code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence lowercase : List[str] = gray_code_sequence_string(SCREAMING_SNAKE_CASE__ ) # # convert them to integers for i in range(len(SCREAMING_SNAKE_CASE__ ) ): lowercase : List[Any] = int(sequence[i] , 2 ) return sequence def _snake_case( SCREAMING_SNAKE_CASE__ ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] lowercase : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits lowercase : Optional[int] = gray_code_sequence_string(bit_count - 1 ) lowercase : Tuple = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): lowercase : Any = """0""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE__ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): lowercase : Dict = """1""" + smaller_sequence[i] sequence.append(SCREAMING_SNAKE_CASE__ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
20
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase_( lowerCamelCase_ ) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_ ) class _lowerCamelCase: def __init__( self, *, lowerCamelCase = np.inf, lowerCamelCase = "linear", lowerCamelCase = 0.0, ) -> None: """simple docstring""" _lowercase : str = regularization _lowercase : List[str] = gamma if kernel == "linear": _lowercase : int = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma, (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') _lowercase : Tuple = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _lowercase : Dict = F'''Unknown kernel: {kernel}''' raise ValueError(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" return np.dot(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> None: """simple docstring""" _lowercase : int = observations _lowercase : Optional[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_lowercase) , ) : Tuple = np.shape(lowerCamelCase) def to_minimize(lowerCamelCase) -> float: _lowercase : str = 0 ((_lowercase) , ) : Any = np.shape(lowerCamelCase) for i in range(lowerCamelCase): for j in range(lowerCamelCase): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i], observations[j]) ) return 1 / 2 * s - sum(lowerCamelCase) _lowercase : Tuple = LinearConstraint(lowerCamelCase, 0, 0) _lowercase : Dict = Bounds(0, self.regularization) _lowercase : Optional[int] = minimize( lowerCamelCase, np.ones(lowerCamelCase), bounds=lowerCamelCase, constraints=[ly_contraint]).x _lowercase : Optional[Any] = l_star # calculating mean offset of separation plane to points _lowercase : Optional[Any] = 0 for i in range(lowerCamelCase): for j in range(lowerCamelCase): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i], observations[j]) _lowercase : str = s / n def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n], lowerCamelCase) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
21
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
'''simple docstring''' from __future__ import annotations from statistics import mean def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : list[int] , __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes _UpperCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: _UpperCAmelCase = [] _UpperCAmelCase = -1 for i in range(__lowercase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(__lowercase ) if len(__lowercase ) > 0: _UpperCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: _UpperCAmelCase = i total_time += burst_time[target_process] completed += 1 _UpperCAmelCase = 0 _UpperCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : list[int] ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [0] * no_of_processes for i in range(__lowercase ): _UpperCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') __SCREAMING_SNAKE_CASE :Dict = 4 __SCREAMING_SNAKE_CASE :int = [2, 5, 3, 7] __SCREAMING_SNAKE_CASE :List[Any] = [0, 0, 0, 0] __SCREAMING_SNAKE_CASE :Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __SCREAMING_SNAKE_CASE :Any = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
22
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any]=13 , __snake_case : int=32 , __snake_case : Optional[int]=3 , __snake_case : int=4 , __snake_case : Optional[int]=[10, 20, 30, 40] , __snake_case : str=[2, 2, 3, 2] , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : Tuple=37 , __snake_case : Optional[Any]="gelu" , __snake_case : Dict=10 , __snake_case : str=0.02 , __snake_case : Dict=["stage2", "stage3", "stage4"] , __snake_case : Tuple=[2, 3, 4] , __snake_case : List[Any]=None , ) -> Optional[Any]: UpperCAmelCase : Any = parent UpperCAmelCase : Tuple = batch_size UpperCAmelCase : List[str] = image_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Union[str, Any] = num_stages UpperCAmelCase : int = hidden_sizes UpperCAmelCase : Optional[int] = depths UpperCAmelCase : str = is_training UpperCAmelCase : Optional[Any] = use_labels UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : List[str] = hidden_act UpperCAmelCase : int = num_labels UpperCAmelCase : Any = initializer_range UpperCAmelCase : Tuple = out_features UpperCAmelCase : List[Any] = out_indices UpperCAmelCase : Union[str, Any] = scope def A ( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : Optional[int] = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def A ( self : Tuple ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Optional[Any]: UpperCAmelCase : List[str] = ConvNextModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Any = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Tuple , __snake_case : Dict , __snake_case : Any , __snake_case : List[str] ) -> Optional[int]: UpperCAmelCase : Optional[int] = ConvNextForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : Any = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : str ) -> Dict: UpperCAmelCase : Union[str, Any] = ConvNextBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : List[str] = model(__snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase : Dict = None UpperCAmelCase : int = ConvNextBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase : int = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Any = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__ = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = ConvNextModelTester(self ) UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def A ( self : Optional[int] ) -> List[str]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[str] ) -> Optional[Any]: return @unittest.skip(reason='''ConvNext does not use inputs_embeds''' ) def A ( self : Any ) -> Union[str, Any]: pass @unittest.skip(reason='''ConvNext does not support input and output embeddings''' ) def A ( self : Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason='''ConvNext does not use feedforward chunking''' ) def A ( self : Optional[int] ) -> int: pass def A ( self : Optional[int] ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : int = model_class(__snake_case ) UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__snake_case ) def A ( self : List[Any] ) -> Optional[Any]: def check_hidden_states_output(__snake_case : List[str] , __snake_case : Tuple , __snake_case : List[str] ): UpperCAmelCase : List[Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase : List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def A ( self : List[Any] ) -> List[str]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[str] = ConvNextModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ) -> int: UpperCAmelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" @cached_property def A ( self : Optional[Any] ) -> Dict: return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ) -> Dict: UpperCAmelCase : Dict = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(__snake_case ) UpperCAmelCase : Tuple = self.default_image_processor UpperCAmelCase : Optional[Any] = prepare_img() UpperCAmelCase : str = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase : List[str] = model(**__snake_case ) # verify the logits UpperCAmelCase : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase : Optional[Any] = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE( unittest.TestCase , A__ ): """simple docstring""" lowerCamelCase__ = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__ = ConvNextConfig lowerCamelCase__ = False def A ( self : str ) -> str: UpperCAmelCase : List[Any] = ConvNextModelTester(self )
23
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case_ = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['MobileViTFeatureExtractor'] snake_case_ = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
24
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
"""simple docstring""" from math import sqrt def lowercase_ ( _snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(sqrt(_snake_case ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( _snake_case = 10_001 ): SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 SCREAMING_SNAKE_CASE__ : int = 1 while count != nth and number < 3: number += 1 if is_prime(_snake_case ): count += 1 while count != nth: number += 2 if is_prime(_snake_case ): count += 1 return number if __name__ == "__main__": print(f"""{solution() = }""")
25
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _snake_case = 16 _snake_case = 32 def lowerCAmelCase_ ( snake_case_ ): return int(x / 2**20 ) class lowercase : def __enter__( self ) -> Any: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _A : Any = torch.cuda.memory_allocated() return self def __exit__( self , *_a ) -> List[str]: gc.collect() torch.cuda.empty_cache() _A : List[Any] = torch.cuda.memory_allocated() _A : Dict = torch.cuda.max_memory_allocated() _A : str = bamb(self.end - self.begin ) _A : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowerCAmelCase_ ( snake_case_,snake_case_ = 16,snake_case_ = "bert-base-cased",snake_case_ = 320,snake_case_ = 160,): _A : List[Any] = AutoTokenizer.from_pretrained(snake_case_ ) _A : List[str] = load_dataset( """glue""","""mrpc""",split={"""train""": f'''train[:{n_train}]''', """validation""": f'''validation[:{n_val}]'''} ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) _A : Union[str, Any] = tokenizer(examples["""sentence1"""],examples["""sentence2"""],truncation=snake_case_,max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _A : List[Any] = datasets.map( snake_case_,batched=snake_case_,remove_columns=["""idx""", """sentence1""", """sentence2"""],load_from_cache_file=snake_case_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A : List[Any] = tokenized_datasets.rename_column("""label""","""labels""" ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case_,padding="""max_length""",max_length=128,return_tensors="""pt""" ) return tokenizer.pad(snake_case_,padding="""longest""",return_tensors="""pt""" ) # Instantiate dataloaders. _A : Dict = DataLoader( tokenized_datasets["""train"""],shuffle=snake_case_,collate_fn=snake_case_,batch_size=snake_case_ ) _A : int = DataLoader( tokenized_datasets["""validation"""],shuffle=snake_case_,collate_fn=snake_case_,batch_size=snake_case_ ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Initialize accelerator _A : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A : Optional[int] = config["""lr"""] _A : Tuple = int(config["""num_epochs"""] ) _A : Any = int(config["""seed"""] ) _A : Tuple = int(config["""batch_size"""] ) _A : Any = args.model_name_or_path set_seed(snake_case_ ) _A , _A : Union[str, Any] = get_dataloaders(snake_case_,snake_case_,snake_case_,args.n_train,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A : Optional[int] = AutoModelForSequenceClassification.from_pretrained(snake_case_,return_dict=snake_case_ ) # Instantiate optimizer _A : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _A : Tuple = optimizer_cls(params=model.parameters(),lr=snake_case_ ) if accelerator.state.deepspeed_plugin is not None: _A : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _A : int = 1 _A : str = (len(snake_case_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _A : str = get_linear_schedule_with_warmup( optimizer=snake_case_,num_warmup_steps=0,num_training_steps=snake_case_,) else: _A : Union[str, Any] = DummyScheduler(snake_case_,total_num_steps=snake_case_,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A : Dict = accelerator.prepare( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) # We need to keep track of how many total steps we have iterated over _A : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly _A : Optional[Any] = 0 # Now we train the model _A : Optional[Any] = {} for epoch in range(snake_case_,snake_case_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case_ ): _A : Dict = model(**snake_case_ ) _A : Dict = outputs.loss _A : Dict = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _A : List[str] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir,"""peak_memory_utilization.json""" ),"""w""" ) as f: json.dump(snake_case_,snake_case_ ) def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""",type=snake_case_,default="""bert-base-cased""",help="""Path to pretrained model or model identifier from huggingface.co/models.""",required=snake_case_,) parser.add_argument( """--output_dir""",type=snake_case_,default=""".""",help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""",) parser.add_argument( """--peak_memory_upper_bound""",type=snake_case_,default=snake_case_,help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""",) parser.add_argument( """--n_train""",type=snake_case_,default=320,help="""Number of training examples to use.""",) parser.add_argument( """--n_val""",type=snake_case_,default=160,help="""Number of validation examples to use.""",) parser.add_argument( """--num_epochs""",type=snake_case_,default=1,help="""Number of train epochs.""",) _A : Optional[int] = parser.parse_args() _A : Optional[int] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(snake_case_,snake_case_ ) if __name__ == "__main__": main()
26
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowercase : Optional[int] = 16 __lowercase : List[str] = 32 def lowerCamelCase (_SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 16 ): __a : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __a : Optional[Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(_SCREAMING_SNAKE_CASE : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __a : str = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a : List[Any] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a : List[str] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_SCREAMING_SNAKE_CASE : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __a : int = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a : List[Any] = 16 elif accelerator.mixed_precision != "no": __a : Any = 8 else: __a : Optional[int] = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding='longest' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. __a : Union[str, Any] = DataLoader( tokenized_datasets['train'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __a : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowercase : Tuple = mocked_dataloaders # noqa: F811 def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Dict ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _SCREAMING_SNAKE_CASE ) == "1": __a : Optional[int] = 2 # New Code # __a : Union[str, Any] = int(args.gradient_accumulation_steps ) __a : Dict = int(args.local_sgd_steps ) # Initialize accelerator __a : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_SCREAMING_SNAKE_CASE ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a : Dict = config['lr'] __a : Any = int(config['num_epochs'] ) __a : int = int(config['seed'] ) __a : List[str] = int(config['batch_size'] ) __a : Any = evaluate.load('glue' , 'mrpc' ) set_seed(_SCREAMING_SNAKE_CASE ) __a , __a : int = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a : List[str] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a : Dict = model.to(accelerator.device ) # Instantiate optimizer __a : int = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler __a : Any = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a : Any = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() with LocalSGD( accelerator=_SCREAMING_SNAKE_CASE , model=_SCREAMING_SNAKE_CASE , local_sgd_steps=_SCREAMING_SNAKE_CASE , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): __a : List[Any] = model(**_SCREAMING_SNAKE_CASE ) __a : int = output.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a : Dict = model(**_SCREAMING_SNAKE_CASE ) __a : Tuple = outputs.logits.argmax(dim=-1 ) __a , __a : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) __a : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=_SCREAMING_SNAKE_CASE , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=_SCREAMING_SNAKE_CASE , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __a : Optional[Any] = parser.parse_args() __a : str = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
27
