = MgpstrTokenizer UpperCamelCase : Dict = False UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[int] = False def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().setUp() # fmt: off SCREAMING_SNAKE_CASE_: Optional[int] =["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on SCREAMING_SNAKE_CASE_: Optional[int] =dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE_: List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + """\n""" ) def lowerCamelCase__ ( self : Any , **lowerCAmelCase : int ) -> Optional[int]: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def lowerCamelCase__ ( self : str , lowerCAmelCase : List[str] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any ="""tester""" SCREAMING_SNAKE_CASE_: Tuple ="""tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCamelCase__ ( self : Tuple ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.get_tokenizers(do_lower_case=lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_: int ="""[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , 1 ) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.get_input_output_texts(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer.tokenize(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =tokenizer.convert_tokens_to_ids(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertNotEqual(len(lowerCAmelCase ) , 0 ) SCREAMING_SNAKE_CASE_: Any =tokenizer.decode(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCamelCase__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCamelCase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass
36
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.dummy_uncond_unet SCREAMING_SNAKE_CASE_: Optional[Any] =ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE_: Any =ScoreSdeVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: Any =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sde_ve(num_inference_steps=2 , output_type="""numpy""" , generator=lowerCAmelCase , return_dict=lowerCAmelCase )[ 0 ] SCREAMING_SNAKE_CASE_: Dict =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_: str =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] ="""google/ncsnpp-church-256""" SCREAMING_SNAKE_CASE_: List[Any] =UNetaDModel.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ScoreSdeVePipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) sde_ve.to(lowerCAmelCase ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: List[Any] =sde_ve(num_inference_steps=10 , output_type="""numpy""" , generator=lowerCAmelCase ).images SCREAMING_SNAKE_CASE_: List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE_: List[Any] =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
36
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class a ( UpperCAmelCase__ , UpperCAmelCase__ ): UpperCamelCase : Optional[int] = 'convnextv2' def __init__( self : str , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Optional[Any]=0.0_2 , lowerCAmelCase : Tuple=1E-12 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=224 , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =num_channels SCREAMING_SNAKE_CASE_: Optional[Any] =patch_size SCREAMING_SNAKE_CASE_: str =num_stages SCREAMING_SNAKE_CASE_: List[Any] =[96, 192, 384, 768] if hidden_sizes is None else hidden_sizes SCREAMING_SNAKE_CASE_: str =[3, 3, 9, 3] if depths is None else depths SCREAMING_SNAKE_CASE_: int =hidden_act SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: str =layer_norm_eps SCREAMING_SNAKE_CASE_: Optional[int] =drop_path_rate SCREAMING_SNAKE_CASE_: Dict =image_size SCREAMING_SNAKE_CASE_: List[str] =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names )
36
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
1
"""simple docstring""" from math import factorial _UpperCAmelCase = {str(d): factorial(d) for d in range(1_0)} def __magic_name__ ( lowercase ): return sum(DIGIT_FACTORIAL[d] for d in str(lowercase ) ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[int] =7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowercase ) if sum_of_digit_factorial(lowercase ) == i ) if __name__ == "__main__": print(f"""{solution() = }""")
36
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : str = 'vision-encoder-decoder' UpperCamelCase : Union[str, Any] = True def __init__( self : Optional[Any] , **lowerCAmelCase : int ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f'''A configuraton of type {self.model_type} cannot be instantiated because ''' f'''not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}''' ) SCREAMING_SNAKE_CASE_: int =kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE_: Optional[int] =encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] =kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE_: str =decoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE_: List[str] =AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =AutoConfig.for_model(lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =True @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : Any ) -> PretrainedConfig: '''simple docstring''' logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE_: Any =True SCREAMING_SNAKE_CASE_: Optional[Any] =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_: List[Any] =self.encoder.to_dict() SCREAMING_SNAKE_CASE_: Tuple =self.decoder.to_dict() SCREAMING_SNAKE_CASE_: Union[str, Any] =self.__class__.model_type return output class a ( UpperCAmelCase__ ): UpperCamelCase : Any = version.parse('1.11' ) @property def lowerCamelCase__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : int ) -> float: '''simple docstring''' return 1E-4 @property def lowerCamelCase__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =OrderedDict() SCREAMING_SNAKE_CASE_: Optional[Any] ={0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE_: int ={0: """batch""", 1: """encoder_sequence"""} return common_inputs def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : "PreTrainedTokenizerBase" , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict() SCREAMING_SNAKE_CASE_: Dict =super().generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =dummy_input["""input_ids"""].shape SCREAMING_SNAKE_CASE_: Any =(batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE_: List[str] =dummy_input.pop("""input_ids""" ) SCREAMING_SNAKE_CASE_: Tuple =dummy_input.pop("""attention_mask""" ) SCREAMING_SNAKE_CASE_: Tuple =torch.zeros(lowerCAmelCase ) return common_inputs class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Tuple ) -> None: '''simple docstring''' pass def lowerCamelCase__ ( self : str , lowerCAmelCase : PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : str = "default" ) -> OnnxConfig: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase , lowerCAmelCase )
36
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
1
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _UpperCAmelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a ( nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Dict ) -> Any: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[Any] =torchvision.models.resnetaaa(pretrained=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =list(model.children() )[:-2] SCREAMING_SNAKE_CASE_: Optional[int] =nn.Sequential(*lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.pool(self.model(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Any =torch.flatten(lowerCAmelCase , start_dim=2 ) SCREAMING_SNAKE_CASE_: int =out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class a ( UpperCAmelCase__ ): def __init__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =[json.loads(lowerCAmelCase ) for l in open(lowerCAmelCase )] SCREAMING_SNAKE_CASE_: Optional[int] =os.path.dirname(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =tokenizer SCREAMING_SNAKE_CASE_: Any =labels SCREAMING_SNAKE_CASE_: Any =len(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =max_seq_length SCREAMING_SNAKE_CASE_: Union[str, Any] =transforms def __len__( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.data ) def __getitem__( self : int , lowerCAmelCase : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE_: int =sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE_: Tuple =torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE_: str =1 SCREAMING_SNAKE_CASE_: int =Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) SCREAMING_SNAKE_CASE_: int =self.transforms(lowerCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =[len(row["""sentence"""] ) for row in batch] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =len(lowercase ), max(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =torch.zeros(lowercase , lowercase , dtype=torch.long ) SCREAMING_SNAKE_CASE_: Tuple =torch.zeros(lowercase , lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase , lowercase ) ): SCREAMING_SNAKE_CASE_: Union[str, Any] =input_row["""sentence"""] SCREAMING_SNAKE_CASE_: List[Any] =1 SCREAMING_SNAKE_CASE_: Any =torch.stack([row["""image"""] for row in batch] ) SCREAMING_SNAKE_CASE_: Tuple =torch.stack([row["""label"""] for row in batch] ) SCREAMING_SNAKE_CASE_: Dict =torch.stack([row["""image_start_token"""] for row in batch] ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __magic_name__ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __magic_name__ ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
36
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
1
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def __magic_name__ ( lowercase ): return "".join(sorted(lowercase ) ) def __magic_name__ ( lowercase ): return word_by_signature[signature(lowercase )] _UpperCAmelCase = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _UpperCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) _UpperCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _UpperCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
36
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = """▁""" _UpperCAmelCase = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } _UpperCAmelCase = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } _UpperCAmelCase = { """facebook/s2t-small-librispeech-asr""": 1_0_2_4, } _UpperCAmelCase = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] _UpperCAmelCase = {"""mustc""": MUSTC_LANGS} class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Any = MAX_MODEL_INPUT_SIZES UpperCamelCase : Optional[int] = ['input_ids', 'attention_mask'] UpperCamelCase : List[int] = [] def __init__( self : str , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any]="<s>" , lowerCAmelCase : List[str]="</s>" , lowerCAmelCase : Dict="<pad>" , lowerCAmelCase : Dict="<unk>" , lowerCAmelCase : Tuple=False , lowerCAmelCase : str=False , lowerCAmelCase : int=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Dict , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , do_upper_case=lowerCAmelCase , do_lower_case=lowerCAmelCase , tgt_lang=lowerCAmelCase , lang_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Optional[Any] =do_upper_case SCREAMING_SNAKE_CASE_: str =do_lower_case SCREAMING_SNAKE_CASE_: str =load_json(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple ={v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_: Optional[Any] =spm_file SCREAMING_SNAKE_CASE_: Optional[int] =load_spm(lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: SCREAMING_SNAKE_CASE_: Optional[Any] =lang_codes SCREAMING_SNAKE_CASE_: str =LANGUAGES[lang_codes] SCREAMING_SNAKE_CASE_: List[Any] =[f'''<lang:{lang}>''' for lang in self.langs] SCREAMING_SNAKE_CASE_: Any ={lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} SCREAMING_SNAKE_CASE_: Tuple =self.lang_tokens SCREAMING_SNAKE_CASE_: Any =tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: SCREAMING_SNAKE_CASE_: List[Any] ={} @property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return len(self.encoder ) @property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Optional[int] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =new_tgt_lang self.set_tgt_lang_special_tokens(lowerCAmelCase ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE_: Any =[lang_code_id] def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def lowerCamelCase__ ( self : str , lowerCAmelCase : int ) -> str: '''simple docstring''' return self.decoder.get(lowerCAmelCase , self.unk_token ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =[] SCREAMING_SNAKE_CASE_: int ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: SCREAMING_SNAKE_CASE_: List[Any] =self.sp_model.decode(lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " SCREAMING_SNAKE_CASE_: Optional[int] =[] else: current_sub_tokens.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self.sp_model.decode(lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : str=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.__dict__.copy() SCREAMING_SNAKE_CASE_: Optional[Any] =None return state def __setstate__( self : Tuple , lowerCAmelCase : Dict ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE_: Any ={} SCREAMING_SNAKE_CASE_: Union[str, Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =Path(lowerCAmelCase ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' SCREAMING_SNAKE_CASE_: Any =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) SCREAMING_SNAKE_CASE_: Tuple =save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE_: Optional[int] =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =sentencepiece.SentencePieceProcessor(**lowercase ) spm.Load(str(lowercase ) ) return spm def __magic_name__ ( lowercase ): with open(lowercase , """r""" ) as f: return json.load(lowercase ) def __magic_name__ ( lowercase , lowercase ): with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase , indent=2 )
36
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] =argparse.ArgumentParser() parser.add_argument("""-f""" ) SCREAMING_SNAKE_CASE_: int =parser.parse_args() return args.f class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCAmelCase , """argv""" , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =""" --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =""" --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =""" --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase )
36
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class a ( UpperCAmelCase__ ): UpperCamelCase : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase : ClassVar[Features] = Features({'image': Image()} ) UpperCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) UpperCamelCase : str = "image" UpperCamelCase : str = "labels" def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Any ) -> Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE_: int =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_: Optional[int] =self.label_schema.copy() SCREAMING_SNAKE_CASE_: int =features[self.label_column] SCREAMING_SNAKE_CASE_: Optional[int] =label_schema return task_template @property def lowerCamelCase__ ( self : Optional[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
36
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {"""UserAgent""": UserAgent().random} def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =script.contents[0] SCREAMING_SNAKE_CASE_: List[str] =json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class a : def __init__( self : Tuple , lowerCAmelCase : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =f'''https://www.instagram.com/{username}/''' SCREAMING_SNAKE_CASE_: Optional[int] =self.get_json() def lowerCamelCase__ ( self : str ) -> dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =requests.get(self.url , headers=lowerCAmelCase ).text SCREAMING_SNAKE_CASE_: int =BeautifulSoup(lowerCAmelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : Any ) -> str: '''simple docstring''' return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' return self.user_data["username"] @property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return self.user_data["biography"] @property def lowerCamelCase__ ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def lowerCamelCase__ ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowerCamelCase__ ( self : str ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowerCamelCase__ ( self : List[Any] ) -> bool: '''simple docstring''' return self.user_data["is_private"] def __magic_name__ ( lowercase = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE_: Tuple =InstagramUser(lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser("""github""") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
36
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
36
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Tuple ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =1 SCREAMING_SNAKE_CASE_: Dict =3 SCREAMING_SNAKE_CASE_: List[Any] =(32, 32) SCREAMING_SNAKE_CASE_: List[str] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase ) return image @property def lowerCamelCase__ ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_: str =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase ) @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' def extract(*lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any ): class a : def __init__( self : List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =torch.ones([0] ) def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' self.pixel_values.to(lowerCAmelCase ) return self return Out() return extract def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: Tuple =DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: int =self.dummy_vae SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: Any =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE_: Optional[int] =output.images SCREAMING_SNAKE_CASE_: Tuple =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Dict =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Union[str, Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Tuple =np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_: int =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: str =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =self.dummy_vae SCREAMING_SNAKE_CASE_: int =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Optional[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: int =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: Optional[Any] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe([prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) SCREAMING_SNAKE_CASE_: Dict =output.images SCREAMING_SNAKE_CASE_: Optional[int] =torch.Generator(device=lowerCAmelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowerCAmelCase , )[0] SCREAMING_SNAKE_CASE_: Tuple =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: str =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_: Dict =np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowerCAmelCase ) assert isinstance(lowerCAmelCase , lowerCAmelCase ) assert isinstance(pipe.scheduler , lowerCAmelCase ) assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_: Union[str, Any] =pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =StableDiffusionPipeline.from_pretrained(lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None SCREAMING_SNAKE_CASE_: Dict =pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.dummy_cond_unet SCREAMING_SNAKE_CASE_: List[str] =PNDMScheduler(skip_prk_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self.dummy_vae SCREAMING_SNAKE_CASE_: List[Any] =self.dummy_text_encoder SCREAMING_SNAKE_CASE_: Tuple =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 SCREAMING_SNAKE_CASE_: str =unet.half() SCREAMING_SNAKE_CASE_: Dict =vae.half() SCREAMING_SNAKE_CASE_: int =bert.half() # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE_: List[Any] =StableDiffusionPipeline( unet=lowerCAmelCase , scheduler=lowerCAmelCase , vae=lowerCAmelCase , text_encoder=lowerCAmelCase , tokenizer=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=self.dummy_extractor , ) SCREAMING_SNAKE_CASE_: Optional[int] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Optional[Any] =sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) SCREAMING_SNAKE_CASE_: str =40_0366_0346 SCREAMING_SNAKE_CASE_: Dict =7 # without safety guidance (sld_guidance_scale = 0) SCREAMING_SNAKE_CASE_: Tuple =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: Tuple =output.images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Tuple =[0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) SCREAMING_SNAKE_CASE_: Dict =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Optional[Any] =output.images SCREAMING_SNAKE_CASE_: Optional[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =[0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) SCREAMING_SNAKE_CASE_: Any =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str ="""padme amidala taking a bath artwork, safe for work, no nudity""" SCREAMING_SNAKE_CASE_: int =27_3497_1755 SCREAMING_SNAKE_CASE_: Union[str, Any] =7 SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: List[str] =output.images SCREAMING_SNAKE_CASE_: Optional[Any] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] =[0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 SCREAMING_SNAKE_CASE_: Dict =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Optional[int] =output.images SCREAMING_SNAKE_CASE_: List[str] =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Dict =[0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) SCREAMING_SNAKE_CASE_: Any =sd_pipe.to(lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =10_4435_5234 SCREAMING_SNAKE_CASE_: Tuple =12 SCREAMING_SNAKE_CASE_: Any =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) SCREAMING_SNAKE_CASE_: List[Any] =output.images SCREAMING_SNAKE_CASE_: str =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: Dict =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 SCREAMING_SNAKE_CASE_: Any =torch.manual_seed(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =sd_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=lowerCAmelCase , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) SCREAMING_SNAKE_CASE_: Union[str, Any] =output.images SCREAMING_SNAKE_CASE_: int =image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_: List[str] =np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
36
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1
"""simple docstring""" # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Tuple ={ """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE_: int ={ """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } SCREAMING_SNAKE_CASE_: Union[str, Any] =f'''{src_lang}-{tgt_lang}''' SCREAMING_SNAKE_CASE_: int =f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(lowercase , exist_ok=lowercase ) SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , """README.md""" ) print(f'''Generating {path}''' ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase ) # make sure we are under the root of the project _UpperCAmelCase = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = model_name.split("""-""") _UpperCAmelCase = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
36
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class a ( pl.LightningModule ): def __init__( self : List[Any] , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: Any =model SCREAMING_SNAKE_CASE_: Optional[Any] =2 SCREAMING_SNAKE_CASE_: Union[str, Any] =nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' pass def __magic_name__ ( lowercase , lowercase , lowercase ): # load longformer model from model identifier SCREAMING_SNAKE_CASE_: Union[str, Any] =LongformerModel.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =LightningModel(lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.load(lowercase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model SCREAMING_SNAKE_CASE_: int =LongformerForQuestionAnswering.from_pretrained(lowercase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowercase ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--longformer_model""", default=None, type=str, required=True, help="""model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.""", ) parser.add_argument( """--longformer_question_answering_ckpt_path""", default=None, type=str, required=True, help="""Path the official PyTorch Lightning Checkpoint.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
36
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _UpperCAmelCase = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def __magic_name__ ( lowercase ): for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_: Optional[int] =k.replace(lowercase , lowercase ) return k def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Any =DEFAULTS.copy() cfg_kwargs.update(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =PegasusConfig(**lowercase ) SCREAMING_SNAKE_CASE_: Any =PegasusForConditionalGeneration(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch_model.model.state_dict() SCREAMING_SNAKE_CASE_: int ={} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_: Any =rename_state_dict_key(lowercase ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_: Optional[int] =v.T SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor(lowercase , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_: str =torch.zeros_like(mapping["""shared.weight"""][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_: Optional[int] =mapping["""shared.weight"""] SCREAMING_SNAKE_CASE_: Dict =mapping["""shared.weight"""] SCREAMING_SNAKE_CASE_: Union[str, Any] ={k: torch.zeros_like(lowercase ) for k, v in sd.items() if k.endswith("""bias""" ) and k not in mapping} mapping.update(**lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =torch_model.model.load_state_dict(lowercase , strict=lowercase ) SCREAMING_SNAKE_CASE_: List[str] =[ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __magic_name__ ( lowercase="./ckpt/aeslc/model.ckpt-32000" ): SCREAMING_SNAKE_CASE_: Optional[int] =tf.train.list_variables(lowercase ) SCREAMING_SNAKE_CASE_: Any ={} SCREAMING_SNAKE_CASE_: Optional[Any] =["""Adafactor""", """global_step"""] for name, shape in tqdm(lowercase , desc="""converting tf checkpoint to dict""" ): SCREAMING_SNAKE_CASE_: Union[str, Any] =any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_: List[str] =tf.train.load_variable(lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =array return tf_weights def __magic_name__ ( lowercase , lowercase ): # save tokenizer first SCREAMING_SNAKE_CASE_: List[Any] =Path(lowercase ).parent.name SCREAMING_SNAKE_CASE_: Optional[int] =task_specific_params[f'''summarization_{dataset}''']["""max_position_embeddings"""] SCREAMING_SNAKE_CASE_: List[str] =PegasusTokenizer.from_pretrained("""sshleifer/pegasus""" , model_max_length=lowercase ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowercase ) # convert model SCREAMING_SNAKE_CASE_: Optional[Any] =get_tf_weights_as_numpy(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": SCREAMING_SNAKE_CASE_: Any =task_specific_params SCREAMING_SNAKE_CASE_: List[str] =convert_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: int =torch_model.state_dict() sd.pop("""model.decoder.embed_positions.weight""" ) sd.pop("""model.encoder.embed_positions.weight""" ) torch.save(lowercase , Path(lowercase ) / """pytorch_model.bin""" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() if args.save_dir is None: _UpperCAmelCase = Path(args.tf_ckpt_path).parent.name _UpperCAmelCase = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
36
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1
"""simple docstring""" import os import sys _UpperCAmelCase = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _UpperCAmelCase = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoConfig.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoTokenizer.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoModel.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoModelForCausalLM.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoModelForMaskedLM.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoModelForSequenceClassification.from_pretrained(*lowercase , **lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __magic_name__ ( *lowercase , **lowercase ): return AutoModelForQuestionAnswering.from_pretrained(*lowercase , **lowercase )
36
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =384 if "tiny" in model_name: SCREAMING_SNAKE_CASE_: Any =[3, 3, 9, 3] SCREAMING_SNAKE_CASE_: List[Any] =[96, 192, 384, 768] if "small" in model_name: SCREAMING_SNAKE_CASE_: str =[3, 3, 27, 3] SCREAMING_SNAKE_CASE_: Any =[96, 192, 384, 768] if "base" in model_name: SCREAMING_SNAKE_CASE_: Union[str, Any] =[3, 3, 27, 3] SCREAMING_SNAKE_CASE_: Union[str, Any] =[128, 256, 512, 1024] SCREAMING_SNAKE_CASE_: List[Any] =512 if "large" in model_name: SCREAMING_SNAKE_CASE_: List[str] =[3, 3, 27, 3] SCREAMING_SNAKE_CASE_: Union[str, Any] =[192, 384, 768, 1536] SCREAMING_SNAKE_CASE_: Tuple =768 if "xlarge" in model_name: SCREAMING_SNAKE_CASE_: Optional[Any] =[3, 3, 27, 3] SCREAMING_SNAKE_CASE_: int =[256, 512, 1024, 2048] SCREAMING_SNAKE_CASE_: int =1024 # set label information SCREAMING_SNAKE_CASE_: Any =150 SCREAMING_SNAKE_CASE_: Union[str, Any] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: Dict ="""ade20k-id2label.json""" SCREAMING_SNAKE_CASE_: List[Any] =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: List[str] ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Tuple ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] =ConvNextConfig( depths=lowercase , hidden_sizes=lowercase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) SCREAMING_SNAKE_CASE_: Optional[Any] =UperNetConfig( backbone_config=lowercase , auxiliary_in_channels=lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase , ) return config def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =[] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =dct.pop(lowercase ) SCREAMING_SNAKE_CASE_: int =val def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str ={ """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } SCREAMING_SNAKE_CASE_: Tuple =model_name_to_url[model_name] SCREAMING_SNAKE_CASE_: str =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""state_dict"""] SCREAMING_SNAKE_CASE_: Optional[Any] =get_upernet_config(lowercase ) SCREAMING_SNAKE_CASE_: str =UperNetForSemanticSegmentation(lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Any =state_dict.pop(lowercase ) if "bn" in key: SCREAMING_SNAKE_CASE_: Dict =key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE_: Dict =val # rename keys SCREAMING_SNAKE_CASE_: Dict =create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) model.load_state_dict(lowercase ) # verify on image SCREAMING_SNAKE_CASE_: Optional[Any] ="""https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE_: str =Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE_: List[str] =SegformerImageProcessor() SCREAMING_SNAKE_CASE_: List[str] =processor(lowercase , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE_: Tuple =model(lowercase ) if model_name == "upernet-convnext-tiny": SCREAMING_SNAKE_CASE_: List[Any] =torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": SCREAMING_SNAKE_CASE_: str =torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": SCREAMING_SNAKE_CASE_: str =torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f"""upernet-convnext-{size}""" for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
36