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""] _SCREAMING_SNAKE_CASE = """BlipImageProcessor""" _SCREAMING_SNAKE_CASE = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = False super().__init__(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = self.image_processor def __call__( self : Union[str, Any] , UpperCamelCase__ : ImageInput = None , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : int , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCamelCase = self.tokenizer UpperCamelCase = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) return text_encoding # add pixel_values UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) if text is not None: UpperCamelCase = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) else: UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCamelCase__ ) return encoding_image_processor def A ( self : Tuple , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Any ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def A ( self : Union[str, Any] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : Dict ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def A ( self : str ): """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __UpperCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=1_8 , _UpperCamelCase=3_0 , _UpperCamelCase=4_0_0 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , ) -> Optional[int]: UpperCAmelCase_ : List[Any] = size if size is not None else {'height': 2_0, 'width': 2_0} UpperCAmelCase_ : str = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : List[str] = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : Union[str, Any] = max_resolution UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Union[str, Any] = do_normalize UpperCAmelCase_ : Union[str, Any] = do_convert_rgb UpperCAmelCase_ : Dict = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] UpperCAmelCase_ : Optional[int] = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def __UpperCAmelCase ( self ) -> Optional[Any]: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase_ : List[str] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' UpperCAmelCase_ : int = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : Dict = PixaStructImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = PixaStructImageProcessingTester(self ) @property def __UpperCAmelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = self.image_processor_tester.prepare_dummy_image() UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase_ : List[str] = 2_0_4_8 UpperCAmelCase_ : List[str] = image_processor(_UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: # Initialize image_processor UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : Dict = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> Tuple: # Initialize image_processor UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 UpperCAmelCase_ : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCamelCase ): UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches UpperCAmelCase_ : Any = 'Hello' UpperCAmelCase_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Any = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> Any: # Initialize image_processor UpperCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) UpperCAmelCase_ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : int = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCAmelCase ( self ) -> int: # Initialize image_processor UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : List[str] = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = PixaStructImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) UpperCAmelCase_ : int = 3 @property def __UpperCAmelCase ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def __UpperCAmelCase ( self ) -> str: # Initialize image_processor UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase_ : List[str] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCAmelCase_ : List[str] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCAmelCase_ : Any = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
29
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['ConditionalDetrFeatureExtractor'] __a = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
0
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str | Literal[False]: """simple docstring""" _UpperCAmelCase : Optional[Any] = list(_UpperCAmelCase ) _UpperCAmelCase : Dict = list(_UpperCAmelCase ) _UpperCAmelCase : List[str] = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count += 1 _UpperCAmelCase : Tuple = "_" if count > 1: return False else: return "".join(_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : list[str] ) -> list[str]: """simple docstring""" _UpperCAmelCase : List[Any] = [] while True: _UpperCAmelCase : List[str] = ["$"] * len(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = [] for i in range(len(_UpperCAmelCase ) ): for j in range(i + 1 , len(_UpperCAmelCase ) ): _UpperCAmelCase : str = compare_string(binary[i] , binary[j] ) if k is False: _UpperCAmelCase : Optional[Any] = "*" _UpperCAmelCase : Optional[Any] = "*" temp.append("X" ) for i in range(len(_UpperCAmelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_UpperCAmelCase ) == 0: return pi _UpperCAmelCase : Dict = list(set(_UpperCAmelCase ) ) def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : Sequence[float] ) -> list[str]: """simple docstring""" _UpperCAmelCase : int = [] for minterm in minterms: _UpperCAmelCase : str = "" for _ in range(_UpperCAmelCase ): _UpperCAmelCase : List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(_UpperCAmelCase ) return temp def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool: """simple docstring""" _UpperCAmelCase : Tuple = list(_UpperCAmelCase ) _UpperCAmelCase : Dict = list(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = 0 for i in range(len(_UpperCAmelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def UpperCamelCase_ ( _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : list[str] ) -> list[str]: """simple docstring""" _UpperCAmelCase : str = [] _UpperCAmelCase : str = [0] * len(_UpperCAmelCase ) for i in range(len(chart[0] ) ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Dict = -1 for j in range(len(_UpperCAmelCase ) ): if chart[j][i] == 1: count += 1 _UpperCAmelCase : int = j if count == 1: _UpperCAmelCase : int = 1 for i in range(len(_UpperCAmelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Dict = 0 temp.append(prime_implicants[i] ) while True: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Any = -1 _UpperCAmelCase : Tuple = 0 for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : List[Any] = chart[i].count(1 ) if count_n > max_n: _UpperCAmelCase : Optional[int] = count_n _UpperCAmelCase : Dict = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Tuple = 0 def UpperCamelCase_ ( _UpperCAmelCase : list[str] , _UpperCAmelCase : list[str] ) -> list[list[int]]: """simple docstring""" _UpperCAmelCase : int = [[0 for x in range(len(_UpperCAmelCase ) )] for x in range(len(_UpperCAmelCase ) )] for i in range(len(_UpperCAmelCase ) ): _UpperCAmelCase : Optional[int] = prime_implicants[i].count("_" ) for j in range(len(_UpperCAmelCase ) ): if is_for_table(prime_implicants[i] , binary[j] , _UpperCAmelCase ): _UpperCAmelCase : List[Any] = 1 return chart def UpperCamelCase_ ( ) -> None: """simple docstring""" _UpperCAmelCase : Dict = int(input("Enter the no. of variables\n" ) ) _UpperCAmelCase : Dict = [ float(_UpperCAmelCase ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] _UpperCAmelCase : List[str] = decimal_to_binary(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : int = check(_UpperCAmelCase ) print("Prime Implicants are:" ) print(_UpperCAmelCase ) _UpperCAmelCase : Tuple = prime_implicant_chart(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Tuple = selection(_UpperCAmelCase , _UpperCAmelCase ) print("Essential Prime Implicants are:" ) print(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
31
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" a_ : str = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: a_ : int = 4 a_ : str = 48 a_ : Union[str, Any] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : List[Any] = [6, 6, 6, 6] a_ : Tuple = 60 a_ : Union[str, Any] = [6, 6, 6, 6] a_ : Optional[int] = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Tuple = 4 a_ : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: a_ : List[str] = 1 a_ : Optional[int] = 1 a_ : int = 1_26 a_ : Optional[Any] = 7 a_ : Optional[int] = 255.0 a_ : Tuple = '' return config def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] ) -> List[str]: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: a_ : List[Any] = name.replace('patch_embed.norm' , 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: a_ : Any = name.replace('layers' , 'encoder.stages' ) if "residual_group.blocks" in name: a_ : Tuple = name.replace('residual_group.blocks' , 'layers' ) if "attn.proj" in name: a_ : Union[str, Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: a_ : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: a_ : Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: a_ : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: a_ : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: a_ : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: a_ : str = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: a_ : Optional[int] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: a_ : Optional[int] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: a_ : List[str] = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: a_ : List[Any] = name.replace('patch_embed.proj' , 'patch_embed.projection' ) if name == "norm.weight": a_ : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": a_ : Optional[int] = 'layernorm.bias' if "conv_first" in name: a_ : Tuple = name.replace('conv_first' , 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: a_ : Optional[int] = name.replace('conv_last' , 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: a_ : Union[str, Any] = name.replace('conv_before_upsample.0' , 'conv_before_upsample' ) if "upsample.0" in name: a_ : Union[str, Any] = name.replace('upsample.0' , 'upsample.convolution_0' ) if "upsample.2" in name: a_ : Union[str, Any] = name.replace('upsample.2' , 'upsample.convolution_1' ) a_ : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": a_ : Union[str, Any] = name.replace('upsample.0.weight' , 'upsample.conv.weight' ) a_ : Union[str, Any] = name.replace('upsample.0.bias' , 'upsample.conv.bias' ) else: pass else: a_ : List[str] = 'swin2sr.' + name return name def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : List[str] ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): a_ : List[Any] = orig_state_dict.pop(__A ) if "qkv" in key: a_ : List[Any] = key.split('.' ) a_ : Optional[Any] = int(key_split[1] ) a_ : Optional[Any] = int(key_split[4] ) a_ : Tuple = config.embed_dim if "weight" in key: a_ : Union[str, Any] = val[:dim, :] a_ : Tuple = val[dim : dim * 2, :] a_ : Union[str, Any] = val[-dim:, :] else: a_ : Tuple = val[:dim] a_ : Optional[Any] = val[dim : dim * 2] a_ : Any = val[-dim:] pass else: a_ : Union[str, Any] = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Optional[int] , __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : Any = get_config(__A ) a_ : Any = SwinaSRForImageSuperResolution(__A ) model.eval() a_ : List[str] = torch.hub.load_state_dict_from_url(__A , map_location='cpu' ) a_ : List[Any] = convert_state_dict(__A , __A ) a_ , a_ : Tuple = model.load_state_dict(__A , strict=__A ) if len(__A ) > 0: raise ValueError('Missing keys when converting: {}'.format(__A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values a_ : Union[str, Any] = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' a_ : Tuple = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) a_ : Union[str, Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values a_ : Any = 1_26 if 'Jpeg' in checkpoint_url else 2_56 a_ : Optional[int] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ : str = transforms(__A ).unsqueeze(0 ) if config.num_channels == 1: a_ : int = pixel_values[:, 0, :, :].unsqueeze(1 ) a_ : int = model(__A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: a_ : Optional[int] = torch.Size([1, 3, 5_12, 5_12] ) a_ : str = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a_ : Dict = torch.Size([1, 3, 10_24, 10_24] ) a_ : Union[str, Any] = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here a_ : Union[str, Any] = torch.Size([1, 3, 10_24, 10_24] ) a_ : int = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a_ : Union[str, Any] = torch.Size([1, 3, 5_12, 5_12] ) a_ : Optional[int] = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a_ : Any = torch.Size([1, 3, 10_24, 10_24] ) a_ : Tuple = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __A , atol=1e-3 ) print('Looks ok!' ) a_ : int = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } a_ : List[str] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') UpperCAmelCase_ : List[str] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
32
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : str = parser.parse_args() __A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : Dict = CLIPImageProcessor() __A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A =logging.get_logger(__name__) A ={ 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _a ( __a ): __a : List[Any] = """marian""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[str] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] , lowercase : Union[str, Any]=58_101 , lowercase : Tuple=None , lowercase : str=1_024 , lowercase : Optional[int]=12 , lowercase : Optional[int]=4_096 , lowercase : int=16 , lowercase : List[Any]=12 , lowercase : int=4_096 , lowercase : Optional[int]=16 , lowercase : int=0.0 , lowercase : Tuple=0.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=True , lowercase : List[Any]="gelu" , lowercase : Tuple=1_024 , lowercase : str=0.1 , lowercase : str=0.0 , lowercase : Optional[int]=0.0 , lowercase : Dict=0.02 , lowercase : Union[str, Any]=58_100 , lowercase : List[str]=False , lowercase : str=58_100 , lowercase : Any=0 , lowercase : Optional[Any]=0 , lowercase : Tuple=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = vocab_size UpperCAmelCase = decoder_vocab_size or vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase , eos_token_id=lowercase , is_encoder_decoder=lowercase , decoder_start_token_id=lowercase , forced_eos_token_id=lowercase , **lowercase , ) class _a ( __a ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : int ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase = {0: '''batch'''} UpperCAmelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: UpperCAmelCase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super().outputs else: UpperCAmelCase = super(lowercase , self ).outputs if self.use_past: UpperCAmelCase , UpperCAmelCase = self.num_layers for i in range(lowercase ): UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} UpperCAmelCase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def A ( self : Dict , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) # Generate decoder inputs UpperCAmelCase = seq_length if not self.use_past else 1 UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) UpperCAmelCase = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} UpperCAmelCase = dict(**lowercase , **lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape UpperCAmelCase = common_inputs['''decoder_input_ids'''].shape[1] UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = decoder_seq_length + 3 UpperCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCAmelCase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase , lowercase )] , dim=1 ) UpperCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase = min(lowercase , lowercase ) UpperCAmelCase = max(lowercase , lowercase ) - min_num_layers UpperCAmelCase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), torch.zeros(lowercase ), ) ) # TODO: test this. UpperCAmelCase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase , lowercase ): common_inputs["past_key_values"].append((torch.zeros(lowercase ), torch.zeros(lowercase )) ) return common_inputs def A ( self : int , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase , lowercase , lowercase , lowercase , lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase , UpperCAmelCase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase = seqlen + 2 UpperCAmelCase , UpperCAmelCase = self.num_layers UpperCAmelCase , UpperCAmelCase = self.num_attention_heads UpperCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCAmelCase = common_inputs['''attention_mask'''].dtype UpperCAmelCase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase , lowercase , dtype=lowercase )] , dim=1 ) UpperCAmelCase = [ (torch.zeros(lowercase ), torch.zeros(lowercase )) for _ in range(lowercase ) ] return common_inputs def A ( self : str , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase = tokenizer.num_special_tokens_to_add(lowercase ) UpperCAmelCase = compute_effective_axis_dimension( lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCAmelCase = dict(tokenizer(lowercase , return_tensors=lowercase ) ) return common_inputs def A ( self : List[str] , lowercase : PreTrainedTokenizer , lowercase : int = -1 , lowercase : int = -1 , lowercase : bool = False , lowercase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) else: UpperCAmelCase = self._generate_dummy_inputs_for_causal_lm( lowercase , batch_size=lowercase , seq_length=lowercase , is_pair=lowercase , framework=lowercase ) return common_inputs def A ( self : List[Any] , lowercase : Any , lowercase : Tuple , lowercase : Any , lowercase : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: UpperCAmelCase = super()._flatten_past_key_values_(lowercase , lowercase , lowercase , lowercase ) else: UpperCAmelCase = super(lowercase , self )._flatten_past_key_values_( lowercase , lowercase , lowercase , lowercase ) @property def A ( self : Any ): '''simple docstring''' return 1E-4
34
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : List[str] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = 0 while b > 0: if b & 1: snake_case__ : str = ((res % c) + (a % c)) % c a += a b >>= 1 return res
35