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__ ( lowercase ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , lowercase , ) if isinstance(lowercase , torch.Tensor ): return image elif isinstance(lowercase , PIL.Image.Image ): SCREAMING_SNAKE_CASE_: Union[str, Any] =[image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =image[0].size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =(x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE_: Dict =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE_: Optional[Any] =np.concatenate(lowercase , axis=0 ) SCREAMING_SNAKE_CASE_: Dict =np.array(lowercase ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE_: Union[str, Any] =image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_: List[Any] =2.0 * image - 1.0 SCREAMING_SNAKE_CASE_: Tuple =torch.from_numpy(lowercase ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_: str =torch.cat(lowercase , dim=0 ) return image def __magic_name__ ( lowercase ): if isinstance(lowercase , torch.Tensor ): return mask elif isinstance(lowercase , PIL.Image.Image ): SCREAMING_SNAKE_CASE_: Optional[int] =[mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =mask[0].size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =(x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE_: Dict =[np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE_: Dict =np.concatenate(lowercase , axis=0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =mask.astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE_: Optional[Any] =0 SCREAMING_SNAKE_CASE_: int =1 SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.from_numpy(lowercase ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_: Dict =torch.cat(lowercase , dim=0 ) return mask class a ( UpperCAmelCase__ ): UpperCamelCase : UNetaDModel UpperCamelCase : RePaintScheduler def __init__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : List[Any] ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) @torch.no_grad() def __call__( self : str , lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] , lowerCAmelCase : int = 250 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 10 , lowerCAmelCase : int = 10 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =image SCREAMING_SNAKE_CASE_: int =_preprocess_image(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE_: Union[str, Any] =_preprocess_mask(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE_: List[Any] =original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(lowerCAmelCase , lowerCAmelCase ) and len(lowerCAmelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE_: Any =original_image.shape SCREAMING_SNAKE_CASE_: List[Any] =randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.device ) SCREAMING_SNAKE_CASE_: List[str] =eta SCREAMING_SNAKE_CASE_: List[str] =self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE_: List[Any] =generator[0] if isinstance(lowerCAmelCase , lowerCAmelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE_: Tuple =self.unet(lowerCAmelCase , lowerCAmelCase ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE_: Optional[Any] =self.scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE_: List[Any] =self.scheduler.undo_step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =t SCREAMING_SNAKE_CASE_: Optional[Any] =(image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_: Optional[int] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_: Tuple =self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
36
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
1
"""simple docstring""" from manim import * class a ( UpperCAmelCase__ ): def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE_: int =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: List[Any] =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Optional[int] =VGroup(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE_: str =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =[mem.copy() for i in range(1 )] SCREAMING_SNAKE_CASE_: Dict =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Dict =Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE_: str =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) gpu.align_to(lowerCAmelCase , lowerCAmelCase ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE_: Tuple =VGroup(*lowerCAmelCase ).arrange(lowerCAmelCase , buff=0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE_: List[Any] =Group(lowerCAmelCase , lowerCAmelCase ).arrange(lowerCAmelCase , buff=0.5 , aligned_edge=lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCAmelCase , run_time=1 ) , Create(lowerCAmelCase , run_time=1 ) , Create(lowerCAmelCase , run_time=1 ) , ) SCREAMING_SNAKE_CASE_: List[Any] =MarkupText( f'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=24 , ) SCREAMING_SNAKE_CASE_: Union[str, Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE_: Any =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase , run_time=2.5 ) , Write(lowerCAmelCase ) , Write(lowerCAmelCase ) ) self.add(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =[] SCREAMING_SNAKE_CASE_: Union[str, Any] =[] SCREAMING_SNAKE_CASE_: List[Any] =[] for i, rect in enumerate(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Dict =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase , opacity=0.7 ) cpu_target.move_to(lowerCAmelCase ) cpu_target.generate_target() SCREAMING_SNAKE_CASE_: str =0.4_6 / 4 SCREAMING_SNAKE_CASE_: Union[str, Any] =0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=lowerCAmelCase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCAmelCase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCAmelCase , buff=0.0 ) cpu_targs.append(lowerCAmelCase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCAmelCase ) ) second_animations.append(MoveToTarget(lowerCAmelCase , run_time=1.5 ) ) self.play(*lowerCAmelCase ) self.play(*lowerCAmelCase ) self.wait()
36
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
1
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : bool = False , ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: Tuple =nn.Embedding(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =nn.Embedding(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =False SCREAMING_SNAKE_CASE_: Optional[Any] =nn.Dropout(p=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =TaConfig( vocab_size=lowerCAmelCase , d_model=lowerCAmelCase , num_heads=lowerCAmelCase , d_kv=lowerCAmelCase , d_ff=lowerCAmelCase , dropout_rate=lowerCAmelCase , feed_forward_proj=lowerCAmelCase , is_decoder=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: Optional[int] =nn.ModuleList() for lyr_num in range(lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =TaBlock(lowerCAmelCase ) self.encoders.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =TaLayerNorm(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =nn.Dropout(p=lowerCAmelCase ) def lowerCamelCase__ ( self : int , lowerCAmelCase : int , lowerCAmelCase : Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =self.token_embedder(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =encoder_input_tokens.shape[1] SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.arange(lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.dropout_pre(lowerCAmelCase ) # inverted the attention mask SCREAMING_SNAKE_CASE_: List[Any] =encoder_input_tokens.size() SCREAMING_SNAKE_CASE_: Dict =self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase ) for lyr in self.encoders: SCREAMING_SNAKE_CASE_: Dict =lyr(lowerCAmelCase , lowerCAmelCase )[0] SCREAMING_SNAKE_CASE_: int =self.layer_norm(lowerCAmelCase ) return self.dropout_post(lowerCAmelCase ), encoder_inputs_mask
36
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
1
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
1
"""simple docstring""" _UpperCAmelCase = {} def __magic_name__ ( lowercase , lowercase , lowercase ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE_: Optional[int] =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE_: int =_calculate(days - 1 , lowercase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE_: Optional[int] =_calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE_: str =_calculate(days - 1 , lowercase , 0 ) SCREAMING_SNAKE_CASE_: Dict =state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE_: Optional[Any] =prizestrings return prizestrings def __magic_name__ ( lowercase = 30 ): return _calculate(lowercase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
36
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
1
"""simple docstring""" from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __magic_name__ ( lowercase ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase ): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) SCREAMING_SNAKE_CASE_: List[str] =try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format SCREAMING_SNAKE_CASE_: Union[str, Any] =PipelineDataFormat.from_str( format=lowercase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase , lowercase ) class a ( UpperCAmelCase__ ): def __init__( self : int , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =nlp SCREAMING_SNAKE_CASE_: Optional[int] =reader @staticmethod def lowerCamelCase__ ( lowerCAmelCase : ArgumentParser ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowerCAmelCase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowerCAmelCase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowerCAmelCase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowerCAmelCase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowerCAmelCase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowerCAmelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowerCAmelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowerCAmelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self._nlp, [] for entry in self._reader: SCREAMING_SNAKE_CASE_: Dict =nlp(**lowerCAmelCase ) if self._reader.is_multi_columns else nlp(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ): outputs.append(lowerCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: SCREAMING_SNAKE_CASE_: str =self._reader.save_binary(lowerCAmelCase ) logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(lowerCAmelCase )
36
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
1
"""simple docstring""" import math import random def __magic_name__ ( lowercase , lowercase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _UpperCAmelCase = 0.0_2 def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowercase ): # Forward propagation SCREAMING_SNAKE_CASE_: Optional[int] =sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_: List[Any] =(expected / 100) - layer_a # Error delta SCREAMING_SNAKE_CASE_: Optional[int] =layer_1_error * sigmoid_function(lowercase , lowercase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = int(input("""Expected value: """)) _UpperCAmelCase = int(input("""Number of propagations: """)) print(forward_propagation(expected, number_propagations))
36
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
1
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Union[str, Any] = 'encodec' def __init__( self : Optional[Any] , lowerCAmelCase : int=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowerCAmelCase : Optional[int]=2_4000 , lowerCAmelCase : int=1 , lowerCAmelCase : Tuple=False , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=128 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : str=1 , lowerCAmelCase : Optional[Any]=[8, 5, 4, 2] , lowerCAmelCase : Tuple="weight_norm" , lowerCAmelCase : int=7 , lowerCAmelCase : Tuple=7 , lowerCAmelCase : str=3 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]="reflect" , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=1.0 , lowerCAmelCase : Tuple=1024 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[int] , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =target_bandwidths SCREAMING_SNAKE_CASE_: str =sampling_rate SCREAMING_SNAKE_CASE_: Union[str, Any] =audio_channels SCREAMING_SNAKE_CASE_: int =normalize SCREAMING_SNAKE_CASE_: List[str] =chunk_length_s SCREAMING_SNAKE_CASE_: Union[str, Any] =overlap SCREAMING_SNAKE_CASE_: List[Any] =hidden_size SCREAMING_SNAKE_CASE_: str =num_filters SCREAMING_SNAKE_CASE_: Dict =num_residual_layers SCREAMING_SNAKE_CASE_: int =upsampling_ratios SCREAMING_SNAKE_CASE_: Optional[int] =norm_type SCREAMING_SNAKE_CASE_: List[str] =kernel_size SCREAMING_SNAKE_CASE_: int =last_kernel_size SCREAMING_SNAKE_CASE_: List[str] =residual_kernel_size SCREAMING_SNAKE_CASE_: Dict =dilation_growth_rate SCREAMING_SNAKE_CASE_: Tuple =use_causal_conv SCREAMING_SNAKE_CASE_: Optional[Any] =pad_mode SCREAMING_SNAKE_CASE_: List[str] =compress SCREAMING_SNAKE_CASE_: Optional[Any] =num_lstm_layers SCREAMING_SNAKE_CASE_: Tuple =trim_right_ratio SCREAMING_SNAKE_CASE_: Tuple =codebook_size SCREAMING_SNAKE_CASE_: Tuple =codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE_: int =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowerCAmelCase ) @property def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
36
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
1
"""simple docstring""" import inspect import unittest class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> Any: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def lowerCamelCase__ ( self : List[str] ) -> str: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE_: Any =inspect.getmembers(lowerCAmelCase , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE_: List[Any] ="""k-diffusion""" elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE_: Optional[int] ="""invisible-watermark""" assert backend in deps, f'''{backend} is not in the deps table!'''
36
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self : Dict , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , ) -> Any: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: str =nn.Parameter(torch.zeros(lowerCAmelCase ) ) # parameters for additional clip time embeddings SCREAMING_SNAKE_CASE_: List[str] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) # parameters for encoder hidden states SCREAMING_SNAKE_CASE_: Tuple =clip_extra_context_tokens SCREAMING_SNAKE_CASE_: Union[str, Any] =nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) SCREAMING_SNAKE_CASE_: List[str] =nn.Linear(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =nn.LayerNorm(lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , *, lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings SCREAMING_SNAKE_CASE_: Optional[int] =image_embeddings.shape[0] SCREAMING_SNAKE_CASE_: Any =self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) SCREAMING_SNAKE_CASE_: Optional[Any] =classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1 ) SCREAMING_SNAKE_CASE_: List[Any] =torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] SCREAMING_SNAKE_CASE_: Optional[Any] =prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... SCREAMING_SNAKE_CASE_: Dict =self.embedding_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" SCREAMING_SNAKE_CASE_: Optional[Any] =self.clip_extra_context_tokens_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens ) SCREAMING_SNAKE_CASE_: str =clip_extra_context_tokens.permute(0 , 2 , 1 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.encoder_hidden_states_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: int =self.text_encoder_hidden_states_norm(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
36
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): UpperCamelCase : List[str] = JukeboxTokenizer UpperCamelCase : Union[str, Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCamelCase__ ( self : List[Any] ) -> str: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Any =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: Any =[ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Optional[int] =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) SCREAMING_SNAKE_CASE_: Dict =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: int =[ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
36