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _snake_case = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCAmelCase_ : lowerCamelCase__ = PegasusConfig lowerCamelCase__ = {} lowerCamelCase__ = 'gelu' def __init__( self, __a, __a=13, __a=7, __a=True, __a=False, __a=99, __a=32, __a=5, __a=4, __a=37, __a=0.1, __a=0.1, __a=20, __a=2, __a=1, __a=0, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : List[str] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : List[str] = eos_token_id _lowerCAmelCase : Any = pad_token_id _lowerCAmelCase : Optional[Any] = bos_token_id def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size).clip(3, self.vocab_size) _lowerCAmelCase : str = np.expand_dims(np.array([self.eos_token_id] * self.batch_size), 1) _lowerCAmelCase : Optional[Any] = np.concatenate([input_ids, eos_tensor], axis=1) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) _lowerCAmelCase : int = prepare_pegasus_inputs_dict(__a, __a, __a) return config, inputs_dict def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = 20 _lowerCAmelCase : str = model_class_name(__a) _lowerCAmelCase : int = model.encode(inputs_dict["input_ids"]) _lowerCAmelCase , _lowerCAmelCase : List[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0], __a, __a) _lowerCAmelCase : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") _lowerCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1], __a, decoder_attention_mask=__a, past_key_values=__a, decoder_position_ids=__a, ) _lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") _lowerCAmelCase : Any = model.decode( decoder_input_ids[:, -1:], __a, decoder_attention_mask=__a, past_key_values=outputs_cache.past_key_values, decoder_position_ids=__a, ) _lowerCAmelCase : List[str] = model.decode(__a, __a) _lowerCAmelCase : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=f"Max diff is {diff}") def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = 20 _lowerCAmelCase : Any = model_class_name(__a) _lowerCAmelCase : List[str] = model.encode(inputs_dict["input_ids"]) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _lowerCAmelCase : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) _lowerCAmelCase : Tuple = model.init_cache(decoder_input_ids.shape[0], __a, __a) _lowerCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) _lowerCAmelCase : Optional[int] = model.decode( decoder_input_ids[:, :-1], __a, decoder_attention_mask=__a, past_key_values=__a, decoder_position_ids=__a, ) _lowerCAmelCase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") _lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:], __a, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=__a, decoder_position_ids=__a, ) _lowerCAmelCase : Optional[int] = model.decode(__a, __a, decoder_attention_mask=__a) _lowerCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3, msg=f"Max diff is {diff}") def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase : Tuple = np.not_equal(_lowerCamelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _lowerCAmelCase : str = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowerCamelCase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = FlaxPegasusModelTester(self) _lowerCAmelCase : int = ConfigTester(self, config_class=__a) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : Dict = self._prepare_for_class(__a, __a) _lowerCAmelCase : Optional[int] = model_class(__a) @jax.jit def encode_jitted(__a, __a=None, **__a): return model.encode(input_ids=__a, attention_mask=__a) with self.subTest("JIT Enabled"): _lowerCAmelCase : List[Any] = encode_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : Optional[int] = encode_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : List[str] = model_class(__a) _lowerCAmelCase : Optional[int] = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) _lowerCAmelCase : str = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__a, __a, __a): return model.decode( decoder_input_ids=__a, decoder_attention_mask=__a, encoder_outputs=__a, ) with self.subTest("JIT Enabled"): _lowerCAmelCase : str = decode_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : str = decode_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("google/pegasus-large", from_pt=__a) _lowerCAmelCase : Dict = np.ones((1, 1)) _lowerCAmelCase : List[str] = model(__a) self.assertIsNotNone(__a) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum") _lowerCAmelCase : Any = PegasusTokenizer.from_pretrained("google/pegasus-xsum") _lowerCAmelCase : Optional[int] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _lowerCAmelCase : List[Any] = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _lowerCAmelCase : int = tokenizer(__a, return_tensors="np", truncation=__a, max_length=512, padding=__a) _lowerCAmelCase : Union[str, Any] = model.generate(**__a, num_beams=2).sequences _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(__a, skip_special_tokens=__a) assert tgt_text == decoded
36
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): _lowerCAmelCase = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: _lowerCAmelCase = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase__ : Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Optional[int] = numpy_to_pil(UpperCamelCase ) return images def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if images.ndim == 3: lowerCAmelCase__ : List[str] = images[None, ...] lowerCAmelCase__ : int = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase__ : int = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: lowerCAmelCase__ : Tuple = [Image.fromarray(UpperCamelCase ) for image in images] return pil_images
37
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = dct.pop(__lowerCAmelCase ) _UpperCAmelCase = val def __A ( )-> str: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True )-> List[str]: """simple docstring""" _UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase = 8 # set labels if required if not base_model: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 # load original model from torch hub _UpperCAmelCase = torch.hub.load('facebookresearch/dino:main' , __lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _UpperCAmelCase = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if base_model: _UpperCAmelCase = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase = ViTImageProcessor() _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCAmelCase ) if base_model: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
39
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : int ) -> str: """simple docstring""" UpperCamelCase :int = 1.5 UpperCamelCase :str = int(factor * num_class_images ) UpperCamelCase :int = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(f"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(f"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase :Optional[int] = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase :str = int(factor * num_images ) UpperCamelCase :Any = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__magic_name__ , aesthetic_weight=0.1 , ) UpperCamelCase :Optional[Any] = 0 UpperCamelCase :Any = 0 UpperCamelCase :List[Any] = tqdm(desc="""downloading real regularization images""" , total=__magic_name__ ) with open(f"""{class_data_dir}/caption.txt""" , """w""" ) as fa, open(f"""{class_data_dir}/urls.txt""" , """w""" ) as fa, open( f"""{class_data_dir}/images.txt""" , """w""" ) as fa: while total < num_class_images: UpperCamelCase :str = class_images[count] count += 1 try: UpperCamelCase :Optional[int] = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase :List[Any] = Image.open(BytesIO(img.content ) ) with open(f"""{class_data_dir}/images/{total}.jpg""" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(f"""{class_data_dir}/images/{total}.jpg""" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: """simple docstring""" UpperCamelCase :Optional[Any] = argparse.ArgumentParser("""""" , add_help=__magic_name__ ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__magic_name__ , type=__magic_name__ ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__magic_name__ , type=__magic_name__ ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ : Tuple = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
38
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
0
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase ( A_ )-> List[Any]: '''simple docstring''' warnings.warn( "The preprocess method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor.preprocess instead" , A_ , ) if isinstance(A_ , torch.Tensor ): return image elif isinstance(A_ , PIL.Image.Image ): a : Optional[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): a , a : List[str] = image[0].size a , a : List[Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 a : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image] a : Optional[int] = np.concatenate(A_ , axis=0 ) a : Tuple = np.array(A_ ).astype(np.floataa ) / 2_5_5.0 a : Any = image.transpose(0 , 3 , 1 , 2 ) a : Any = 2.0 * image - 1.0 a : Union[str, Any] = torch.from_numpy(A_ ) elif isinstance(image[0] , torch.Tensor ): a : int = torch.cat(A_ , dim=0 ) return image def lowercase ( A_ )-> str: '''simple docstring''' if isinstance(A_ , torch.Tensor ): return mask elif isinstance(A_ , PIL.Image.Image ): a : Dict = [mask] if isinstance(mask[0] , PIL.Image.Image ): a , a : str = mask[0].size a , a : Any = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a : List[str] = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask] a : List[Any] = np.concatenate(A_ , axis=0 ) a : Optional[int] = mask.astype(np.floataa ) / 2_5_5.0 a : Optional[Any] = 0 a : Dict = 1 a : List[str] = torch.from_numpy(A_ ) elif isinstance(mask[0] , torch.Tensor ): a : int = torch.cat(A_ , dim=0 ) return mask class _A ( _a ): """simple docstring""" UpperCAmelCase : UNetaDModel UpperCAmelCase : RePaintScheduler def __init__( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Dict): super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase) @torch.no_grad() def __call__( self : List[str] , __UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCAmelCase : int = 250 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : int = 10 , __UpperCAmelCase : int = 10 , __UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , ): a : str = image a : List[Any] = _preprocess_image(__UpperCAmelCase) a : Tuple = original_image.to(device=self.device , dtype=self.unet.dtype) a : Optional[Any] = _preprocess_mask(__UpperCAmelCase) a : Union[str, Any] = mask_image.to(device=self.device , dtype=self.unet.dtype) a : List[str] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__UpperCAmelCase , __UpperCAmelCase) and len(__UpperCAmelCase) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCAmelCase)}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''') a : Any = original_image.shape a : List[str] = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , self.device) a : List[str] = eta a : List[Any] = self.scheduler.timesteps[0] + 1 a : Union[str, Any] = generator[0] if isinstance(__UpperCAmelCase , __UpperCAmelCase) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual a : Tuple = self.unet(__UpperCAmelCase , __UpperCAmelCase).sample # compute previous image: x_t -> x_t-1 a : Dict = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase).prev_sample else: # compute the reverse: x_t-1 -> x_t a : str = self.scheduler.undo_step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Any = t a : Dict = (image / 2 + 0.5).clamp(0 , 1) a : Dict = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": a : Tuple = self.numpy_to_pil(__UpperCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase)
40
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
'''simple docstring''' import random from typing import Any def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> list[Any]: for _ in range(len(UpperCamelCase ) ): lowerCamelCase__ : List[Any] = random.randint(0 , len(UpperCamelCase ) - 1 ) lowerCamelCase__ : Tuple = random.randint(0 , len(UpperCamelCase ) - 1 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = data[b], data[a] return data if __name__ == "__main__": _A : int =[0, 1, 2, 3, 4, 5, 6, 7] _A : Optional[Any] =['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
41
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
'''simple docstring''' from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __UpperCAmelCase ( _lowerCamelCase ): def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return 0.0 def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> tuple[int | float, int | float]: _snake_case = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _snake_case = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> None: _snake_case = 512 _snake_case = [1] + [0] * (size - 1) _snake_case = [filter_type.process(__A ) for item in inputs] _snake_case = [0] * (samplerate - size) # zero-padding outputs += filler _snake_case = np.abs(np.fft.fft(__A ) ) _snake_case = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds _snake_case = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(__A ) plt.show() def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> None: _snake_case = 512 _snake_case = [1] + [0] * (size - 1) _snake_case = [filter_type.process(__A ) for item in inputs] _snake_case = [0] * (samplerate - size) # zero-padding outputs += filler _snake_case = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
42
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCamelCase ( SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :Optional[int] = argparse.ArgumentParser(add_help=SCREAMING_SNAKE_CASE , allow_abbrev=SCREAMING_SNAKE_CASE ) # The main config parser __UpperCamelCase :Optional[int] = config_command_parser(SCREAMING_SNAKE_CASE ) # The subparser to add commands to __UpperCamelCase :List[str] = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) update_command_parser(SCREAMING_SNAKE_CASE , parents=[parent_parser] ) return config_parser def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :List[Any] = get_config_parser() __UpperCamelCase :List[Any] = config_parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
43
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : int = logging.get_logger(__name__) _a : Tuple = '▁' _a : int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} _a : Any = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } _a : List[Any] = {'vinai/bartpho-syllable': 1_024} class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self , a__ , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : List[str] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : str = monolingual_vocab_file _lowerCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : Tuple = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(a__ ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase : Dict = cnt cnt += 1 with open(a__ , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): _lowerCAmelCase : str = line.strip().split()[0] _lowerCAmelCase : Any = len(self.fairseq_tokens_to_ids ) if str(a__ ) not in self.fairseq_tokens_to_ids: _lowerCAmelCase : str = len(self.fairseq_tokens_to_ids ) _lowerCAmelCase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): _lowerCAmelCase : Dict = self.__dict__.copy() _lowerCAmelCase : str = None _lowerCAmelCase : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , a__ ): _lowerCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : int = {} _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] _lowerCAmelCase : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Union[str, Any] = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __A ( self ): return len(self.fairseq_ids_to_tokens ) def __A ( self ): _lowerCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , a__ ): return self.sp_model.encode(a__ , out_type=a__ ) def __A ( self , a__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __A ( self , a__ ): return self.fairseq_ids_to_tokens[index] def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = """""".join(a__ ).replace(a__ , """ """ ).strip() return out_string def __A ( self , a__ , a__ = None ): if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Optional[int] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: _lowerCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( a__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , a__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(a__ , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"{str(a__ )} \n" ) return out_vocab_file, out_monolingual_vocab_file
44
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": 5_1_2, "google/realm-cc-news-pretrained-encoder": 5_1_2, "google/realm-cc-news-pretrained-scorer": 5_1_2, "google/realm-cc-news-pretrained-openqa": 5_1_2, "google/realm-orqa-nq-openqa": 5_1_2, "google/realm-orqa-nq-reader": 5_1_2, "google/realm-orqa-wq-openqa": 5_1_2, "google/realm-orqa-wq-reader": 5_1_2, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = RealmTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): __a = getattr(_a , normalizer_state.pop('''type''' ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**_a ) __a = do_lower_case def __UpperCAmelCase ( self , _a , **_a ): __a = PaddingStrategy.MAX_LENGTH __a = text __a = kwargs.pop('''text_pair''' , _a ) __a = kwargs.pop('''return_tensors''' , _a ) __a = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: __a = batch_text_pair[idx] else: __a = None __a = super().__call__(_a , _a , return_tensors=_a , **_a ) __a = encoded_candidates.get('''input_ids''' ) __a = encoded_candidates.get('''attention_mask''' ) __a = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) __a = {key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a , tensor_type=_a ) def __UpperCAmelCase ( self , _a , _a=None ): __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
45
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
46