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Optional[int] = 'xlnet' UpperCamelCase : List[str] = ['mems'] UpperCamelCase : int = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , lowerCAmelCase : Optional[int]=3_2000 , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : Dict=24 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Dict=4096 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Tuple="bi" , lowerCAmelCase : Tuple=0.0_2 , lowerCAmelCase : List[str]=1E-12 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Tuple=False , lowerCAmelCase : List[Any]=-1 , lowerCAmelCase : int=False , lowerCAmelCase : int="last" , lowerCAmelCase : int=True , lowerCAmelCase : Any="tanh" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : int=5 , lowerCAmelCase : int=5 , lowerCAmelCase : Dict=5 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Union[str, Any]=2 , **lowerCAmelCase : Dict , ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =vocab_size SCREAMING_SNAKE_CASE_: Tuple =d_model SCREAMING_SNAKE_CASE_: Optional[int] =n_layer SCREAMING_SNAKE_CASE_: int =n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) SCREAMING_SNAKE_CASE_: Optional[int] =d_model // n_head SCREAMING_SNAKE_CASE_: Optional[Any] =ff_activation SCREAMING_SNAKE_CASE_: Any =d_inner SCREAMING_SNAKE_CASE_: List[Any] =untie_r SCREAMING_SNAKE_CASE_: Optional[Any] =attn_type SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: Dict =layer_norm_eps SCREAMING_SNAKE_CASE_: List[Any] =dropout SCREAMING_SNAKE_CASE_: Optional[Any] =mem_len SCREAMING_SNAKE_CASE_: Optional[int] =reuse_len SCREAMING_SNAKE_CASE_: Optional[int] =bi_data SCREAMING_SNAKE_CASE_: Optional[Any] =clamp_len SCREAMING_SNAKE_CASE_: Tuple =same_length SCREAMING_SNAKE_CASE_: int =summary_type SCREAMING_SNAKE_CASE_: List[str] =summary_use_proj SCREAMING_SNAKE_CASE_: str =summary_activation SCREAMING_SNAKE_CASE_: Tuple =summary_last_dropout SCREAMING_SNAKE_CASE_: Optional[int] =start_n_top SCREAMING_SNAKE_CASE_: List[Any] =end_n_top SCREAMING_SNAKE_CASE_: int =bos_token_id SCREAMING_SNAKE_CASE_: Any =pad_token_id SCREAMING_SNAKE_CASE_: List[Any] =eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , lowerCAmelCase , ) SCREAMING_SNAKE_CASE_: List[Any] =kwargs["""use_cache"""] SCREAMING_SNAKE_CASE_: str =use_mems_eval SCREAMING_SNAKE_CASE_: List[str] =use_mems_train super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) @property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
36
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCAmelCase = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""OwlViTFeatureExtractor"""] _UpperCAmelCase = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
1
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( lowercase , lowercase ): assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =tmp_path / """cache""" SCREAMING_SNAKE_CASE_: int ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_: str =SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Union[str, Any] =tmp_path / """cache""" SCREAMING_SNAKE_CASE_: Union[str, Any] ={"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} SCREAMING_SNAKE_CASE_: int =features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_: str =( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_: Tuple =SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowercase , cache_dir=lowercase ).read() _check_sql_dataset(lowercase , lowercase ) def __magic_name__ ( lowercase ): with contextlib.closing(sqlitea.connect(lowercase ) ) as con: SCREAMING_SNAKE_CASE_: Union[str, Any] =con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =tmp_path / """cache""" SCREAMING_SNAKE_CASE_: List[Any] =os.path.join(lowercase , """tmp.sql""" ) SCREAMING_SNAKE_CASE_: Tuple =SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() SCREAMING_SNAKE_CASE_: Optional[Any] =iter_sql_file(lowercase ) SCREAMING_SNAKE_CASE_: str =iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =tmp_path / """cache""" SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.join(lowercase , """tmp.sql""" ) SCREAMING_SNAKE_CASE_: str =SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() SCREAMING_SNAKE_CASE_: List[str] =iter_sql_file(lowercase ) SCREAMING_SNAKE_CASE_: int =iter_sql_file(lowercase ) for rowa, rowa in zip(lowercase , lowercase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =tmp_path / """cache""" SCREAMING_SNAKE_CASE_: Tuple =os.path.join(lowercase , """tmp.sql""" ) SCREAMING_SNAKE_CASE_: int =SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowercase ).read() with pytest.raises(lowercase ): SqlDatasetWriter(lowercase , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
36
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
36
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
1
"""simple docstring""" class a : def __init__( self : Tuple ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: dict[str, TrieNode] ={} # Mapping from char to TrieNode SCREAMING_SNAKE_CASE_: List[Any] =False def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self for char in word: if char not in curr.nodes: SCREAMING_SNAKE_CASE_: List[Any] =TrieNode() SCREAMING_SNAKE_CASE_: int =curr.nodes[char] SCREAMING_SNAKE_CASE_: Union[str, Any] =True def lowerCamelCase__ ( self : str , lowerCAmelCase : str ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =self for char in word: if char not in curr.nodes: return False SCREAMING_SNAKE_CASE_: Dict =curr.nodes[char] return curr.is_leaf def lowerCamelCase__ ( self : Dict , lowerCAmelCase : str ) -> None: '''simple docstring''' def _delete(lowerCAmelCase : TrieNode , lowerCAmelCase : str , lowerCAmelCase : int ) -> bool: if index == len(lowerCAmelCase ): # If word does not exist if not curr.is_leaf: return False SCREAMING_SNAKE_CASE_: Optional[Any] =False return len(curr.nodes ) == 0 SCREAMING_SNAKE_CASE_: str =word[index] SCREAMING_SNAKE_CASE_: str =curr.nodes.get(lowerCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted SCREAMING_SNAKE_CASE_: int =_delete(lowerCAmelCase , lowerCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowerCAmelCase , 0 ) def __magic_name__ ( lowercase , lowercase ): if node.is_leaf: print(lowercase , end=""" """ ) for key, value in node.nodes.items(): print_words(lowercase , word + key ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: int ="""banana bananas bandana band apple all beast""".split() SCREAMING_SNAKE_CASE_: int =TrieNode() root.insert_many(lowercase ) # print_words(root, "") assert all(root.find(lowercase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __magic_name__ ( lowercase , lowercase ): print(str(lowercase ) , """works!""" if passes else """doesn't work :(""" ) def __magic_name__ ( ): assert test_trie() def __magic_name__ ( ): print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
36
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1
"""simple docstring""" def __magic_name__ ( lowercase ): if isinstance(lowercase , lowercase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(lowercase , lowercase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE_: Optional[Any] =False if num < 0: SCREAMING_SNAKE_CASE_: List[str] =True SCREAMING_SNAKE_CASE_: List[Any] =-num SCREAMING_SNAKE_CASE_: list[int] =[] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(lowercase ) for e in binary ) return "0b" + "".join(str(lowercase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
36
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class a : def __init__( self : str ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: list[Any] =[] SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: int =0 def lowerCamelCase__ ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : Any ) -> None: '''simple docstring''' self.data.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =self.tail + 1 def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.data[self.head] SCREAMING_SNAKE_CASE_: Optional[int] =self.head + 1 return ret def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self : str ) -> None: '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class a : def __init__( self : Union[str, Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =data SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: MyNode | None =None SCREAMING_SNAKE_CASE_: int =1 def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' return self.data def lowerCamelCase__ ( self : List[Any] ) -> MyNode | None: '''simple docstring''' return self.left def lowerCamelCase__ ( self : Dict ) -> MyNode | None: '''simple docstring''' return self.right def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' return self.height def lowerCamelCase__ ( self : Any , lowerCAmelCase : Any ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =data def lowerCamelCase__ ( self : Dict , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =node def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : MyNode | None ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =node def lowerCamelCase__ ( self : int , lowerCAmelCase : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =height def __magic_name__ ( lowercase ): if node is None: return 0 return node.get_height() def __magic_name__ ( lowercase , lowercase ): if a > b: return a return b def __magic_name__ ( lowercase ): print("""left rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: int =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): print("""right rotation node:""" , node.get_data() ) SCREAMING_SNAKE_CASE_: List[Any] =node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(lowercase ) return ret def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =node.get_left() assert left_child is not None node.set_left(left_rotation(lowercase ) ) return right_rotation(lowercase ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =node.get_right() assert right_child is not None node.set_right(right_rotation(lowercase ) ) return left_rotation(lowercase ) def __magic_name__ ( lowercase , lowercase ): if node is None: return MyNode(lowercase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , lowercase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE_: Union[str, Any] =node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE_: Any =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: List[Any] =lr_rotation(lowercase ) else: node.set_right(insert_node(node.get_right() , lowercase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: SCREAMING_SNAKE_CASE_: Tuple =node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[int] =left_rotation(lowercase ) SCREAMING_SNAKE_CASE_: Tuple =my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(lowercase ) return node def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: Dict =root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE_: str =right_child return root.get_data() def __magic_name__ ( lowercase ): while True: SCREAMING_SNAKE_CASE_: str =root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE_: Dict =left_child return root.get_data() def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =root.get_left() SCREAMING_SNAKE_CASE_: List[Any] =root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE_: Union[str, Any] =get_left_most(lowercase ) root.set_data(lowercase ) root.set_right(del_node(lowercase , lowercase ) ) elif left_child is not None: SCREAMING_SNAKE_CASE_: Optional[int] =left_child elif right_child is not None: SCREAMING_SNAKE_CASE_: Any =right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(lowercase , lowercase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(lowercase , lowercase ) ) if get_height(lowercase ) - get_height(lowercase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): SCREAMING_SNAKE_CASE_: Tuple =left_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =rl_rotation(lowercase ) elif get_height(lowercase ) - get_height(lowercase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): SCREAMING_SNAKE_CASE_: Optional[Any] =right_rotation(lowercase ) else: SCREAMING_SNAKE_CASE_: str =lr_rotation(lowercase ) SCREAMING_SNAKE_CASE_: str =my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(lowercase ) return root class a : def __init__( self : int ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE_: MyNode | None =None def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self : Optional[int] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""insert:""" + str(lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =insert_node(self.root , lowerCAmelCase ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Any ) -> None: '''simple docstring''' print("""delete:""" + str(lowerCAmelCase ) ) if self.root is None: print("""Tree is empty!""" ) return SCREAMING_SNAKE_CASE_: Union[str, Any] =del_node(self.root , lowerCAmelCase ) def __str__( self : List[str] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] ="""""" SCREAMING_SNAKE_CASE_: str =MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE_: List[str] =self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE_: int =0 while not q.is_empty(): SCREAMING_SNAKE_CASE_: int =q.pop() SCREAMING_SNAKE_CASE_: List[Any] =""" """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(lowerCAmelCase ) q.push(lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE_: List[Any] =cnt + 1 for i in range(100 ): if cnt == math.pow(2 , lowerCAmelCase ) - 1: SCREAMING_SNAKE_CASE_: int =layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __magic_name__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _UpperCAmelCase = AVLtree() _UpperCAmelCase = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
36
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) class a ( UpperCAmelCase__ ): UpperCamelCase : List[Any] = 'timm_backbone' def __init__( self : Tuple , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=True , lowerCAmelCase : int=None , **lowerCAmelCase : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =backbone SCREAMING_SNAKE_CASE_: str =num_channels SCREAMING_SNAKE_CASE_: int =features_only SCREAMING_SNAKE_CASE_: int =use_pretrained_backbone SCREAMING_SNAKE_CASE_: Any =True SCREAMING_SNAKE_CASE_: str =out_indices if out_indices is not None else (-1,)
36
"""simple docstring""" import string def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ="""""" for i in sequence: SCREAMING_SNAKE_CASE_: List[Any] =ord(lowercase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =string.ascii_letters SCREAMING_SNAKE_CASE_: Tuple =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowercase )] if c in letters else c for c in sequence ) def __magic_name__ ( ): from timeit import timeit print("""Running performance benchmarks...""" ) SCREAMING_SNAKE_CASE_: int ="""from string import printable ; from __main__ import atbash, atbash_slow""" print(f'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowercase )} seconds''' ) print(f'''> atbash(): {timeit("atbash(printable)" , setup=lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
36
1
"""simple docstring""" from __future__ import annotations from math import gcd def __magic_name__ ( lowercase , lowercase = 2 , lowercase = 1 , lowercase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowercase , lowercase , lowercase ) -> int: return (pow(lowercase , 2 ) + step) % modulus for _ in range(lowercase ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE_: Any =seed SCREAMING_SNAKE_CASE_: Dict =seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE_: Optional[Any] =rand_fn(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Any =rand_fn(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =rand_fn(lowercase , lowercase , lowercase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE_: Optional[Any] =gcd(hare - tortoise , lowercase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE_: Dict =hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _UpperCAmelCase = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
36
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self : Union[str, Any] , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=3 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Union[str, Any]=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Union[str, Any] =np.random.default_rng(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =length SCREAMING_SNAKE_CASE_: Union[str, Any] =rng.normal(size=(length,) ).astype(np.floataa ) SCREAMING_SNAKE_CASE_: Tuple =a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ) -> str: '''simple docstring''' return self.length def __getitem__( self : Union[str, Any] , lowerCAmelCase : Any ) -> List[str]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self : Optional[int] , lowerCAmelCase : str=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : Optional[int]=False ) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: int =torch.nn.Parameter(torch.tensor([2, 3] ).float() ) SCREAMING_SNAKE_CASE_: Dict =True def lowerCamelCase__ ( self : str , lowerCAmelCase : Tuple=None ) -> int: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Union[str, Any] =False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self : Union[str, Any] , lowerCAmelCase : Any=0 , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : List[Any]=False ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[str] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.nn.Parameter(torch.tensor(lowerCAmelCase ).float() ) SCREAMING_SNAKE_CASE_: List[Any] =True def lowerCamelCase__ ( self : List[str] , lowerCAmelCase : int=None ) -> Any: '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) SCREAMING_SNAKE_CASE_: Optional[int] =False return x * self.a + self.b def __magic_name__ ( lowercase , lowercase = 16 ): from datasets import load_dataset from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] =AutoTokenizer.from_pretrained("""bert-base-cased""" ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} SCREAMING_SNAKE_CASE_: Any =load_dataset("""csv""" , data_files=lowercase ) SCREAMING_SNAKE_CASE_: Any =datasets["""train"""].unique("""label""" ) SCREAMING_SNAKE_CASE_: List[Any] ={v: i for i, v in enumerate(lowercase )} def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: Dict =tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase , padding="""max_length""" ) if "label" in examples: SCREAMING_SNAKE_CASE_: Optional[int] =[label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE_: List[Any] =datasets.map( lowercase , batched=lowercase , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[int] =DataLoader(tokenized_datasets["""train"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=2 ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(tokenized_datasets["""validation"""] , shuffle=lowercase , collate_fn=lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
36
1
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
"""simple docstring""" def __magic_name__ ( lowercase ): if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) SCREAMING_SNAKE_CASE_: Tuple =[0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE_: Any =1 if upper_limit > 0: SCREAMING_SNAKE_CASE_: List[str] =1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCAmelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(f"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
36
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] ="""huggingface/label-files""" SCREAMING_SNAKE_CASE_: Optional[Any] ="""imagenet-1k-id2label.json""" SCREAMING_SNAKE_CASE_: str =json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE_: Tuple ={int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Optional[Any] ={v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[str] ="""std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" SCREAMING_SNAKE_CASE_: Optional[int] =BitConfig( conv_layer=lowercase , num_labels=1000 , idalabel=lowercase , labelaid=lowercase , ) return config def __magic_name__ ( lowercase ): if "stem.conv" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""blocks""" , """layers""" ) if "head.fc" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): SCREAMING_SNAKE_CASE_: Optional[int] ="""bit.""" + name if "bit" not in name and "classifier" not in name: SCREAMING_SNAKE_CASE_: Any ="""bit.encoder.""" + name return name def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: List[Any] =get_config(lowercase ) # load original model from timm SCREAMING_SNAKE_CASE_: str =create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model SCREAMING_SNAKE_CASE_: int =timm_model.state_dict() for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Tuple =state_dict.pop(lowercase ) SCREAMING_SNAKE_CASE_: Any =val.squeeze() if """head""" in key else val # load HuggingFace model SCREAMING_SNAKE_CASE_: int =BitForImageClassification(lowercase ) model.eval() model.load_state_dict(lowercase ) # create image processor SCREAMING_SNAKE_CASE_: Optional[Any] =create_transform(**resolve_data_config({} , model=lowercase ) ) SCREAMING_SNAKE_CASE_: Tuple =transform.transforms SCREAMING_SNAKE_CASE_: List[str] ={ """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } SCREAMING_SNAKE_CASE_: int =BitImageProcessor( do_resize=lowercase , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) SCREAMING_SNAKE_CASE_: Optional[int] =prepare_img() SCREAMING_SNAKE_CASE_: List[str] =transform(lowercase ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_: List[Any] =processor(lowercase , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase , lowercase ) # verify logits with torch.no_grad(): SCREAMING_SNAKE_CASE_: str =model(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) SCREAMING_SNAKE_CASE_: str =timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase ).mkdir(exist_ok=lowercase ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) _UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
36
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
1
"""simple docstring""" import os import pytest from attr import dataclass _UpperCAmelCase = """us-east-1""" # defaults region @dataclass class a : UpperCamelCase : str UpperCamelCase : List[Any] = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' UpperCamelCase : Optional[int] = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } UpperCamelCase : str = {**hyperparameters, 'max_steps': 1_0_0_0} @property def lowerCamelCase__ ( self : Any ) -> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowerCamelCase__ ( self : List[str] ) -> str: '''simple docstring''' return f'''{self.framework}-transfromers-test''' @property def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowerCamelCase__ ( self : int ) -> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="""class""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =SageMakerTestEnvironment(framework=request.cls.framework )
36
"""simple docstring""" from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class a ( yaml.SafeLoader ): def lowerCamelCase__ ( self : int , lowerCAmelCase : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Any =[self.constructed_objects[key_node] for key_node, _ in node.value] SCREAMING_SNAKE_CASE_: Any =[tuple(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else key for key in keys] SCREAMING_SNAKE_CASE_: Dict =Counter(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =[key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =super().construct_mapping(lowerCAmelCase , deep=lowerCAmelCase ) self._check_no_duplicates_on_constructed_node(lowerCAmelCase ) return mapping def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Dict =list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: SCREAMING_SNAKE_CASE_: Union[str, Any] =full_content[1:].index("""---""" ) + 1 SCREAMING_SNAKE_CASE_: List[str] ="""\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowercase ) class a ( UpperCAmelCase__ ): # class attributes UpperCamelCase : Tuple = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowerCamelCase__ ( cls : List[Any] , lowerCAmelCase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =_split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCAmelCase ) else: return cls() def lowerCamelCase__ ( self : Any , lowerCAmelCase : Path ) -> List[str]: '''simple docstring''' if path.exists(): with open(lowerCAmelCase , encoding="""utf-8""" ) as readme_file: SCREAMING_SNAKE_CASE_: str =readme_file.read() else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Tuple =self._to_readme(lowerCAmelCase ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =_split_yaml_from_readme(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] ="""---\n""" + self.to_yaml_string() + """---\n""" + content else: SCREAMING_SNAKE_CASE_: List[Any] ="""---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowerCamelCase__ ( cls : Optional[int] , lowerCAmelCase : str ) -> "DatasetMetadata": '''simple docstring''' SCREAMING_SNAKE_CASE_: int =yaml.load(lowerCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields SCREAMING_SNAKE_CASE_: List[Any] ={ (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCAmelCase , allow_unicode=lowerCAmelCase , encoding="""utf-8""" , ).decode("""utf-8""" ) _UpperCAmelCase = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase = ap.parse_args() _UpperCAmelCase = Path(args.readme_filepath) _UpperCAmelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
36
1
"""simple docstring""" import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _UpperCAmelCase = logging.getLogger(__name__) def __magic_name__ ( lowercase=2 , lowercase=3 , lowercase=16 , lowercase = 10 , lowercase = 2 ): def get_dataset(lowercase ): SCREAMING_SNAKE_CASE_: Dict =torch.randn(batch_size * n_batches , 1 ) return TensorDataset(lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) SCREAMING_SNAKE_CASE_: Dict =get_dataset(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =get_dataset(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) SCREAMING_SNAKE_CASE_: Optional[Any] =DataLoader(lowercase , shuffle=lowercase , batch_size=lowercase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None ): SCREAMING_SNAKE_CASE_: int =[] for epoch in range(lowercase ): # Train quickly model.train() for batch in dataloader: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =batch SCREAMING_SNAKE_CASE_: Dict =model(lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.nn.functional.mse_loss(lowercase , lowercase ) accelerator.backward(lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a ( nn.Module ): def __init__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_: List[Any] =nn.Parameter(torch.randn(1 ) ) SCREAMING_SNAKE_CASE_: Tuple =nn.Parameter(torch.randn(1 ) ) def lowerCamelCase__ ( self : Dict , lowerCAmelCase : Any ) -> Tuple: '''simple docstring''' return x * self.a + self.b class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_: List[Any] =DummyModel() SCREAMING_SNAKE_CASE_: List[Any] =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =dummy_dataloaders() SCREAMING_SNAKE_CASE_: Union[str, Any] =ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase , automatic_checkpoint_naming=lowerCAmelCase ) # Train baseline SCREAMING_SNAKE_CASE_: Dict =Accelerator(project_config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_: str =DummyModel() SCREAMING_SNAKE_CASE_: List[str] =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =dummy_dataloaders() # Train baseline SCREAMING_SNAKE_CASE_: Dict =Accelerator() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save initial SCREAMING_SNAKE_CASE_: Union[str, Any] =os.path.join(lowerCAmelCase , """initial""" ) accelerator.save_state(lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): Tuple =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: int =optimizer.state_dict() SCREAMING_SNAKE_CASE_: Optional[Any] =train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): int =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: str =optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE_: Tuple =DummyModel() SCREAMING_SNAKE_CASE_: Tuple =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =dummy_dataloaders() SCREAMING_SNAKE_CASE_: List[Any] =Accelerator() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) accelerator.load_state(lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): int =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: Union[str, Any] =optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =train(2 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save everything SCREAMING_SNAKE_CASE_: Any =os.path.join(lowerCAmelCase , """checkpoint""" ) accelerator.save_state(lowerCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase ) test_rands += train(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: List[str] =optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_: Optional[int] =DummyModel() SCREAMING_SNAKE_CASE_: Any =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =dummy_dataloaders() SCREAMING_SNAKE_CASE_: Optional[Any] =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase ) # Train baseline SCREAMING_SNAKE_CASE_: Dict =Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save initial accelerator.save_state() ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): Optional[Any] =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: str =optimizer.state_dict() SCREAMING_SNAKE_CASE_: Any =train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): Any =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: Any =optimizer.state_dict() # Train partially set_seed(42 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =DummyModel() SCREAMING_SNAKE_CASE_: Any =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =dummy_dataloaders() SCREAMING_SNAKE_CASE_: List[Any] =ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) accelerator.load_state(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): Union[str, Any] =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: Union[str, Any] =optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =train(2 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_1""" ) ) test_rands += train(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): Optional[Any] =model.a.item(), model.b.item() SCREAMING_SNAKE_CASE_: int =optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =torch.tensor([1, 2, 3] ) SCREAMING_SNAKE_CASE_: Tuple =torch.tensor([2, 3, 4] ) SCREAMING_SNAKE_CASE_: int =DummyModel() SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.optim.Adam(net.parameters() ) SCREAMING_SNAKE_CASE_: Optional[Any] =Accelerator() with self.assertRaises(lowerCAmelCase ) as ve: accelerator.register_for_checkpointing(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =str(ve.exception ) self.assertTrue("""Item at index 0""" in message ) self.assertTrue("""Item at index 1""" in message ) self.assertFalse("""Item at index 2""" in message ) self.assertFalse("""Item at index 3""" in message ) def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_: List[str] =DummyModel() SCREAMING_SNAKE_CASE_: Optional[Any] =torch.optim.Adam(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE_: int =torch.optim.lr_scheduler.StepLR(lowerCAmelCase , step_size=1 , gamma=0.9_9 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =dummy_dataloaders() SCREAMING_SNAKE_CASE_: Tuple =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase ) # Train baseline SCREAMING_SNAKE_CASE_: Dict =Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save initial accelerator.save_state() SCREAMING_SNAKE_CASE_: List[Any] =scheduler.state_dict() train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertNotEqual(lowerCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) self.assertEqual(lowerCAmelCase , scheduler.state_dict() ) def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) SCREAMING_SNAKE_CASE_: Any =DummyModel() SCREAMING_SNAKE_CASE_: Optional[int] =ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase , total_limit=2 ) # Train baseline SCREAMING_SNAKE_CASE_: Union[str, Any] =Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.prepare(lowerCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_9""" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , """checkpoints""" , """checkpoint_10""" ) ) ) @require_cuda def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =["""torchrun""", f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": _UpperCAmelCase = """/tmp/accelerate/state_checkpointing""" _UpperCAmelCase = DummyModel() _UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1e-3) _UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) _UpperCAmelCase, _UpperCAmelCase = dummy_dataloaders() _UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _UpperCAmelCase, _UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _UpperCAmelCase = group["""params"""][0].device break assert param_device.type == accelerator.device.type _UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: _UpperCAmelCase = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: _UpperCAmelCase = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