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A__ : def __init__( self : str , _a : List[Any] , _a : int=13 , _a : int=7 , _a : Optional[Any]=True , _a : Tuple=True , _a : Optional[int]=True , _a : Dict=True , _a : Optional[Any]=99 , _a : Optional[Any]=[1, 1, 2] , _a : Union[str, Any]=1 , _a : Optional[Any]=32 , _a : Dict=4 , _a : Tuple=8 , _a : int=37 , _a : Optional[Any]="gelu_new" , _a : str=0.1 , _a : Optional[Any]=0.1 , _a : Tuple=0.0 , _a : Union[str, Any]=512 , _a : Union[str, Any]=3 , _a : Dict=0.02 , _a : str=3 , _a : str=4 , _a : Optional[int]=None , _a : Dict=False , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =seq_length _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_input_mask _SCREAMING_SNAKE_CASE =use_token_type_ids _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =block_sizes _SCREAMING_SNAKE_CASE =num_decoder_layers _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =n_head _SCREAMING_SNAKE_CASE =d_head _SCREAMING_SNAKE_CASE =d_inner _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =type_vocab_size _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =num_choices _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =initializer_std # Used in the tests to check the size of the first attention layer _SCREAMING_SNAKE_CASE =n_head # Used in the tests to check the size of the first hidden state _SCREAMING_SNAKE_CASE =self.d_model # Used in the tests to check the number of output hidden states/attentions _SCREAMING_SNAKE_CASE =sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _SCREAMING_SNAKE_CASE =self.num_hidden_layers + 2 def A ( self : Optional[Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def A ( self : Any , _a : Any , _a : Optional[int] , _a : Tuple , _a : int , _a : Optional[int] , _a : List[Any] , _a : Any , ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelModel(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =TFFunnelModel(config=_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =TFFunnelModel(config=_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def A ( self : List[str] , _a : Tuple , _a : List[Any] , _a : Optional[int] , _a : Tuple , _a : Dict , _a : Any , _a : int , ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelBaseModel(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =TFFunnelBaseModel(config=_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =TFFunnelBaseModel(config=_a ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def A ( self : Any , _a : Optional[Any] , _a : str , _a : str , _a : Optional[int] , _a : Dict , _a : Union[str, Any] , _a : str , ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelForPreTraining(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] , _a : Dict , _a : int , _a : List[str] , _a : Dict , _a : Dict , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelForMaskedLM(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : str , _a : Optional[Any] , _a : str , _a : List[str] , _a : Tuple , _a : str , _a : List[str] , _a : Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFFunnelForSequenceClassification(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , _a : Any , _a : Union[str, Any] , _a : List[str] , _a : Optional[int] , _a : List[Any] , _a : Optional[int] , _a : int , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =TFFunnelForMultipleChoice(config=_a ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , _a : int , _a : List[Any] , _a : int , _a : Tuple , _a : str , _a : List[Any] , _a : Optional[Any] , ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFFunnelForTokenClassification(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , _a : Dict , _a : Union[str, Any] , _a : Tuple , _a : Optional[Any] , _a : Tuple , _a : int , _a : List[Any] , ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelForQuestionAnswering(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): A__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A__ = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def A ( self : Dict ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a ) def A ( self : Any ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def A ( self : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_a ) def A ( self : Optional[Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def A ( self : Tuple ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) def A ( self : int ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_a ) @require_tf class A__ ( A__ , unittest.TestCase ): A__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A__ = False A__ = False def A ( self : List[Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFFunnelModelTester(self , base=_a ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a ) def A ( self : Tuple ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_a ) def A ( self : Any ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_a ) def A ( self : int ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_a )
47
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer SCREAMING_SNAKE_CASE__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ : Any = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE__ : Dict = { 'unc-nlp/lxmert-base-uncased': 512, } SCREAMING_SNAKE_CASE__ : Tuple = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[Any] = LxmertTokenizer def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__="[UNK]" , UpperCamelCase__="[SEP]" , UpperCamelCase__="[PAD]" , UpperCamelCase__="[CLS]" , UpperCamelCase__="[MASK]" , UpperCamelCase__=True , UpperCamelCase__=None , **UpperCamelCase__ , ) -> List[str]: super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): lowerCamelCase : Optional[int] = getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) lowerCamelCase : Optional[int] = do_lower_case lowerCamelCase : int = strip_accents lowerCamelCase : Union[str, Any] = tokenize_chinese_chars lowerCamelCase : Any = normalizer_class(**UpperCamelCase__ ) lowerCamelCase : Tuple = do_lower_case def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Any: lowerCamelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: lowerCamelCase : List[str] = [self.sep_token_id] lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: lowerCamelCase : str = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
48
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
0
from string import ascii_uppercase __snake_case :str = {str(ord(c) - 55): c for c in ascii_uppercase} def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) __a = '''''' __a = 0 __a = 0 while div != 1: __a , __a = divmod(_UpperCAmelCase , _UpperCAmelCase ) if base >= 11 and 9 < mod < 36: __a = ALPHABET_VALUES[str(_UpperCAmelCase )] else: __a = str(_UpperCAmelCase ) new_value += actual_value __a = num // base __a = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
49
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCAmelCase : UpperCAmelCase__ = None UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = None UpperCAmelCase__ = 1 UpperCAmelCase__ = None UpperCAmelCase__ = False UpperCAmelCase__ = None UpperCAmelCase__ = None def A_ ( self : List[str] ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(UpperCAmelCase ) for k, v in self.__dict__.items()} )
50
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCAmelCase__ : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def A () -> Dict: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def A () -> Any: """simple docstring""" if os.name == "nt": UpperCAmelCase_ = CursorInfo() UpperCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) UpperCAmelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def A () -> Dict: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
51
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = 'roberta' def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : int = initializer_range UpperCamelCase : str = layer_norm_eps UpperCamelCase : Dict = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
52
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Optional[Any] ={"do_clean_text": False, "add_prefix_space": False} def _lowerCamelCase ( self : str ): super().setUp() # fmt: off __UpperCamelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on __UpperCamelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(__A ) ) def _lowerCamelCase ( self : Union[str, Any] , **__A : List[Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : Any , __A : Dict ): __UpperCamelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀' __UpperCamelCase = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def _lowerCamelCase ( self : Union[str, Any] , __A : Any ): __UpperCamelCase , __UpperCamelCase = self.get_input_output_texts(__A ) __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) __UpperCamelCase = tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) return text, ids def _lowerCamelCase ( self : int ): pass # TODO add if relevant def _lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def _lowerCamelCase ( self : Optional[int] ): pass # TODO add if relevant def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_tokenizer() # Testing tokenization __UpperCamelCase = 'こんにちは、世界。 こんばんは、㔺界。' __UpperCamelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] __UpperCamelCase = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens __UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCamelCase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __UpperCamelCase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.get_tokenizer() # Testing tokenization __UpperCamelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' __UpperCamelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。' __UpperCamelCase = tokenizer.encode(__A ) __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , __A ) @slow def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase = 'こんにちは、世界。' __UpperCamelCase = 'こんばんは、㔺界。😀' __UpperCamelCase = 'こんにちは、世界。こんばんは、世界。😀' __UpperCamelCase = tokenizer.encode(prefix_text + input_text ) __UpperCamelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text ) __UpperCamelCase = tokenizer.encode(__A , prefix_text=__A ) __UpperCamelCase = tokenizer.decode(__A ) __UpperCamelCase = tokenizer.decode(__A ) __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) @slow def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase = 'こんにちは、世界。' __UpperCamelCase = 'こんばんは、㔺界。😀' __UpperCamelCase = len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase = len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase = [1] + [0] * (len_prefix + len_text + 1) __UpperCamelCase = [1] * (len_prefix + len_text + 1) + [0] __UpperCamelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCamelCase = tokenizer(prefix_text + input_text ).token_type_ids __UpperCamelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids __UpperCamelCase = tokenizer(__A , prefix_text=__A ).token_type_ids self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase = tokenizer.encode('あンいワ' ) __UpperCamelCase = tokenizer.encode('' , prefix_text='あンいワ' ) __UpperCamelCase = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertNotEqual(__A , __A ) self.assertNotEqual(__A , __A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] __UpperCamelCase = tokenizer(__A , padding=__A ) __UpperCamelCase = tokenizer.batch_encode_plus(__A , padding=__A ) # fmt: off __UpperCamelCase = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __UpperCamelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCamelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __A ) self.assertListEqual(x_token.token_type_ids , __A ) self.assertListEqual(x_token.attention_mask , __A ) self.assertListEqual(x_token_a.input_ids , __A ) self.assertListEqual(x_token_a.token_type_ids , __A ) self.assertListEqual(x_token_a.attention_mask , __A ) def _lowerCamelCase ( self : str ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _lowerCamelCase ( self : str ): # tokenizer has no padding token pass
53
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[str] = ["image_processor", "tokenizer"] snake_case__ : Any = "BlipImageProcessor" snake_case__ : Any = ("BertTokenizer", "BertTokenizerFast") def __init__( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any ) -> Any: __SCREAMING_SNAKE_CASE = False super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.image_processor def __call__( self : Union[str, Any] , UpperCAmelCase__ : ImageInput = None , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: __SCREAMING_SNAKE_CASE = self.tokenizer __SCREAMING_SNAKE_CASE = self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) return text_encoding # add pixel_values __SCREAMING_SNAKE_CASE = self.image_processor(UpperCAmelCase__ , return_tensors=UpperCAmelCase__ ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer( text=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) else: __SCREAMING_SNAKE_CASE = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase__ ) return encoding_image_processor def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : str , **UpperCAmelCase__ : List[Any] ) -> List[str]: return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Tuple ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__ ) @property def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
'''simple docstring''' def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
55
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class a ( unittest.TestCase ): def A_ ( self : Tuple ): snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on snake_case_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) snake_case_ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] snake_case_ = {'''unk_token''': '''<unk>'''} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase_ ) ) snake_case_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } snake_case_ = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowercase_ , lowercase_ ) def A_ ( self : Tuple , **lowercase_ : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : int , **lowercase_ : int ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowercase_ ) def A_ ( self : Dict , **lowercase_ : Optional[Any] ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def A_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A_ ( self : Tuple ): snake_case_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case_ = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Dict ): snake_case_ = self.get_tokenizer() snake_case_ = self.get_rust_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) snake_case_ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def A_ ( self : Optional[Any] ): snake_case_ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) snake_case_ = self.get_image_processor(do_normalize=lowercase_ ) snake_case_ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def A_ ( self : str ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(lowercase_ , return_tensors='''np''' ) snake_case_ = processor(images=lowercase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : Union[str, Any] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = processor(text=lowercase_ , return_tensors='''np''' ) snake_case_ = tokenizer(lowercase_ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = '''lower newer''' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : int ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : str ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = [['''cat''', '''nasa badge'''], ['''person''']] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = len(lowercase_ ) snake_case_ = max([len(lowercase_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Union[str, Any] ): snake_case_ = '''google/owlvit-base-patch32''' snake_case_ = OwlViTProcessor.from_pretrained(lowercase_ ) snake_case_ = ['''cat''', '''nasa badge'''] snake_case_ = processor(text=lowercase_ ) snake_case_ = 16 snake_case_ = inputs['''input_ids'''] snake_case_ = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def A_ ( self : List[str] ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = self.prepare_image_inputs() snake_case_ = self.prepare_image_inputs() snake_case_ = processor(images=lowercase_ , query_images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def A_ ( self : Any ): snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = OwlViTProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.batch_decode(lowercase_ ) snake_case_ = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
56
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __lowerCAmelCase = update_area_of_max_square(_UpperCamelCase , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , col + 1 ) __lowerCAmelCase = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 __lowerCAmelCase = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __lowerCAmelCase = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) __lowerCAmelCase = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: __lowerCAmelCase = 1 + min([right, diagonal, down] ) __lowerCAmelCase = max(largest_square_area[0] , _UpperCamelCase ) __lowerCAmelCase = sub_problem_sol return sub_problem_sol else: return 0 __lowerCAmelCase = [0] __lowerCAmelCase = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [[0] * (cols + 1) for _ in range(rows + 1 )] __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = dp_array[row][col + 1] __lowerCAmelCase = dp_array[row + 1][col + 1] __lowerCAmelCase = dp_array[row + 1][col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = max(dp_array[row][col] , _UpperCamelCase ) else: __lowerCAmelCase = 0 return largest_square_area def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = [0] * (cols + 1) __lowerCAmelCase = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __lowerCAmelCase = current_row[col + 1] __lowerCAmelCase = next_row[col + 1] __lowerCAmelCase = next_row[col] if mat[row][col] == 1: __lowerCAmelCase = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = max(current_row[col] , _UpperCamelCase ) else: __lowerCAmelCase = 0 __lowerCAmelCase = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
57
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
'''simple docstring''' lowercase_ = 65_521 def lowerCamelCase ( __lowerCamelCase : str ) ->int: _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 0 for plain_chr in plain_text: _SCREAMING_SNAKE_CASE = (a + ord(__lowerCamelCase )) % MOD_ADLER _SCREAMING_SNAKE_CASE = (b + a) % MOD_ADLER return (b << 16) | a
58
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
def UpperCamelCase ( __lowerCamelCase : list ): if any(not isinstance(__lowerCamelCase , __lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
59