36
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __magic_name__ ( lowercase ): return (data["data"], data["target"]) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =XGBClassifier() classifier.fit(lowercase , lowercase ) return classifier def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =data_handling(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =train_test_split( lowercase , lowercase , test_size=0.25 ) SCREAMING_SNAKE_CASE_: Tuple =iris["""target_names"""] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_: Optional[int] =xgboost(lowercase , lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( lowercase , lowercase , lowercase , display_labels=lowercase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
36
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __magic_name__ ( lowercase ): def wrapper(*lowercase , **lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =timeit.default_timer() SCREAMING_SNAKE_CASE_: Tuple =func(*lowercase , **lowercase ) SCREAMING_SNAKE_CASE_: str =timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE_: str =func.__name__ return wrapper def __magic_name__ ( lowercase , lowercase=100 , lowercase=None ): SCREAMING_SNAKE_CASE_: int =[] SCREAMING_SNAKE_CASE_: Union[str, Any] =seq_shapes or {} for i in range(lowercase ): SCREAMING_SNAKE_CASE_: List[Any] ={} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowercase , _ArrayXD ): SCREAMING_SNAKE_CASE_: Dict =np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowercase , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE_: int ="""The small grey turtle was surprisingly fast when challenged.""" else: SCREAMING_SNAKE_CASE_: Optional[Any] =np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowercase , datasets.Sequence ): while isinstance(lowercase , datasets.Sequence ): SCREAMING_SNAKE_CASE_: Union[str, Any] =v.feature SCREAMING_SNAKE_CASE_: Optional[int] =seq_shapes[k] SCREAMING_SNAKE_CASE_: Any =np.random.rand(*lowercase ).astype(v.dtype ) SCREAMING_SNAKE_CASE_: Tuple =data dummy_data.append((i, example) ) return dummy_data def __magic_name__ ( lowercase , lowercase , lowercase=100 , lowercase=None ): SCREAMING_SNAKE_CASE_: Any =generate_examples(lowercase , num_examples=lowercase , seq_shapes=lowercase ) with ArrowWriter(features=lowercase , path=lowercase ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE_: Tuple =features.encode_example(lowercase ) writer.write(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) SCREAMING_SNAKE_CASE_: Tuple =datasets.Dataset.from_file(filename=lowercase , info=datasets.DatasetInfo(features=lowercase ) ) return dataset
36
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Optional[Any] =[] SCREAMING_SNAKE_CASE_: List[str] =[] SCREAMING_SNAKE_CASE_: Any =[] for rt in rc.restypes: SCREAMING_SNAKE_CASE_: Optional[int] =rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE_: Any ={name: i for i, name in enumerate(lowercase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor( lowercase , dtype=torch.intaa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor( lowercase , dtype=torch.floataa , device=protein["""aatype"""].device , ) SCREAMING_SNAKE_CASE_: Optional[Any] =protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Any =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: Tuple =residx_atomaa_mask SCREAMING_SNAKE_CASE_: Dict =residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE_: Dict =restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE_: Optional[int] =residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE_: Optional[int] =torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE_: int =rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE_: Any =rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE_: Optional[int] =rc.atom_order[atom_name] SCREAMING_SNAKE_CASE_: Dict =1 SCREAMING_SNAKE_CASE_: List[str] =restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE_: List[Any] =residx_atomaa_mask return protein def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: Any =tree_map(lambda lowercase : torch.tensor(lowercase , device=batch["""aatype"""].device ) , lowercase , np.ndarray ) SCREAMING_SNAKE_CASE_: int =tensor_tree_map(lambda lowercase : np.array(lowercase ) , make_atomaa_masks(lowercase ) ) return out
36
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _UpperCAmelCase = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class a ( UpperCAmelCase__ ): UpperCamelCase : Any = 'albert' def __init__( self : Dict , lowerCAmelCase : List[str]=3_0000 , lowerCAmelCase : List[Any]=128 , lowerCAmelCase : List[str]=4096 , lowerCAmelCase : str=12 , lowerCAmelCase : str=1 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Dict=1_6384 , lowerCAmelCase : int=1 , lowerCAmelCase : str="gelu_new" , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : str=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[Any]=0.0_2 , lowerCAmelCase : Union[str, Any]=1E-12 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[Any]=0 , lowerCAmelCase : int=2 , lowerCAmelCase : Optional[int]=3 , **lowerCAmelCase : int , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =embedding_size SCREAMING_SNAKE_CASE_: Optional[int] =hidden_size SCREAMING_SNAKE_CASE_: Tuple =num_hidden_layers SCREAMING_SNAKE_CASE_: Any =num_hidden_groups SCREAMING_SNAKE_CASE_: List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_: List[Any] =inner_group_num SCREAMING_SNAKE_CASE_: Optional[int] =hidden_act SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Any =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int =max_position_embeddings SCREAMING_SNAKE_CASE_: Any =type_vocab_size SCREAMING_SNAKE_CASE_: int =initializer_range SCREAMING_SNAKE_CASE_: List[Any] =layer_norm_eps SCREAMING_SNAKE_CASE_: Dict =classifier_dropout_prob SCREAMING_SNAKE_CASE_: int =position_embedding_type class a ( UpperCAmelCase__ ): @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str ={0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE_: Dict ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _UpperCAmelCase = ["""text""", """image""", """audio"""] def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =[] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase , lowercase ): inputs.append(create_inputs(lowercase ) ) else: raise ValueError(f'''Invalid type requested: {input_type}''' ) return inputs def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =[] for output in outputs: if isinstance(lowercase , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(lowercase , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(lowercase , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(f'''Invalid output: {output}''' ) return output_types @is_tool_test class a : def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) SCREAMING_SNAKE_CASE_: Optional[int] =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE_: Any =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: List[Any] =self.tool(*lowerCAmelCase ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE_: str =[outputs] self.assertListEqual(output_types(lowerCAmelCase ) , self.tool.outputs ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Tuple =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: int =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase , self.tool.outputs ): SCREAMING_SNAKE_CASE_: int =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE_: Union[str, Any] =[] for _input, input_type in zip(lowerCAmelCase , self.tool.inputs ): if isinstance(lowerCAmelCase , lowerCAmelCase ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE_: Dict =self.tool(*lowerCAmelCase ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] =[outputs] self.assertEqual(len(lowerCAmelCase ) , len(self.tool.outputs ) )
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black _UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _UpperCAmelCase = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) SCREAMING_SNAKE_CASE_: Any =self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def lowerCamelCase__ ( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple ="""src/diffusers""" shutil.rmtree(self.diffusers_dir ) def lowerCamelCase__ ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE_: List[Any] =comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE_: Any =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE_: Tuple =black.format_str(lowerCAmelCase , mode=lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =os.path.join(self.diffusers_dir , """new_code.py""" ) with open(lowerCAmelCase , """w""" , newline="""\n""" ) as f: f.write(lowerCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase ) with open(lowerCAmelCase , """r""" ) as f: self.assertTrue(f.read() , lowerCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE_: Dict ="""TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , lowerCAmelCase , lowerCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase ) , )
36
"""simple docstring""" import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str]=13 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=224 , lowerCAmelCase : List[str]=1000 , lowerCAmelCase : Optional[Any]=[3, 3, 6, 4] , lowerCAmelCase : int=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =parent SCREAMING_SNAKE_CASE_: Any =batch_size SCREAMING_SNAKE_CASE_: Tuple =num_channels SCREAMING_SNAKE_CASE_: Union[str, Any] =is_training SCREAMING_SNAKE_CASE_: Tuple =use_labels SCREAMING_SNAKE_CASE_: Optional[int] =hidden_dropout_prob SCREAMING_SNAKE_CASE_: Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =num_labels SCREAMING_SNAKE_CASE_: int =image_size SCREAMING_SNAKE_CASE_: Optional[Any] =layer_depths SCREAMING_SNAKE_CASE_: List[Any] =embed_dims def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: List[Any] =None if self.use_labels: SCREAMING_SNAKE_CASE_: List[str] =ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_: Tuple =self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=lowerCAmelCase , layer_scale_init_value=1E-5 , ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =SwiftFormerModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Any =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.num_labels SCREAMING_SNAKE_CASE_: Dict =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE_: int =SwiftFormerForImageClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_: Dict =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' ((SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_) , (SCREAMING_SNAKE_CASE_)): str =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_: Tuple ={"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase : Optional[int] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () UpperCamelCase : Tuple = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE_: Union[str, Any] =ConfigTester( self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def lowerCamelCase__ ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: int =model_class(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[Any] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Any =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Tuple =["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def lowerCamelCase__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase ) @slow def lowerCamelCase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[Any] =SwiftFormerModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def lowerCamelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_: Optional[Any] =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: List[str] =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =outputs.hidden_states SCREAMING_SNAKE_CASE_: List[Any] =8 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Any =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' def _config_zero_init(lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_: Dict =copy.deepcopy(lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(lowerCAmelCase , lowerCAmelCase , 1E-10 ) if isinstance(getattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , lowerCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple =_config_zero_init(getattr(lowerCAmelCase , lowerCAmelCase ) ) setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return configs_no_init SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_: List[Any] =_config_zero_init(lowerCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Any =model_class(config=lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[Any] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: str =self.default_image_processor SCREAMING_SNAKE_CASE_: int =prepare_img() SCREAMING_SNAKE_CASE_: Union[str, Any] =image_processor(images=lowerCAmelCase , return_tensors="""pt""" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Dict =model(**lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Optional[Any] =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] =torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4 ) )
36
1
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE_: Optional[Any] =cst_fwd.get(lowercase , np.inf ) SCREAMING_SNAKE_CASE_: Optional[Any] =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE_: List[str] =new_cost_f SCREAMING_SNAKE_CASE_: Any =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE_: Union[str, Any] =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =-1 SCREAMING_SNAKE_CASE_: List[str] =set() SCREAMING_SNAKE_CASE_: List[Any] =set() SCREAMING_SNAKE_CASE_: int ={source: 0} SCREAMING_SNAKE_CASE_: List[str] ={destination: 0} SCREAMING_SNAKE_CASE_: Dict ={source: None} SCREAMING_SNAKE_CASE_: int ={destination: None} SCREAMING_SNAKE_CASE_: PriorityQueue[Any] =PriorityQueue() SCREAMING_SNAKE_CASE_: PriorityQueue[Any] =PriorityQueue() SCREAMING_SNAKE_CASE_: Tuple =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =queue_forward.get() visited_forward.add(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =queue_backward.get() visited_backward.add(lowercase ) SCREAMING_SNAKE_CASE_: Dict =pass_and_relaxation( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) SCREAMING_SNAKE_CASE_: Tuple =pass_and_relaxation( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE_: List[str] =shortest_distance return shortest_path_distance _UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } _UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
36
"""simple docstring""" from math import pi def __magic_name__ ( lowercase , lowercase ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
36
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = {"""facebook/bart-base""": BartForConditionalGeneration} _UpperCAmelCase = {"""facebook/bart-base""": BartTokenizer} def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: int =argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowercase , default=lowercase , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowercase , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowercase , default=lowercase , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowercase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase , ) parser.add_argument( """--config_name""" , type=lowercase , default=lowercase , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowercase , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowercase , default=lowercase , help="""Where to store the final ONNX file.""" ) SCREAMING_SNAKE_CASE_: str =parser.parse_args() return args def __magic_name__ ( lowercase , lowercase="cpu" ): SCREAMING_SNAKE_CASE_: Optional[int] =model_dict[model_name].from_pretrained(lowercase ).to(lowercase ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer_dict[model_name].from_pretrained(lowercase ) if model_name in ["facebook/bart-base"]: SCREAMING_SNAKE_CASE_: Any =0 SCREAMING_SNAKE_CASE_: List[Any] =None SCREAMING_SNAKE_CASE_: Any =0 return huggingface_model, tokenizer def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): model.eval() SCREAMING_SNAKE_CASE_: Optional[int] =None SCREAMING_SNAKE_CASE_: int =torch.jit.script(BARTBeamSearchGenerator(lowercase ) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] ="""My friends are cool but they eat too many carbs.""" SCREAMING_SNAKE_CASE_: Union[str, Any] =tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) SCREAMING_SNAKE_CASE_: Union[str, Any] =model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowercase , max_length=lowercase , early_stopping=lowercase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowercase , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowercase , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowercase , ) logger.info("""Model exported to {}""".format(lowercase ) ) SCREAMING_SNAKE_CASE_: Tuple =remove_dup_initializers(os.path.abspath(lowercase ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowercase ) ) SCREAMING_SNAKE_CASE_: Any =onnxruntime.InferenceSession(lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =ort_sess.run( lowercase , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowercase ), """max_length""": np.array(lowercase ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Tuple =parse_args() SCREAMING_SNAKE_CASE_: Optional[int] =5 SCREAMING_SNAKE_CASE_: List[str] =4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() SCREAMING_SNAKE_CASE_: Dict =torch.device(args.device ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =load_model_tokenizer(args.model_name_or_path , lowercase ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowercase ) if args.max_length: SCREAMING_SNAKE_CASE_: str =args.max_length if args.num_beams: SCREAMING_SNAKE_CASE_: List[str] =args.num_beams if args.output_file_path: SCREAMING_SNAKE_CASE_: List[Any] =args.output_file_path else: SCREAMING_SNAKE_CASE_: int ="""BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowercase , lowercase , lowercase , lowercase , lowercase ) if __name__ == "__main__": main()
36
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Dict ) -> str: '''simple docstring''' super().tearDown() gc.collect() def lowerCamelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Union[str, Any] ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Any =jax.device_count() SCREAMING_SNAKE_CASE_: Dict =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Dict =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Dict =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[int] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_2_3_8, 0.4_4_1_4, 0.4_3_9_5, 0.4_4_5_3, 0.4_6_2_9, 0.4_5_9_0, 0.4_5_3_1, 0.4_5_5_0_8, 0.4_5_1_2] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: int ="""stabilityai/stable-diffusion-2""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) SCREAMING_SNAKE_CASE_: Optional[int] =scheduler_params SCREAMING_SNAKE_CASE_: Tuple ="""A painting of a squirrel eating a burger""" SCREAMING_SNAKE_CASE_: Union[str, Any] =jax.device_count() SCREAMING_SNAKE_CASE_: Optional[Any] =num_samples * [prompt] SCREAMING_SNAKE_CASE_: List[Any] =sd_pipe.prepare_inputs(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =replicate(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Optional[int] =shard(lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Any =jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_: Any =jax.random.split(lowerCAmelCase , jax.device_count() ) SCREAMING_SNAKE_CASE_: Tuple =sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) SCREAMING_SNAKE_CASE_: str =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) SCREAMING_SNAKE_CASE_: Any =images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE_: Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE_: Optional[int] =jnp.array([0.4_3_3_6, 0.4_2_9_6_9, 0.4_4_5_3, 0.4_1_9_9, 0.4_2_9_7, 0.4_5_3_1, 0.4_4_3_4, 0.4_4_3_4, 0.4_2_9_7] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
36
1
"""simple docstring""" from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
36
"""simple docstring""" def __magic_name__ ( lowercase = 200_0000 ): SCREAMING_SNAKE_CASE_: List[Any] =[0 for i in range(n + 1 )] SCREAMING_SNAKE_CASE_: Union[str, Any] =1 SCREAMING_SNAKE_CASE_: Optional[Any] =1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =1 SCREAMING_SNAKE_CASE_: Dict =0 for i in range(lowercase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _UpperCAmelCase = parser.parse_args() if args.model_type == "bert": _UpperCAmelCase = BertForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} for w in ["word_embeddings", "position_embeddings"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _UpperCAmelCase = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _UpperCAmelCase = state_dict["""cls.predictions.decoder.weight"""] _UpperCAmelCase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f"""cls.predictions.transform.dense.{w}"""] _UpperCAmelCase = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
36
1
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( lowercase , lowercase , lowercase ): return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def __magic_name__ ( lowercase , lowercase , lowercase , lowercase="attention" ): SCREAMING_SNAKE_CASE_: Tuple =np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_: Tuple =k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE_: str =np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_: Dict =o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE_: Tuple =np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_: Any =q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE_: Dict =np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) SCREAMING_SNAKE_CASE_: List[str] =v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=False ): if split_mlp_wi: SCREAMING_SNAKE_CASE_: List[str] =params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_: List[Any] =params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_: Any =(wi_a, wi_a) else: SCREAMING_SNAKE_CASE_: str =params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] SCREAMING_SNAKE_CASE_: Optional[Any] =params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def __magic_name__ ( lowercase , *, lowercase , lowercase , lowercase = False ): SCREAMING_SNAKE_CASE_: List[Any] =traverse_util.flatten_dict(variables["""target"""] ) SCREAMING_SNAKE_CASE_: Optional[int] ={"""/""".join(lowercase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE_: Optional[int] ="""encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase ) SCREAMING_SNAKE_CASE_: Tuple =collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE_: List[Any] =old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_: int =tax_layer_norm_lookup(lowercase , lowercase , """encoder""" , """pre_attention_layer_norm""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =tax_attention_lookup(lowercase , lowercase , """encoder""" , """attention""" ) SCREAMING_SNAKE_CASE_: List[Any] =layer_norm SCREAMING_SNAKE_CASE_: Optional[Any] =k.T SCREAMING_SNAKE_CASE_: Tuple =o.T SCREAMING_SNAKE_CASE_: Any =q.T SCREAMING_SNAKE_CASE_: Optional[int] =v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE_: Optional[Any] =tax_layer_norm_lookup(lowercase , lowercase , """encoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =tax_mlp_lookup(lowercase , lowercase , """encoder""" , lowercase ) SCREAMING_SNAKE_CASE_: List[str] =layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_: Dict =wi[0].T SCREAMING_SNAKE_CASE_: Optional[int] =wi[1].T else: SCREAMING_SNAKE_CASE_: Optional[Any] =wi.T SCREAMING_SNAKE_CASE_: Tuple =wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_: List[str] =tax_relpos_bias_lookup( lowercase , lowercase , """encoder""" ).T SCREAMING_SNAKE_CASE_: List[Any] =old["""encoder/encoder_norm/scale"""] if not scalable_attention: SCREAMING_SNAKE_CASE_: List[Any] =tax_relpos_bias_lookup( lowercase , 0 , """encoder""" ).T SCREAMING_SNAKE_CASE_: Any =tax_relpos_bias_lookup( lowercase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowercase ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_: int =tax_layer_norm_lookup(lowercase , lowercase , """decoder""" , """pre_self_attention_layer_norm""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =tax_attention_lookup(lowercase , lowercase , """decoder""" , """self_attention""" ) SCREAMING_SNAKE_CASE_: Dict =layer_norm SCREAMING_SNAKE_CASE_: str =k.T SCREAMING_SNAKE_CASE_: Optional[Any] =o.T SCREAMING_SNAKE_CASE_: Union[str, Any] =q.T SCREAMING_SNAKE_CASE_: Optional[Any] =v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE_: Optional[int] =tax_layer_norm_lookup(lowercase , lowercase , """decoder""" , """pre_cross_attention_layer_norm""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[Any] =tax_attention_lookup(lowercase , lowercase , """decoder""" , """encoder_decoder_attention""" ) SCREAMING_SNAKE_CASE_: List[Any] =layer_norm SCREAMING_SNAKE_CASE_: Union[str, Any] =k.T SCREAMING_SNAKE_CASE_: Tuple =o.T SCREAMING_SNAKE_CASE_: List[Any] =q.T SCREAMING_SNAKE_CASE_: Dict =v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE_: int =tax_layer_norm_lookup(lowercase , lowercase , """decoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =tax_mlp_lookup(lowercase , lowercase , """decoder""" , lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] =layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_: int =wi[0].T SCREAMING_SNAKE_CASE_: Dict =wi[1].T else: SCREAMING_SNAKE_CASE_: List[Any] =wi.T SCREAMING_SNAKE_CASE_: Union[str, Any] =wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_: Any =tax_relpos_bias_lookup(lowercase , lowercase , """decoder""" ).T SCREAMING_SNAKE_CASE_: str =old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE_: Dict =old["""decoder/logits_dense/kernel"""].T return new def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[str] =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_: Union[str, Any] =state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_: int =state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) SCREAMING_SNAKE_CASE_: Union[str, Any] =state_dict["""shared.weight"""] return state_dict def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: str =checkpoints.load_tax_checkpoint(lowercase ) SCREAMING_SNAKE_CASE_: Dict =convert_tax_to_pytorch( lowercase , num_layers=config.num_layers , is_encoder_only=lowercase , scalable_attention=lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =make_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase , strict=lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase = False , lowercase = False , ): SCREAMING_SNAKE_CASE_: Dict =MTaConfig.from_json_file(lowercase ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE_: Dict =UMTaEncoderModel(lowercase ) else: SCREAMING_SNAKE_CASE_: Dict =UMTaForConditionalGeneration(lowercase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase , lowercase , lowercase , lowercase , lowercase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase ) print("""Done""" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) _UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
36
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: str =SwinConfig(image_size=192 ) if "base" in model_name: SCREAMING_SNAKE_CASE_: str =6 SCREAMING_SNAKE_CASE_: Any =128 SCREAMING_SNAKE_CASE_: Optional[Any] =(2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Any =(4, 8, 16, 32) elif "large" in model_name: SCREAMING_SNAKE_CASE_: Optional[int] =12 SCREAMING_SNAKE_CASE_: Optional[int] =192 SCREAMING_SNAKE_CASE_: int =(2, 2, 18, 2) SCREAMING_SNAKE_CASE_: Any =(6, 12, 24, 48) else: raise ValueError("""Model not supported, only supports base and large variants""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =window_size SCREAMING_SNAKE_CASE_: Union[str, Any] =embed_dim SCREAMING_SNAKE_CASE_: Tuple =depths SCREAMING_SNAKE_CASE_: str =num_heads return config def __magic_name__ ( lowercase ): if "encoder.mask_token" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""encoder.mask_token""" , """embeddings.mask_token""" ) if "encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""encoder.patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""encoder.patch_embed.norm""" , """embeddings.norm""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""mlp.fc2""" , """output.dense""" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE_: List[str] ="""layernorm.weight""" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE_: int ="""layernorm.bias""" if "decoder" in name: pass else: SCREAMING_SNAKE_CASE_: str ="""swin.""" + name return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: int =orig_state_dict.pop(lowercase ) if "attn_mask" in key: pass elif "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: List[Any] =int(key_split[2] ) SCREAMING_SNAKE_CASE_: Tuple =int(key_split[4] ) SCREAMING_SNAKE_CASE_: Optional[Any] =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE_: Any =val[:dim, :] SCREAMING_SNAKE_CASE_: Any =val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] else: SCREAMING_SNAKE_CASE_: Tuple =val[ :dim ] SCREAMING_SNAKE_CASE_: Optional[Any] =val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE_: Union[str, Any] =val[ -dim: ] else: SCREAMING_SNAKE_CASE_: str =val return orig_state_dict def __magic_name__ ( lowercase , lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =torch.load(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Tuple =get_swin_config(lowercase ) SCREAMING_SNAKE_CASE_: str =SwinForMaskedImageModeling(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE_: Any ="""http://images.cocodataset.org/val2017/000000039769.jpg""" SCREAMING_SNAKE_CASE_: Dict =ViTImageProcessor(size={"""height""": 192, """width""": 192} ) SCREAMING_SNAKE_CASE_: int =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: Tuple =image_processor(images=lowercase , return_tensors="""pt""" ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any =model(**lowercase ).logits print(outputs.keys() ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
36
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _UpperCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _UpperCAmelCase = """main""" # Default branch name _UpperCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _UpperCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _UpperCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _UpperCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __magic_name__ ( ): print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __magic_name__ ( ): print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a ( unittest.TestCase ): def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a ( unittest.TestCase ): @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : Optional[int] ) -> Any: '''simple docstring''' with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict ) -> Any: '''simple docstring''' with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def lowerCamelCase__ ( self : str , lowerCAmelCase : int ) -> Tuple: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def lowerCamelCase__ ( self : int ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_tf def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase ) , ["""start_positions""", """end_positions"""] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , ["""labels"""] ) @require_flax def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) self.assertEqual(find_labels(lowerCAmelCase ) , [] ) class a ( UpperCAmelCase__ ): pass self.assertEqual(find_labels(lowerCAmelCase ) , [] )
36