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case__ : List[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : Tuple ): if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class snake_case_( a__ ): __UpperCamelCase = ['''pixel_values'''] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_5_5 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : Tuple , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Optional[Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Tuple = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : Dict = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : List[str] = do_center_crop lowerCAmelCase : int = crop_size lowerCAmelCase : Dict = resample lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Any = rescale_factor lowerCAmelCase : List[Any] = offset lowerCAmelCase : Tuple = do_normalize lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" in size: lowerCAmelCase : List[str] = get_resize_output_image_size(UpperCamelCase_ , size['''shortest_edge'''] , default_to_square=UpperCamelCase_ ) elif "height" in size and "width" in size: lowerCAmelCase : Any = (size['''height'''], size['''width''']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : List[str] = image.astype(np.floataa ) if offset: lowerCAmelCase : Union[str, Any] = image - (scale / 2) return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ): return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : List[str] = to_numpy_array(UpperCamelCase_ ) if do_resize: lowerCAmelCase : Optional[int] = self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) if do_center_crop: lowerCAmelCase : List[str] = self.center_crop(UpperCamelCase_ , size=UpperCamelCase_ ) if do_rescale: lowerCAmelCase : str = self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ , offset=UpperCamelCase_ ) if do_normalize: lowerCAmelCase : Optional[int] = self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) lowerCAmelCase : str = to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) return image def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : List[str] , ): lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Any = resample if resample is not None else self.resample lowerCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : str = offset if offset is not None else self.offset lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Any = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = size if size is not None else self.size lowerCAmelCase : Tuple = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Any = get_size_dict(UpperCamelCase_ , param_name='''crop_size''' ) if not valid_images(UpperCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : List[str] = make_batched(UpperCamelCase_ ) lowerCAmelCase : Dict = [ [ self._preprocess_image( image=UpperCamelCase_ , do_resize=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , do_center_crop=UpperCamelCase_ , crop_size=UpperCamelCase_ , do_rescale=UpperCamelCase_ , rescale_factor=UpperCamelCase_ , offset=UpperCamelCase_ , do_normalize=UpperCamelCase_ , image_mean=UpperCamelCase_ , image_std=UpperCamelCase_ , data_format=UpperCamelCase_ , ) for img in video ] for video in videos ] lowerCAmelCase : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
60
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = dct.pop(__lowerCAmelCase ) _UpperCAmelCase = val def __A ( )-> str: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True )-> List[str]: """simple docstring""" _UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase = 8 # set labels if required if not base_model: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 # load original model from torch hub _UpperCAmelCase = torch.hub.load('facebookresearch/dino:main' , __lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _UpperCAmelCase = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if base_model: _UpperCAmelCase = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase = ViTImageProcessor() _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCAmelCase ) if base_model: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
39
0
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _a = pd.read_csv('sample_data.csv', header=None) _a = df.shape[:1][0] # If you're using some other dataset input the target column _a = df.iloc[:, 1:2] _a = actual_data.values.reshape(len_data, 1) _a = MinMaxScaler().fit_transform(actual_data) _a = 10 _a = 5 _a = 20 _a = len_data - periods * look_back _a = actual_data[:division] _a = actual_data[division - look_back :] _a , _a = [], [] _a , _a = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _a = np.array(train_x) _a = np.array(test_x) _a = np.array([list(i.ravel()) for i in train_y]) _a = np.array([list(i.ravel()) for i in test_y]) _a = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') _a = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _a = model.predict(x_test)
61
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "detr" UpperCAmelCase__ : Optional[int] = ["past_key_values"] UpperCAmelCase__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(A_ , A_ ): __UpperCamelCase =backbone_config.get('model_type' ) __UpperCamelCase =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase =config_class.from_dict(A_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =None, None, None __UpperCamelCase =use_timm_backbone __UpperCamelCase =backbone_config __UpperCamelCase =num_channels __UpperCamelCase =num_queries __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =init_xavier_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =encoder_layers __UpperCamelCase =auxiliary_loss __UpperCamelCase =position_embedding_type __UpperCamelCase =backbone __UpperCamelCase =use_pretrained_backbone __UpperCamelCase =dilation # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =mask_loss_coefficient __UpperCamelCase =dice_loss_coefficient __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return self.encoder_attention_heads @property def _a ( self ) -> int: return self.d_model @classmethod def _a ( cls , A_ , **A_ ) -> Tuple: return cls(backbone_config=A_ , **A_ ) def _a ( self ) -> Dict[str, any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCamelCase =self.backbone_config.to_dict() __UpperCamelCase =self.__class__.model_type return output class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = version.parse("1.11" ) @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _a ( self ) -> float: return 1E-5 @property def _a ( self ) -> int: return 12
62
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='bert' def __init__( self : Dict , __a : Dict=3_05_22 , __a : int=7_68 , __a : Any=12 , __a : Tuple=12 , __a : List[str]=30_72 , __a : int="gelu" , __a : List[str]=0.1 , __a : Union[str, Any]=0.1 , __a : str=5_12 , __a : Any=2 , __a : Union[str, Any]=0.02 , __a : int=1e-1_2 , __a : Tuple=0 , __a : Tuple="absolute" , __a : Optional[Any]=True , __a : Optional[Any]=None , **__a : List[Any] , ): super().__init__(pad_token_id=__a , **__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : Dict ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
63
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowercase: '''simple docstring''' def __init__( self: List[Any], a_: Optional[Any], a_: List[Any]=13, a_: List[Any]=7, a_: Tuple=False, a_: str=True, a_: str=False, a_: List[str]=True, a_: Dict=33, a_: Any=32, a_: Tuple=5, a_: List[Any]=4, a_: Any=37, a_: str="gelu", a_: Tuple=0.1, a_: Union[str, Any]=0.1, a_: Dict=512, a_: str=16, a_: str=2, a_: Tuple=0.02, a_: Optional[int]=3, a_: str=4, a_: Any=None, ): '''simple docstring''' _snake_case : Optional[Any] = parent _snake_case : Optional[Any] = batch_size _snake_case : int = seq_length _snake_case : Optional[int] = is_training _snake_case : List[str] = use_input_mask _snake_case : List[Any] = use_token_type_ids _snake_case : Any = use_labels _snake_case : List[Any] = vocab_size _snake_case : Any = hidden_size _snake_case : int = num_hidden_layers _snake_case : str = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : Tuple = hidden_dropout_prob _snake_case : Union[str, Any] = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : Union[str, Any] = type_vocab_size _snake_case : Any = type_sequence_label_size _snake_case : str = initializer_range _snake_case : Tuple = num_labels _snake_case : Any = num_choices _snake_case : Optional[int] = scope def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _snake_case : Any = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : List[Any] = None _snake_case : Any = None _snake_case : Optional[int] = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _snake_case : Tuple = ids_tensor([self.batch_size], self.num_choices ) _snake_case : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' return EsmConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def UpperCamelCase_ ( self: int, a_: Union[str, Any], a_: Dict, a_: List[str], a_: Any, a_: Any, a_: Any ): '''simple docstring''' _snake_case : Dict = EsmModel(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[str] = model(a_, attention_mask=a_ ) _snake_case : Any = model(a_ ) _snake_case : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self: Tuple, a_: int, a_: Dict, a_: Optional[Any], a_: str, a_: Union[str, Any], a_: List[str] ): '''simple docstring''' _snake_case : Union[str, Any] = EsmForMaskedLM(config=a_ ) model.to(a_ ) model.eval() _snake_case : Optional[Any] = model(a_, attention_mask=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self: List[Any], a_: Optional[Any], a_: Any, a_: Any, a_: str, a_: Union[str, Any], a_: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.num_labels _snake_case : Tuple = EsmForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _snake_case : List[Any] = model(a_, attention_mask=a_, labels=a_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : str = config_and_inputs _snake_case : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase( __a , __a , unittest.TestCase ): '''simple docstring''' lowercase__ = False lowercase__ = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowercase__ = () lowercase__ = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : str = EsmModelTester(self ) _snake_case : Union[str, Any] = ConfigTester(self, config_class=a_, hidden_size=37 ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case : str = type self.model_tester.create_and_check_model(*a_ ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) @slow def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = EsmModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs()[0] _snake_case : Union[str, Any] = EsmEmbeddings(config=a_ ) _snake_case : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) _snake_case : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) _snake_case : List[Any] = create_position_ids_from_input_ids(a_, model.padding_idx ) self.assertEqual(position_ids.shape, expected_positions.shape ) self.assertTrue(torch.all(torch.eq(a_, a_ ) ) ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Any = self.model_tester.prepare_config_and_inputs()[0] _snake_case : Optional[int] = EsmEmbeddings(config=a_ ) _snake_case : int = torch.empty(2, 4, 30 ) _snake_case : Any = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] _snake_case : int = torch.as_tensor([expected_single_positions, expected_single_positions] ) _snake_case : List[Any] = embeddings.create_position_ids_from_inputs_embeds(a_ ) self.assertEqual(position_ids.shape, expected_positions.shape ) self.assertTrue(torch.all(torch.eq(a_, a_ ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase_ ( self: int ): '''simple docstring''' pass @unittest.skip("""Esm does not support embedding resizing""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCamelCase_ ( self: Dict ): '''simple docstring''' pass @require_torch class lowercase( __a ): '''simple docstring''' @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' with torch.no_grad(): _snake_case : Optional[Any] = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _snake_case : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _snake_case : Optional[int] = model(a_ )[0] _snake_case : Tuple = 33 _snake_case : str = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape, a_ ) _snake_case : str = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1E-4 ) ) @slow def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' with torch.no_grad(): _snake_case : Tuple = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() _snake_case : Any = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _snake_case : Optional[int] = model(a_ )[0] # compare the actual values for a slice. _snake_case : Union[str, Any] = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], a_, atol=1E-4 ) )
64
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = 'https://openaipublic.azureedge.net/jukebox/models/' UpperCamelCase__ = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.1.bias", ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.1.weight", ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.3.bias", ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: UpperCAmelCase__ = key.replace(".model.3.weight", ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: UpperCAmelCase__ = key.replace("conditioner_blocks.0", "conditioner_blocks" ) if "prime_prior" in key: UpperCAmelCase__ = key.replace("prime_prior", "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCAmelCase__ = key.replace(".emb.", "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k", ".codebook" ) if "y_emb." in key: return key.replace("y_emb.", "metadata_embedding." ) if "x_emb.emb." in key: UpperCAmelCase__ = key.replace("0.x_emb.emb", "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln", "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln", ".layer_norm" ) if "_ln" in key: return key.replace("_ln", "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj", "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out", "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out", "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb", "embed_tokens" ) return key def lowerCAmelCase_ ( __A, __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = {} import re UpperCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) UpperCAmelCase__ = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) UpperCAmelCase__ = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_conv_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_encoder_block_conv_in.sub(__A, __A ) elif re_encoder_block_resnet.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_encoder_block_resnet.sub(__A, __A ) elif re_encoder_block_proj_out.fullmatch(__A ): UpperCAmelCase__ = re_encoder_block_proj_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCAmelCase__ = re_encoder_block_proj_out.sub(__A, __A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_conv_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_decoder_block_conv_out.sub(__A, __A ) elif re_decoder_block_resnet.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_decoder_block_resnet.sub(__A, __A ) elif re_decoder_block_proj_in.fullmatch(__A ): UpperCAmelCase__ = re_decoder_block_proj_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCAmelCase__ = re_decoder_block_proj_in.sub(__A, __A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_conv_out.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCAmelCase__ = re_prior_cond_conv_out.sub(__A, __A ) elif re_prior_cond_resnet.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_resnet.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCAmelCase__ = {"1": 1, "3": 2}[groups[-2]] UpperCAmelCase__ = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCAmelCase__ = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCAmelCase__ = prefix + resnet_block UpperCAmelCase__ = re_prior_cond_resnet.sub(__A, __A ) elif re_prior_cond_proj_in.fullmatch(__A ): UpperCAmelCase__ = re_prior_cond_proj_in.match(__A ) UpperCAmelCase__ = regex_match.groups() UpperCAmelCase__ = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCAmelCase__ = re_prior_cond_proj_in.sub(__A, __A ) # keep original key else: UpperCAmelCase__ = original_key UpperCAmelCase__ = replace_key(__A ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: UpperCAmelCase__ = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCAmelCase__ = original_key UpperCAmelCase__ = original_key UpperCAmelCase__ = value return new_dict @torch.no_grad() def lowerCAmelCase_ ( __A=None, __A=None ) -> Optional[Any]: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCAmelCase__ = requests.get(f"""{PREFIX}{file}""", allow_redirects=__A ) os.makedirs(f"""{pytorch_dump_folder_path}/""", exist_ok=__A ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""", "wb" ).write(r.content ) UpperCAmelCase__ = MODEL_MAPPING[model_name.split("/" )[-1]] UpperCAmelCase__ = JukeboxConfig.from_pretrained(__A ) UpperCAmelCase__ = JukeboxModel(__A ) UpperCAmelCase__ = [] UpperCAmelCase__ = {} for i, dict_name in enumerate(__A ): UpperCAmelCase__ = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] UpperCAmelCase__ = {} for k in old_dic.keys(): if k.endswith(".b" ): UpperCAmelCase__ = old_dic[k] elif k.endswith(".w" ): UpperCAmelCase__ = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCAmelCase__ = old_dic[k] else: UpperCAmelCase__ = old_dic[k] UpperCAmelCase__ = "vqvae" if i == 0 else f"""priors.{3 - i}""" UpperCAmelCase__ = fix_jukebox_keys(__A, model.state_dict(), __A, __A ) weight_dict.append(__A ) UpperCAmelCase__ = weight_dict.pop(0 ) model.vqvae.load_state_dict(__A ) for i in range(len(__A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__A ).mkdir(exist_ok=__A ) with open(f"""{pytorch_dump_folder_path}/mapping.json""", "w" ) as txtfile: json.dump(__A, __A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) return weight_dict if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='jukebox-5b-lyrics', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='jukebox-5b-lyrics-converted', type=str, help='Path to the output PyTorch model directory.', ) UpperCamelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
65
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
"""simple docstring""" from __future__ import annotations from typing import Any def A_ ( _lowercase ): '''simple docstring''' create_state_space_tree(_lowercase, [], 0 ) def A_ ( _lowercase, _lowercase, _lowercase ): '''simple docstring''' if index == len(_lowercase ): print(_lowercase ) return create_state_space_tree(_lowercase, _lowercase, index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_lowercase, _lowercase, index + 1 ) current_subsequence.pop() if __name__ == "__main__": __a = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
66