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __magic_name__ ( lowercase , lowercase , lowercase=0 ): # Format the message. if name is None: SCREAMING_SNAKE_CASE_: Any =None else: SCREAMING_SNAKE_CASE_: str =""".""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" SCREAMING_SNAKE_CASE_: Optional[int] =fmt.format(lowercase ) # Print and recurse (if needed). if isinstance(lowercase , lowercase ): if msg is not None: print(lowercase ) for k in val.keys(): recursive_print(lowercase , val[k] , spaces + 2 ) elif isinstance(lowercase , torch.Tensor ): print(lowercase , """:""" , val.size() ) else: print(lowercase , """:""" , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. SCREAMING_SNAKE_CASE_: Union[str, Any] =param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] SCREAMING_SNAKE_CASE_: Dict =(num_heads, hidden_size, num_splits) + input_shape[1:] SCREAMING_SNAKE_CASE_: Any =param.view(*lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =param.transpose(0 , 2 ) SCREAMING_SNAKE_CASE_: Any =param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] SCREAMING_SNAKE_CASE_: str =(num_heads, num_splits, hidden_size) + input_shape[1:] SCREAMING_SNAKE_CASE_: int =param.view(*lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =param.transpose(0 , 1 ).contiguous() SCREAMING_SNAKE_CASE_: Optional[Any] =param.view(*lowercase ) return param def __magic_name__ ( lowercase , lowercase , lowercase ): # The converted output model. SCREAMING_SNAKE_CASE_: int ={} # old versions did not store training args SCREAMING_SNAKE_CASE_: Tuple =input_state_dict.get("""args""" , lowercase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) SCREAMING_SNAKE_CASE_: List[str] =ds_args.padded_vocab_size SCREAMING_SNAKE_CASE_: Optional[int] =ds_args.max_position_embeddings SCREAMING_SNAKE_CASE_: Dict =ds_args.hidden_size SCREAMING_SNAKE_CASE_: Tuple =ds_args.num_layers SCREAMING_SNAKE_CASE_: Union[str, Any] =ds_args.num_attention_heads SCREAMING_SNAKE_CASE_: Optional[int] =ds_args.ffn_hidden_size # pprint(config) # The number of heads. SCREAMING_SNAKE_CASE_: List[Any] =config.n_head # The hidden_size per head. SCREAMING_SNAKE_CASE_: Optional[Any] =config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): SCREAMING_SNAKE_CASE_: str =input_state_dict["""checkpoint_version"""] else: SCREAMING_SNAKE_CASE_: Any =0.0 # The model. SCREAMING_SNAKE_CASE_: Tuple =input_state_dict["""model"""] # The language model. SCREAMING_SNAKE_CASE_: List[str] =model["""language_model"""] # The embeddings. SCREAMING_SNAKE_CASE_: Optional[int] =lm["""embedding"""] # The word embeddings. SCREAMING_SNAKE_CASE_: Any =embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. SCREAMING_SNAKE_CASE_: Optional[int] =word_embeddings[: config.vocab_size, :] SCREAMING_SNAKE_CASE_: Tuple =word_embeddings # The position embeddings. SCREAMING_SNAKE_CASE_: Dict =embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] SCREAMING_SNAKE_CASE_: Optional[Any] =pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. SCREAMING_SNAKE_CASE_: Dict =pos_embeddings # The transformer. SCREAMING_SNAKE_CASE_: Dict =lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. SCREAMING_SNAKE_CASE_: str =re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. SCREAMING_SNAKE_CASE_: List[str] ={ """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. SCREAMING_SNAKE_CASE_: List[Any] =layer_re.match(lowercase ) # Stop if that's not a layer if m is None: break # The index of the layer. SCREAMING_SNAKE_CASE_: Any =int(m.group(1 ) ) # The name of the operation. SCREAMING_SNAKE_CASE_: List[Any] =m.group(2 ) # Is it a weight or a bias? SCREAMING_SNAKE_CASE_: Tuple =m.group(3 ) # The name of the layer. SCREAMING_SNAKE_CASE_: str =f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): SCREAMING_SNAKE_CASE_: Optional[int] ="""ln_1""" if op_name.startswith("""input""" ) else """ln_2""" SCREAMING_SNAKE_CASE_: Optional[int] =val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. SCREAMING_SNAKE_CASE_: str =torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: Any =causal_mask # Insert a "dummy" tensor for masked_bias. SCREAMING_SNAKE_CASE_: int =torch.tensor(-1e4 , dtype=torch.floataa ) SCREAMING_SNAKE_CASE_: Tuple =masked_bias SCREAMING_SNAKE_CASE_: Tuple =fix_query_key_value_ordering(lowercase , lowercase , 3 , lowercase , lowercase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. SCREAMING_SNAKE_CASE_: int =out_val.transpose(0 , 1 ).contiguous() # Store. SCREAMING_SNAKE_CASE_: List[Any] =out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": SCREAMING_SNAKE_CASE_: List[Any] =fix_query_key_value_ordering(lowercase , lowercase , 3 , lowercase , lowercase ) # Store. No change of shape. SCREAMING_SNAKE_CASE_: Tuple =out_val # Transpose the weights. elif weight_or_bias == "weight": SCREAMING_SNAKE_CASE_: Dict =megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE_: List[Any] =val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": SCREAMING_SNAKE_CASE_: Any =megatron_to_transformers[op_name] SCREAMING_SNAKE_CASE_: str =val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. SCREAMING_SNAKE_CASE_: str =transformer["""final_layernorm.weight"""] SCREAMING_SNAKE_CASE_: List[str] =transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. SCREAMING_SNAKE_CASE_: Tuple =word_embeddings # It should be done! return output_state_dict def __magic_name__ ( ): # Create the argument parser. SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=lowercase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=lowercase , help="""An optional config json file describing the pre-trained model.""" , ) SCREAMING_SNAKE_CASE_: Optional[int] =parser.parse_args() # Extract the basename. SCREAMING_SNAKE_CASE_: str =os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.load(lowercase , map_location="""cpu""" ) else: SCREAMING_SNAKE_CASE_: int =torch.load(args.path_to_checkpoint , map_location="""cpu""" ) SCREAMING_SNAKE_CASE_: int =input_state_dict.get("""args""" , lowercase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: SCREAMING_SNAKE_CASE_: int ="""gelu_fast""" elif ds_args.openai_gelu: SCREAMING_SNAKE_CASE_: Union[str, Any] ="""gelu_new""" else: SCREAMING_SNAKE_CASE_: int ="""gelu""" else: # in the very early days this used to be "gelu_new" SCREAMING_SNAKE_CASE_: Any ="""gelu_new""" # Spell out all parameters in case the defaults change. SCREAMING_SNAKE_CASE_: Any =GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=lowercase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowercase , summary_activation=lowercase , summary_proj_to_labels=lowercase , summary_first_dropout=0.1 , scale_attn_weights=lowercase , use_cache=lowercase , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: SCREAMING_SNAKE_CASE_: List[str] =GPTaConfig.from_json_file(args.config_file ) SCREAMING_SNAKE_CASE_: Union[str, Any] =["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) SCREAMING_SNAKE_CASE_: Optional[int] =convert_megatron_checkpoint(lowercase , lowercase , lowercase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowercase , lowercase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: SCREAMING_SNAKE_CASE_: List[Any] =ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": SCREAMING_SNAKE_CASE_: Dict ="""gpt2""" elif tokenizer_type == "PretrainedFromHF": SCREAMING_SNAKE_CASE_: str =ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: SCREAMING_SNAKE_CASE_: List[str] ="""gpt2""" SCREAMING_SNAKE_CASE_: Tuple =AutoTokenizer.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE_: str =type(lowercase ).__name__ SCREAMING_SNAKE_CASE_: List[str] =tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowercase ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowercase ) # Store the state_dict to file. SCREAMING_SNAKE_CASE_: Tuple =os.path.join(lowercase , """pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowercase , lowercase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
36
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _UpperCAmelCase = """true""" def __magic_name__ ( lowercase , lowercase=82 , lowercase=16 ): set_seed(42 ) SCREAMING_SNAKE_CASE_: List[str] =RegressionModel() SCREAMING_SNAKE_CASE_: Dict =deepcopy(lowercase ) SCREAMING_SNAKE_CASE_: str =RegressionDataset(length=lowercase ) SCREAMING_SNAKE_CASE_: Dict =DataLoader(lowercase , batch_size=lowercase ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.prepare(lowercase , lowercase ) return model, ddp_model, dataloader def __magic_name__ ( lowercase , lowercase=False ): SCREAMING_SNAKE_CASE_: Optional[int] =AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) SCREAMING_SNAKE_CASE_: List[str] =load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(lowercase ): SCREAMING_SNAKE_CASE_: int =tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase , max_length=lowercase ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: Optional[Any] =dataset.map( lowercase , batched=lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) SCREAMING_SNAKE_CASE_: Dict =tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase ): if use_longest: return tokenizer.pad(lowercase , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(lowercase , shuffle=lowercase , collate_fn=lowercase , batch_size=16 ) def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator(dispatch_batches=lowercase , split_batches=lowercase ) SCREAMING_SNAKE_CASE_: str =get_dataloader(lowercase , not dispatch_batches ) SCREAMING_SNAKE_CASE_: Optional[Any] =AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =accelerator.prepare(lowercase , lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =[] for batch in dataloader: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict =batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] =model(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any =[], [] for logit, targ in logits_and_targets: logits.append(lowercase ) targs.append(lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =torch.cat(lowercase ), torch.cat(lowercase ) return logits, targs def __magic_name__ ( lowercase , lowercase=82 , lowercase=False , lowercase=False , lowercase=16 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =get_basic_setup(lowercase , lowercase , lowercase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int =generate_predictions(lowercase , lowercase , lowercase ) assert ( len(lowercase ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase )}''' def __magic_name__ ( lowercase = False , lowercase = False ): SCREAMING_SNAKE_CASE_: Dict =evaluate.load("""glue""" , """mrpc""" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] =get_mrpc_setup(lowercase , lowercase ) # First do baseline SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =setup["""no"""] model.to(lowercase ) model.eval() for batch in dataloader: batch.to(lowercase ) with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[int] =model(**lowercase ) SCREAMING_SNAKE_CASE_: int =outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase , references=batch["""labels"""] ) SCREAMING_SNAKE_CASE_: Optional[int] =metric.compute() # Then do distributed SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Any =outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_: Dict =batch["""labels"""] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase , references=lowercase ) SCREAMING_SNAKE_CASE_: str =metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: Optional[Any] =Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(lowercase , lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE_: Dict =Accelerator(split_batches=lowercase , dispatch_batches=lowercase ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) SCREAMING_SNAKE_CASE_: List[str] =Accelerator() test_torch_metrics(lowercase , 512 ) accelerator.state._reset_state() def __magic_name__ ( lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
36
"""simple docstring""" def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =False while is_sorted is False: # Until all the indices are traversed keep looping SCREAMING_SNAKE_CASE_: Tuple =True for i in range(0 , len(lowercase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: Tuple =False for i in range(1 , len(lowercase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str =input_list[i + 1], input_list[i] # swapping if elements not in order SCREAMING_SNAKE_CASE_: str =False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") _UpperCAmelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCAmelCase = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
36
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _UpperCAmelCase = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) _UpperCAmelCase = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) _UpperCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) _UpperCAmelCase = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) _UpperCAmelCase = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) _UpperCAmelCase = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) _UpperCAmelCase = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =randrange(len(lowercase ) ), randrange(len(lowercase ) ) SCREAMING_SNAKE_CASE_: Union[str, Any] =["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __magic_name__ ( lowercase = 100 ): return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize("""hand, expected""" , lowercase ) def __magic_name__ ( lowercase , lowercase ): assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def __magic_name__ ( lowercase , lowercase ): assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase ): SCREAMING_SNAKE_CASE_: int =PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowercase ) def __magic_name__ ( lowercase , lowercase ): assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowercase ) def __magic_name__ ( lowercase , lowercase ): assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowercase ) def __magic_name__ ( lowercase , lowercase , lowercase ): assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __magic_name__ ( lowercase , lowercase , lowercase ): assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: int =[PokerHand(lowercase ) for hand in SORTED_HANDS] SCREAMING_SNAKE_CASE_: Union[str, Any] =poker_hands.copy() shuffle(lowercase ) SCREAMING_SNAKE_CASE_: int =chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def __magic_name__ ( ): # Test that five high straights are compared correctly. SCREAMING_SNAKE_CASE_: List[str] =[PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __magic_name__ ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. SCREAMING_SNAKE_CASE_: List[Any] =PokerHand("""2C 4S AS 3D 5C""" ) SCREAMING_SNAKE_CASE_: str =True SCREAMING_SNAKE_CASE_: Optional[Any] =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __magic_name__ ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file SCREAMING_SNAKE_CASE_: Union[str, Any] =0 SCREAMING_SNAKE_CASE_: Tuple =os.path.abspath(os.path.dirname(lowercase ) ) SCREAMING_SNAKE_CASE_: Dict =os.path.join(lowercase , """poker_hands.txt""" ) with open(lowercase ) as file_hand: for line in file_hand: SCREAMING_SNAKE_CASE_: Any =line[:14].strip() SCREAMING_SNAKE_CASE_: List[str] =line[15:].strip() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] =PokerHand(lowercase ), PokerHand(lowercase ) SCREAMING_SNAKE_CASE_: Dict =player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 376
36
"""simple docstring""" def __magic_name__ ( lowercase ): return str(lowercase ) == str(lowercase )[::-1] def __magic_name__ ( lowercase ): return int(lowercase ) + int(str(lowercase )[::-1] ) def __magic_name__ ( lowercase = 1_0000 ): SCREAMING_SNAKE_CASE_: List[str] =[] for num in range(1 , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =num while iterations < 50: SCREAMING_SNAKE_CASE_: Optional[Any] =sum_reverse(lowercase ) iterations += 1 if is_palindrome(lowercase ): break else: lychrel_nums.append(lowercase ) return len(lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
36
1
"""simple docstring""" from __future__ import annotations def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: List[Any] =sorted(numsa + numsa ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple =divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = [float(x) for x in input("""Enter the elements of first array: """).split()] _UpperCAmelCase = [float(x) for x in input("""Enter the elements of second array: """).split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
36
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _UpperCAmelCase = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["""DPTFeatureExtractor"""] _UpperCAmelCase = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
1