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Any , a : int , a : int ): """simple docstring""" __lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 20 __lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=a ) # tweak scores to not be uniform anymore __lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __lowerCamelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __lowerCamelCase = jax.nn.softmax(a , axis=-1 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(a , scores.copy() , cur_len=a ) , axis=-1 ) __lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(a , scores.copy() , cur_len=a ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create ramp distribution __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, vocab_size) ).copy() __lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __lowerCamelCase = 5 __lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, length) ).copy() __lowerCamelCase = top_k_warp_safety_check(a , a , cur_len=a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" __lowerCamelCase = None __lowerCamelCase = 10 __lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) __lowerCamelCase = np.exp(top_p_warp(a , a , cur_len=a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(a , a , atol=1e-3 ) ) # check edge cases with negative and extreme logits __lowerCamelCase = np.broadcast_to(np.arange(a )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __lowerCamelCase = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept __lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) # check that min length is applied at length 5 __lowerCamelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __lowerCamelCase = 5 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = min_dist_processor(a , a , cur_len=a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = 15 __lowerCamelCase = min_dist_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) # check that all scores are -inf except the bos_token_id score __lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __lowerCamelCase = 1 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = 20 __lowerCamelCase = 4 __lowerCamelCase = 0 __lowerCamelCase = 5 __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) # check that all scores are -inf except the eos_token_id when max_length is reached __lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __lowerCamelCase = 4 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __lowerCamelCase = 3 __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = logits_processor(a , a , cur_len=a ) self.assertFalse(jnp.isinf(a ).any() ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , a ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) __lowerCamelCase = 10 # no processor list __lowerCamelCase = temp_dist_warp(a , a , cur_len=a ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) __lowerCamelCase = min_dist_proc(a , a , cur_len=a ) __lowerCamelCase = bos_dist_proc(a , a , cur_len=a ) __lowerCamelCase = eos_dist_proc(a , a , cur_len=a ) # with processor list __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(a , a , cur_len=a ) # scores should be equal self.assertTrue(jnp.allclose(a , a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" __lowerCamelCase = 4 __lowerCamelCase = 10 __lowerCamelCase = 15 __lowerCamelCase = 2 __lowerCamelCase = 1 __lowerCamelCase = 15 # dummy input_ids and scores __lowerCamelCase = ids_tensor((batch_size, sequence_length) , a ) __lowerCamelCase = input_ids.copy() __lowerCamelCase = self._get_uniform_logits(a , a ) __lowerCamelCase = scores.copy() # instantiate all dist processors __lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __lowerCamelCase = FlaxTopKLogitsWarper(3 ) __lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a ) __lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a ) __lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=a , eos_token_id=a ) __lowerCamelCase = 10 # no processor list def run_no_processor_list(a : Dict , a : List[str] , a : Dict ): __lowerCamelCase = temp_dist_warp(a , a , cur_len=a ) __lowerCamelCase = top_k_warp(a , a , cur_len=a ) __lowerCamelCase = top_p_warp(a , a , cur_len=a ) __lowerCamelCase = min_dist_proc(a , a , cur_len=a ) __lowerCamelCase = bos_dist_proc(a , a , cur_len=a ) __lowerCamelCase = eos_dist_proc(a , a , cur_len=a ) return scores # with processor list def run_processor_list(a : Optional[int] , a : Tuple , a : str ): __lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __lowerCamelCase = processor(a , a , cur_len=a ) return scores __lowerCamelCase = jax.jit(a ) __lowerCamelCase = jax.jit(a ) __lowerCamelCase = jitted_run_no_processor_list(a , a , a ) __lowerCamelCase = jitted_run_processor_list(a , a , a ) # scores should be equal self.assertTrue(jnp.allclose(a , a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
67
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase__ = get_logger(__name__) class a__ : """simple docstring""" __lowerCamelCase = 'dummy_data' __lowerCamelCase = 'datasets' __lowerCamelCase = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ) -> Dict: '''simple docstring''' A__ = 0 A__ = dataset_name A__ = cache_dir A__ = use_local_dummy_data A__ = config # download_callbacks take a single url as input A__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A__ = str(lowercase ) # to be downloaded A__ = None A__ = None @property def UpperCamelCase ( self ) -> Dict: '''simple docstring''' if self._dummy_file is None: A__ = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A__ = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase ) return os.path.join(lowercase , self.dummy_file_name ) @property def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' if self._bucket_url is None: A__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def UpperCamelCase ( self , lowercase , *lowercase ) -> Any: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested A__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A__ = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase ): return self.create_dummy_data_dict(lowercase , lowercase ) elif isinstance(lowercase , (list, tuple) ): return self.create_dummy_data_list(lowercase , lowercase ) else: return self.create_dummy_data_single(lowercase , lowercase ) def UpperCamelCase ( self , lowercase , *lowercase ) -> Dict: '''simple docstring''' return self.download_and_extract(lowercase ) def UpperCamelCase ( self , lowercase , lowercase ) -> Tuple: '''simple docstring''' return self.download_and_extract(lowercase ) def UpperCamelCase ( self , lowercase , *lowercase , **lowercase ) -> Optional[int]: '''simple docstring''' return path def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' return {} def UpperCamelCase ( self , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' A__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase ): for single_url in single_urls: download_callback(lowercase ) else: A__ = single_urls download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase ): A__ = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) for x in single_urls] else: A__ = single_urls A__ = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase ).name ) ) A__ = value # make sure that values are unique if all(isinstance(lowercase , lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self , lowercase , lowercase ) -> Dict: '''simple docstring''' A__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A__ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , lowercase ) ) for url in data_url ) A__ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A__ = [data_url[0]] * len(lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(lowercase ) return dummy_data_list def UpperCamelCase ( self , lowercase , lowercase ) -> List[str]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self ) -> int: '''simple docstring''' pass def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def UpperCamelCase ( self , lowercase ) -> Optional[Any]: '''simple docstring''' def _iter_archive_members(lowercase ): # this preserves the order of the members inside the ZIP archive A__ = Path(self.dummy_file ).parent A__ = path.relative_to(lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(lowercase ) A__ = Path(lowercase ) A__ = _iter_archive_members(lowercase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(lowercase ).as_posix(), file_path.open("rb" ) def UpperCamelCase ( self , lowercase ) -> Dict: '''simple docstring''' if not isinstance(lowercase , lowercase ): A__ = [paths] for path in paths: if os.path.isfile(lowercase ): if os.path.basename(lowercase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase ): if os.path.basename(lowercase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(lowercase ): if filename.startswith((".", "__") ): continue yield os.path.join(lowercase , lowercase )
68
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
'''simple docstring''' A__ : Optional[int] =''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__ : int =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__ : str ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
70
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
0
from manim import * class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : Dict =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Union[str, Any] =[mem.copy() for i in range(6 )] __UpperCamelCase : List[str] =[mem.copy() for i in range(6 )] __UpperCamelCase : int =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[Any] =VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str =Text('CPU' , font_size=24 ) __UpperCamelCase : Dict =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =[mem.copy() for i in range(4 )] __UpperCamelCase : List[str] =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str =Text('GPU' , font_size=24 ) __UpperCamelCase : List[str] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =[mem.copy() for i in range(6 )] __UpperCamelCase : Dict =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : Optional[int] =Text('Model' , font_size=24 ) __UpperCamelCase : Tuple =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : List[Any] =[] for i, rect in enumerate(lowerCamelCase__ ): rect.set_stroke(lowerCamelCase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __UpperCamelCase : List[Any] =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowerCamelCase__ , buff=0.0 ) self.add(lowerCamelCase__ ) cpu_targs.append(lowerCamelCase__ ) __UpperCamelCase : Tuple =[mem.copy() for i in range(6 )] __UpperCamelCase : List[str] =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : List[str] =Text('Loaded Checkpoint' , font_size=24 ) __UpperCamelCase : Union[str, Any] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , aligned_edge=lowerCamelCase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __UpperCamelCase : List[Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : List[str] =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCamelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __UpperCamelCase : int =MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.play(Write(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) ) __UpperCamelCase : str =[] __UpperCamelCase : Tuple =[] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : List[Any] =fill.copy().set_fill(lowerCamelCase__ , opacity=0.7 ) target.move_to(lowerCamelCase__ ) first_animations.append(GrowFromCenter(lowerCamelCase__ , run_time=1 ) ) __UpperCamelCase : Dict =target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
71
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = os.path.dirname(os.path.realpath(A_ ) ) _lowerCamelCase : Optional[Any] = os.path.join(A_, '''words.txt''' ) _lowerCamelCase : Dict = '''''' with open(A_ ) as f: _lowerCamelCase : Any = f.readline() _lowerCamelCase : List[str] = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] _lowerCamelCase : Union[str, Any] = [ word for word in [sum(ord(A_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(A_ ) if __name__ == "__main__": print(solution())
72
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
0
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( """The `image_to_image.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionImg2ImgPipeline` instead.""" )
73
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
"""simple docstring""" def _snake_case ( snake_case__ : float , snake_case__ : int ): if digit_amount > 0: return round(number - int(snake_case__ ) , snake_case__ ) return number - int(snake_case__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
74
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
'''simple docstring''' from __future__ import annotations import requests a_ : List[Any] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def a_ ( __snake_case : str , __snake_case : int = 1 , __snake_case : str = "new" , __snake_case : list | None = None ) -> dict: """simple docstring""" lowerCamelCase_ =wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): lowerCamelCase_ =F'''Invalid search term: {invalid_search_terms}''' raise ValueError(__snake_case ) lowerCamelCase_ =requests.get( F'''https://reddit.com/r/{subreddit}/{age}.json?limit={limit}''' , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError lowerCamelCase_ =response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} lowerCamelCase_ ={} for id_ in range(__snake_case ): lowerCamelCase_ ={ item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
75
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE : int = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(a ) , a ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[Any] = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) SCREAMING_SNAKE_CASE : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Dict = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Any = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : int = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 , 5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) SCREAMING_SNAKE_CASE : List[str] = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = np.random.randn(1 , 3 , 4 ) SCREAMING_SNAKE_CASE : List[str] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) SCREAMING_SNAKE_CASE : int = np.random.randn(1 , 4 , 1 , 5 ) SCREAMING_SNAKE_CASE : str = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Dict = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randn(3 , 4 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
76
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
"""simple docstring""" from manim import * class UpperCAmelCase_ ( _a): def _UpperCAmelCase ( self ) -> str: lowercase__ : int = Rectangle(height=0.5 , width=0.5 ) lowercase__ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase__ : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) lowercase__ : Optional[int] = [mem.copy() for i in range(6 )] lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : str = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : str = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : str = VGroup(a , a ).arrange(a , buff=0 ) lowercase__ : Dict = Text('CPU' , font_size=2_4 ) lowercase__ : Dict = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a ) lowercase__ : int = [mem.copy() for i in range(4 )] lowercase__ : List[Any] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : List[Any] = Text('GPU' , font_size=2_4 ) lowercase__ : Union[str, Any] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) gpu.move_to([-1, -1, 0] ) self.add(a ) lowercase__ : Tuple = [mem.copy() for i in range(6 )] lowercase__ : List[Any] = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Union[str, Any] = Text('Model' , font_size=2_4 ) lowercase__ : Any = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) model.move_to([3, -1.0, 0] ) self.add(a ) lowercase__ : int = [] lowercase__ : Tuple = [] for i, rect in enumerate(a ): lowercase__ : List[Any] = fill.copy().set_fill(a , opacity=0.8 ) target.move_to(a ) model_arr.append(a ) lowercase__ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a ) self.add(*a , *a ) lowercase__ : Tuple = [meta_mem.copy() for i in range(6 )] lowercase__ : List[Any] = [meta_mem.copy() for i in range(6 )] lowercase__ : Any = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Any = VGroup(*a ).arrange(a , buff=0 ) lowercase__ : Any = VGroup(a , a ).arrange(a , buff=0 ) lowercase__ : Tuple = Text('Disk' , font_size=2_4 ) lowercase__ : List[str] = Group(a , a ).arrange(a , buff=0.5 , aligned_edge=a ) disk.move_to([-4, -1.25, 0] ) self.add(a , a ) lowercase__ : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase__ : Optional[Any] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a , a ) lowercase__ : Optional[int] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a ) lowercase__ : str = MarkupText( f"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a ) ) lowercase__ : List[Any] = Square(0.3 ) input.set_fill(a , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a , buff=0.5 ) self.play(Write(a ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a , buff=0.02 ) self.play(MoveToTarget(a ) ) self.play(FadeOut(a ) ) lowercase__ : Any = Arrow(start=a , end=a , color=a , buff=0.5 ) a.next_to(model_arr[0].get_left() , a , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) lowercase__ : List[str] = MarkupText( f"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) ) lowercase__ : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(a ) , Circumscribe(model_arr[0] , color=a , **a ) , Circumscribe(model_cpu_arr[0] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) lowercase__ : Tuple = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , a , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) lowercase__ : Union[str, Any] = AnimationGroup( FadeOut(a , run_time=0.5 ) , MoveToTarget(a , run_time=0.5 ) , FadeIn(a , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: lowercase__ : List[str] = 0.7 self.play( Circumscribe(model_arr[i] , **a ) , Circumscribe(cpu_left_col_base[i] , **a ) , Circumscribe(cpu_left_col_base[i + 1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , Circumscribe(model_arr[i + 1] , color=a , **a ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a , **a ) , Circumscribe(cpu_left_col_base[-1] , color=a , **a ) , Circumscribe(gpu_rect[0] , color=a , **a ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) lowercase__ : Optional[Any] = a_c lowercase__ : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(a ) , FadeOut(a , run_time=0.5 ) , ) lowercase__ : Optional[Any] = MarkupText(f"""Inference on a model too large for GPU memory\nis successfully completed.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(a , run_time=3 ) , MoveToTarget(a ) ) self.wait()
77
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """segformer""" def __init__( self :Optional[int] , lowercase_ :Any=3 , lowercase_ :Tuple=4 , lowercase_ :Optional[Any]=[2, 2, 2, 2] , lowercase_ :Optional[int]=[8, 4, 2, 1] , lowercase_ :str=[32, 64, 1_60, 2_56] , lowercase_ :Dict=[7, 3, 3, 3] , lowercase_ :List[str]=[4, 2, 2, 2] , lowercase_ :Tuple=[1, 2, 5, 8] , lowercase_ :str=[4, 4, 4, 4] , lowercase_ :Tuple="gelu" , lowercase_ :Tuple=0.0 , lowercase_ :Tuple=0.0 , lowercase_ :Optional[int]=0.1 , lowercase_ :List[str]=0.02 , lowercase_ :Tuple=0.1 , lowercase_ :str=1E-6 , lowercase_ :int=2_56 , lowercase_ :List[Any]=2_55 , **lowercase_ :Any , ) -> str: super().__init__(**lowercase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowercase_ , ) UpperCAmelCase = num_channels UpperCAmelCase = num_encoder_blocks UpperCAmelCase = depths UpperCAmelCase = sr_ratios UpperCAmelCase = hidden_sizes UpperCAmelCase = patch_sizes UpperCAmelCase = strides UpperCAmelCase = mlp_ratios UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = classifier_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = drop_path_rate UpperCAmelCase = layer_norm_eps UpperCAmelCase = decoder_hidden_size UpperCAmelCase = kwargs.get('reshape_last_stage' , lowercase_ ) UpperCAmelCase = semantic_loss_ignore_index class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self :Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase__ ( self :str ) -> float: return 1E-4 @property def UpperCAmelCase__ ( self :Dict ) -> int: return 12
78
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __lowercase ( __lowercase , __lowercase , __lowercase ) -> dict[str, float]: '''simple docstring''' if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__lowercase , 2 ) - pow(__lowercase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__lowercase , 2 ) + pow(__lowercase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
79
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowercase_ : def __init__( self , a , a=13 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=32 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=16 , a=2 , a=0.02 , a=False , a=True , a="None" , a=3 , a=4 , a=None , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def __a ( self ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFDebertaVaModel(config=a ) UpperCamelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__ = [input_ids, input_mask] UpperCamelCase__ = model(a ) UpperCamelCase__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFDebertaVaForMaskedLM(config=a ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForSequenceClassification(config=a ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = self.num_labels UpperCamelCase__ = TFDebertaVaForTokenClassification(config=a ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , a , a , a , a , a , a , a ): UpperCamelCase__ = TFDebertaVaForQuestionAnswering(config=a ) UpperCamelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__ = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowercase_ ( a__ , a__ , unittest.TestCase ): __UpperCAmelCase = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def __a ( self ): UpperCamelCase__ = TFDebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=a , hidden_size=37 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def __a ( self ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def __a ( self ): UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a ) @require_tf class lowercase_ ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __a ( self ): pass @slow def __a ( self ): UpperCamelCase__ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) UpperCamelCase__ = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) UpperCamelCase__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase__ = model(a , attention_mask=a )[0] UpperCamelCase__ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a , atol=1e-4 )
80
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=_SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = ["torch", "torchsde"] def __init__( self , *__A , **__A ) -> Dict: requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *__A , **__A ) -> int: requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def SCREAMING_SNAKE_CASE ( cls , *__A , **__A ) -> List[Any]: requires_backends(cls , ['''torch''', '''torchsde'''] )
81
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
0
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=512 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def snake_case ( self ): """simple docstring""" _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , use_stable_embedding=_snake_case , ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = OpenLlamaModel(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaModel(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , ) _lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , ) _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" _lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" _lowerCAmelCase = True _lowerCAmelCase = True _lowerCAmelCase = OpenLlamaForCausalLM(config=_snake_case ) model.to(_snake_case ) model.eval() # first forward pass _lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , use_cache=_snake_case , ) _lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , output_hidden_states=_snake_case , )["""hidden_states"""][0] _lowerCAmelCase = model( _snake_case , attention_mask=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , past_key_values=_snake_case , output_hidden_states=_snake_case , )["""hidden_states"""][0] # select random slice _lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3 ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self ): """simple docstring""" _lowerCAmelCase = OpenLlamaModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = """single_label_classification""" _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) _lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = 3 _lowerCAmelCase = """multi_label_classification""" _lowerCAmelCase = input_dict["""input_ids"""] _lowerCAmelCase = input_ids.ne(1 ).to(_snake_case ) _lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCAmelCase = OpenLlamaForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() _lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def snake_case ( self ): """simple docstring""" pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase = ids_tensor([1, 10] , config.vocab_size ) _lowerCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = OpenLlamaModel(_snake_case ) original_model.to(_snake_case ) original_model.eval() _lowerCAmelCase = original_model(_snake_case ).last_hidden_state _lowerCAmelCase = original_model(_snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowerCAmelCase = {"""type""": scaling_type, """factor""": 10.0} _lowerCAmelCase = OpenLlamaModel(_snake_case ) scaled_model.to(_snake_case ) scaled_model.eval() _lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state _lowerCAmelCase = scaled_model(_snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_snake_case , _snake_case , atol=1e-5 ) )
82
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = dct.pop(__lowerCAmelCase ) _UpperCAmelCase = val def __A ( )-> str: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True )-> List[str]: """simple docstring""" _UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase = 8 # set labels if required if not base_model: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 # load original model from torch hub _UpperCAmelCase = torch.hub.load('facebookresearch/dino:main' , __lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _UpperCAmelCase = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if base_model: _UpperCAmelCase = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase = ViTImageProcessor() _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCAmelCase ) if base_model: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule snake_case_ : Tuple = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys snake_case_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Any = CustomTokenizer pass
84
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
'''simple docstring''' from __future__ import annotations import typing from collections.abc import Iterable import numpy as np _SCREAMING_SNAKE_CASE : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 _SCREAMING_SNAKE_CASE : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def UpperCamelCase_( snake_case : Vector , snake_case : Vector ): '''simple docstring''' return np.sqrt(np.sum((np.asarray(snake_case ) - np.asarray(snake_case )) ** 2 ) ) def UpperCamelCase_( snake_case : Vector , snake_case : Vector ): '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(snake_case , snake_case ) ) ** (1 / 2) if __name__ == "__main__": def UpperCamelCase_( ): '''simple docstring''' from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
85
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
"""simple docstring""" from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): __lowerCAmelCase : Dict = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 __lowerCAmelCase : List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if latents is None: __lowerCAmelCase : Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowerCAmelCase : Any = latents.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Tuple = len(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings __lowerCAmelCase : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=77 , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) __lowerCAmelCase : Tuple = text_inputs.input_ids __lowerCAmelCase : Union[str, Any] = self.tokenizer(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __lowerCAmelCase : Dict = text_input_ids.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = text_inputs.attention_mask.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : str = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = prompt_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Dict = text_encoder_hidden_states.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Optional[int] = text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : List[str] if negative_prompt is None: __lowerCAmelCase : Union[str, Any] = [''] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=" f" {type(_SCREAMING_SNAKE_CASE )}." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: __lowerCAmelCase : Optional[int] = negative_prompt __lowerCAmelCase : Tuple = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=77 , truncation=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) __lowerCAmelCase : Union[str, Any] = uncond_input.input_ids.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = uncond_input.attention_mask.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Any = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase : List[str] = negative_prompt_embeds.shape[1] __lowerCAmelCase : Any = negative_prompt_embeds.repeat(1 , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = uncond_text_encoder_hidden_states.shape[1] __lowerCAmelCase : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) __lowerCAmelCase : Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) __lowerCAmelCase : Optional[Any] = uncond_text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) __lowerCAmelCase : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) __lowerCAmelCase : int = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Union[str, Any] = torch.device(f"cuda:{gpu_id}" ) __lowerCAmelCase : List[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __lowerCAmelCase : str = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCAmelCase : Any = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: __lowerCAmelCase , __lowerCAmelCase : Any = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: __lowerCAmelCase , __lowerCAmelCase : Dict = cpu_offload_with_hook(self.safety_checker , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. __lowerCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 1_00 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[str] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" ) __lowerCAmelCase : Dict = self._execution_device __lowerCAmelCase : Optional[Any] = batch_size * num_images_per_prompt __lowerCAmelCase : Optional[int] = guidance_scale > 1.0 __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : int = self._encode_prompt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : Optional[Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : int = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = self.scheduler.timesteps __lowerCAmelCase : int = self.unet.config.in_channels __lowerCAmelCase , __lowerCAmelCase : Any = get_new_h_w(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent __lowerCAmelCase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase : Union[str, Any] = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} __lowerCAmelCase : Optional[Any] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: __lowerCAmelCase , __lowerCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = noise_pred.chunk(2 ) __lowerCAmelCase , __lowerCAmelCase : int = variance_pred.chunk(2 ) __lowerCAmelCase : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCAmelCase : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase : List[str] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample # post-processing __lowerCAmelCase : Tuple = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowerCAmelCase : List[str] = image * 0.5 + 0.5 __lowerCAmelCase : Dict = image.clamp(0 , 1 ) __lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCAmelCase : Union[str, Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
86
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class snake_case_ ( __A ): __A : int = "xlnet" __A : List[Any] = ["mems"] __A : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , lowercase_ : List[Any]=3_20_00 , lowercase_ : Any=10_24 , lowercase_ : Dict=24 , lowercase_ : Any=16 , lowercase_ : List[Any]=40_96 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Dict=True , lowercase_ : Dict="bi" , lowercase_ : Optional[int]=0.02 , lowercase_ : Optional[Any]=1E-12 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=5_12 , lowercase_ : Union[str, Any]=None , lowercase_ : str=True , lowercase_ : List[Any]=False , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=-1 , lowercase_ : Optional[int]=False , lowercase_ : str="last" , lowercase_ : List[Any]=True , lowercase_ : Any="tanh" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=5 , lowercase_ : str=5 , lowercase_ : str=5 , lowercase_ : Optional[int]=1 , lowercase_ : Dict=2 , **lowercase_ : Union[str, Any] , ) -> int: lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = d_model lowercase__ : Union[str, Any] = n_layer lowercase__ : Any = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) lowercase__ : List[Any] = d_model // n_head lowercase__ : List[str] = ff_activation lowercase__ : Optional[Any] = d_inner lowercase__ : int = untie_r lowercase__ : int = attn_type lowercase__ : Dict = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : List[Any] = dropout lowercase__ : Optional[Any] = mem_len lowercase__ : Any = reuse_len lowercase__ : List[str] = bi_data lowercase__ : str = clamp_len lowercase__ : Tuple = same_length lowercase__ : List[Any] = summary_type lowercase__ : str = summary_use_proj lowercase__ : List[str] = summary_activation lowercase__ : List[str] = summary_last_dropout lowercase__ : str = start_n_top lowercase__ : List[str] = end_n_top lowercase__ : List[Any] = bos_token_id lowercase__ : Tuple = pad_token_id lowercase__ : Any = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , lowercase_ , ) lowercase__ : Tuple = kwargs["use_cache"] lowercase__ : str = use_mems_eval lowercase__ : List[str] = use_mems_train super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __UpperCamelCase ( self : Dict , lowercase_ : List[Any] ) -> Any: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
87
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
from collections.abc import Iterable from typing import Any class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int | None = None ) -> List[Any]: """simple docstring""" __magic_name__ = value __magic_name__ = None # Added in order to delete a node easier __magic_name__ = None __magic_name__ = None def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Node | None = None ) -> Union[str, Any]: """simple docstring""" __magic_name__ = root def __str__( self : List[str] ) -> str: """simple docstring""" return str(self.root ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Node , UpperCamelCase__ : Node | None ) -> None: """simple docstring""" if new_children is not None: # reset its kids __magic_name__ = node.parent if node.parent is not None: # reset its parent if self.is_right(UpperCamelCase__ ): # If it is the right children __magic_name__ = new_children else: __magic_name__ = new_children else: __magic_name__ = new_children def _lowercase ( self : Tuple , UpperCamelCase__ : Node ) -> bool: """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def _lowercase ( self : int ) -> bool: """simple docstring""" return self.root is None def _lowercase ( self : Any , UpperCamelCase__ : Dict ) -> None: """simple docstring""" __magic_name__ = Node(UpperCamelCase__ ) # create a new Node if self.empty(): # if Tree is empty __magic_name__ = new_node # set its root else: # Tree is not empty __magic_name__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __magic_name__ = new_node # We insert the new node in a leaf break else: __magic_name__ = parent_node.left else: if parent_node.right is None: __magic_name__ = new_node break else: __magic_name__ = parent_node.right __magic_name__ = parent_node def _lowercase ( self : int , *UpperCamelCase__ : Optional[Any] ) -> None: """simple docstring""" for value in values: self.__insert(UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ) -> Node | None: """simple docstring""" if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: __magic_name__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __magic_name__ = node.left if value < node.value else node.right return node def _lowercase ( self : Any , UpperCamelCase__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: if self.root is None: return None __magic_name__ = self.root if not self.empty(): while node.right is not None: __magic_name__ = node.right return node def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Node | None = None ) -> Node | None: """simple docstring""" if node is None: __magic_name__ = self.root if self.root is None: return None if not self.empty(): __magic_name__ = self.root while node.left is not None: __magic_name__ = node.left return node def _lowercase ( self : str , UpperCamelCase__ : int ) -> None: """simple docstring""" __magic_name__ = self.search(UpperCamelCase__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(UpperCamelCase__ , UpperCamelCase__ ) elif node.left is None: # Has only right children self.__reassign_nodes(UpperCamelCase__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(UpperCamelCase__ , node.left ) else: __magic_name__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __magic_name__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def _lowercase ( self : int , UpperCamelCase__ : Node | None ) -> Iterable: """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict=None ) -> Any: """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : list , UpperCamelCase__ : Node | None ) -> None: """simple docstring""" if node: self.inorder(UpperCamelCase__ , node.left ) arr.append(node.value ) self.inorder(UpperCamelCase__ , node.right ) def _lowercase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : Node ) -> int: """simple docstring""" __magic_name__ = [] self.inorder(UpperCamelCase__ , UpperCamelCase__ ) # append all values to list using inorder traversal return arr[k - 1] def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] if curr_node is not None: __magic_name__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def a__ ( ): '''simple docstring''' __magic_name__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) __magic_name__ = BinarySearchTree() for i in testlist: t.insert(A_ ) # Prints all the elements of the list in order traversal print(A_ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn't exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn't exist""" ) if not t.empty(): print("""Max Value: """, t.get_max().value ) # type: ignore print("""Min Value: """, t.get_min().value ) # type: ignore for i in testlist: t.remove(A_ ) print(A_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
88
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCAmelCase = open # noqa: we just need to have a builtin inside this module to test it properly
89
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
import baseaa def lowerCamelCase_ ( UpperCamelCase__ : str ) -> bytes: """simple docstring""" return baseaa.aaaencode(string.encode('utf-8' ) ) def lowerCamelCase_ ( UpperCamelCase__ : bytes ) -> str: """simple docstring""" return baseaa.aaadecode(UpperCamelCase__ ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
90
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
"""simple docstring""" import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCAmelCase_ : List[str] = logging.getLogger(__name__) def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=__a , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=__a , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=__a , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=__a , default='''data/dump''' , help='''The dump file prefix.''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": SCREAMING_SNAKE_CASE_ : Dict = BertTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": SCREAMING_SNAKE_CASE_ : List[str] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : int = tokenizer.special_tokens_map['''cls_token'''] # `<s>` SCREAMING_SNAKE_CASE_ : Dict = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer.from_pretrained(args.tokenizer_name ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` SCREAMING_SNAKE_CASE_ : str = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: SCREAMING_SNAKE_CASE_ : Any = fp.readlines() logger.info('''Start encoding''' ) logger.info(f'{len(__a )} examples to process.' ) SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1_00_00 SCREAMING_SNAKE_CASE_ : Optional[Any] = time.time() for text in data: SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'{bos} {text.strip()} {sep}' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(__a , add_special_tokens=__a ) rslt.append(__a ) iter += 1 if iter % interval == 0: SCREAMING_SNAKE_CASE_ : Tuple = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) SCREAMING_SNAKE_CASE_ : Tuple = time.time() logger.info('''Finished binarization''' ) logger.info(f'{len(__a )} examples processed.' ) SCREAMING_SNAKE_CASE_ : Any = f'{args.dump_file}.{args.tokenizer_name}.pickle' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.vocab_size if vocab_size < (1 << 16): SCREAMING_SNAKE_CASE_ : Any = [np.uintaa(__a ) for d in rslt] else: SCREAMING_SNAKE_CASE_ : List[str] = [np.intaa(__a ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(__a , '''wb''' ) as handle: pickle.dump(rslt_ , __a , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
91
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = """▁""" UpperCamelCase__ = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase__ = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } UpperCamelCase__ = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off UpperCamelCase__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class a__ ( snake_case__ ): _a : Tuple = VOCAB_FILES_NAMES _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _a : Dict = ["""input_ids""", """attention_mask"""] _a : List[int] = [] _a : List[int] = [] def __init__( self , _A , _A=None , _A=None , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A = None , **_A , ): """simple docstring""" __lowerCAmelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_A , tgt_lang=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) __lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } __lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCAmelCase = src_lang if src_lang is not None else "en_XX" __lowerCAmelCase = self.lang_code_to_id[self._src_lang] __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , _A ): """simple docstring""" __lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" return self.sp_model.encode(_A , out_type=_A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = [] __lowerCAmelCase = "" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(_A ) __lowerCAmelCase = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , "wb" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def __SCREAMING_SNAKE_CASE( self , _A , _A = None , _A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def __SCREAMING_SNAKE_CASE( self , _A , _A = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , **_A ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) __lowerCAmelCase = self.convert_tokens_to_ids(_A ) __lowerCAmelCase = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE( self , _A , _A = "en_XX" , _A = None , _A = "ro_RO" , **_A , ): """simple docstring""" __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.lang_code_to_id[src_lang] __lowerCAmelCase = [self.cur_lang_code_id] __lowerCAmelCase = [self.eos_token_id] def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = self.lang_code_to_id[tgt_lang] __lowerCAmelCase = [self.cur_lang_code_id] __lowerCAmelCase = [self.eos_token_id]
92
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : List[Any] = { "configuration_nllb_moe": [ "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP", "NllbMoeConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST", "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeTop2Router", "NllbMoeSparseMLP", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
93
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Dict = '''▁''' snake_case : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} snake_case : Any = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } snake_case : int = {'''vinai/bartpho-syllable''': 10_24} class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ): # Mask token behave like a normal word, i.e. include the space before it a :List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token a :Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) a :Optional[int] = vocab_file a :List[Any] = monolingual_vocab_file a :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility a :List[str] = {} a :Optional[int] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowerCamelCase ) not in self.fairseq_tokens_to_ids: a :List[str] = cnt cnt += 1 with open(_lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): a :Union[str, Any] = line.strip().split()[0] a :Union[str, Any] = len(self.fairseq_tokens_to_ids ) if str(_lowerCamelCase ) not in self.fairseq_tokens_to_ids: a :Optional[int] = len(self.fairseq_tokens_to_ids ) a :Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): a :Union[str, Any] = self.__dict__.copy() a :List[Any] = None a :Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ): a :Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a :int = {} a :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a :Union[str, Any] = [self.cls_token_id] a :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): a :Tuple = [self.sep_token_id] a :Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :Union[str, Any] = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ): if not os.path.isdir(_lowerCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a :int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a :Optional[int] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: a :List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowerCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(_lowerCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
94
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
0
def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE , n - 1 , SCREAMING_SNAKE_CASE ) * a) % mod else: a__ : List[str] =binary_exponentiation(SCREAMING_SNAKE_CASE , n / 2 , SCREAMING_SNAKE_CASE ) return (b * b) % mod # a prime number UpperCAmelCase : Any = 701 UpperCAmelCase : List[Any] = 1000000000 UpperCAmelCase : Any = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
95
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
"""simple docstring""" from random import randint, random def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = False , lowercase__ = 5 , ): _lowerCamelCase : Tuple = [[-1] * number_of_cells] # Create a highway without any car _lowerCamelCase : Any = 0 _lowerCamelCase : str = max(lowercase__ , 0 ) while i < number_of_cells: _lowerCamelCase : Optional[int] = ( randint(0 , lowercase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Optional[int] = highway_now[car_index + 1 :] for cell in range(len(lowercase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase__ , -1 ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : int = len(lowercase__ ) # Beforce calculations, the highway is empty _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(lowercase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _lowerCamelCase : int = min(highway_now[car_index] + 1 , lowercase__ ) # Number of empty cell before the next car _lowerCamelCase : int = get_distance(lowercase__ , lowercase__ ) - 1 # We can't have the car causing an accident _lowerCamelCase : Union[str, Any] = min(next_highway[car_index] , lowercase__ ) if random() < probability: # Randomly, a driver will slow down _lowerCamelCase : Optional[int] = max(next_highway[car_index] - 1 , 0 ) return next_highway def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = len(highway[0] ) for i in range(lowercase__ ): _lowerCamelCase : Dict = update(highway[i] , lowercase__ , lowercase__ ) _lowerCamelCase : Any = [-1] * number_of_cells for car_index in range(lowercase__ ): _lowerCamelCase : List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _lowerCamelCase : str = (car_index + speed) % number_of_cells # Commit the change of position _lowerCamelCase : Optional[Any] = speed highway.append(lowercase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
96
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
'''simple docstring''' from typing import Any def a ( __a ) -> list[Any]: '''simple docstring''' if not input_list: return [] UpperCamelCase__ :str = [input_list.count(__a ) for value in input_list] UpperCamelCase__ :Dict = max(__a ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__a ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
97
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
0
"""simple docstring""" def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if index == r: for j in range(lowerCamelCase ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase__ = arr[i] combination_util(lowerCamelCase , lowerCamelCase , lowerCamelCase , index + 1 , lowerCamelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # A temporary array to store all combination one by one UpperCAmelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowerCamelCase , lowerCamelCase , lowerCamelCase , 0 , lowerCamelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase__ : str = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
98
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0
def A_ ( A__ ) -> bool: if not isinstance(A__ , A__ ): a__ : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(A__ ) if number < 0: return False a__ : int = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
99
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _a = get_logger(__name__) class __lowerCamelCase ( enum.Enum): """simple docstring""" UpperCamelCase__ = "all_checks" UpperCamelCase__ = "basic_checks" UpperCamelCase__ = "no_checks" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None )-> str: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _UpperCAmelCase = ' for ' + verification_name if verification_name is not None else '' if len(__lowerCAmelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" class __lowerCamelCase ( snake_case__): """simple docstring""" def __A ( __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) if len(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(__lowerCAmelCase ) - set(__lowerCAmelCase ) ) ) _UpperCAmelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(__lowerCAmelCase ) ) logger.info('All the splits matched successfully.' ) def __A ( __lowerCAmelCase , __lowerCAmelCase = True )-> dict: """simple docstring""" if record_checksum: _UpperCAmelCase = shaaaa() with open(__lowerCAmelCase , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(__lowerCAmelCase ) _UpperCAmelCase = m.hexdigest() else: _UpperCAmelCase = None return {"num_bytes": os.path.getsize(__lowerCAmelCase ), "checksum": checksum} def __A ( __lowerCAmelCase )-> List[str]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
39
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 200_0000 ): __SCREAMING_SNAKE_CASE = [0 for i in range(n + 1 )] __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 0 for i in range(UpperCamelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"""{solution() = }""")
100
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=16 , UpperCAmelCase=[1, 2, 1] , UpperCAmelCase=[2, 2, 4] , UpperCAmelCase=2 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=10 , UpperCAmelCase=8 , UpperCAmelCase=["stage1", "stage2", "stage3"] , UpperCAmelCase=[1, 2, 3] , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCamelCase__ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase ): _UpperCAmelCase = 0 return t def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={} ): with torch.no_grad(): _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" F""" {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has""" F""" `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) _UpperCAmelCase = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'output_hidden_states': True} ) @require_torch class __lowerCamelCase ( unittest.TestCase , snake_case__): """simple docstring""" UpperCamelCase__ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCamelCase__ = MaskFormerSwinConfig def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() _UpperCAmelCase = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
39
0
import math from collections.abc import Iterator from itertools import takewhile def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( ): '''simple docstring''' lowercase = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def UpperCamelCase ( lowerCAmelCase__ = 200_0000 ): '''simple docstring''' return sum(takewhile(lambda lowerCAmelCase__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
101
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = TransfoXLTokenizer UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" super().setUp() _UpperCAmelCase = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def UpperCamelCase ( self , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = '<unk> UNwanted , running' _UpperCAmelCase = '<unk> unwanted, running' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(UpperCAmelCase , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [0, 4, 8, 7] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TransfoXLTokenizer(lower_case=UpperCAmelCase ) _UpperCAmelCase = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' _UpperCAmelCase = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = len(UpperCAmelCase ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
39
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_55 , a_ = True , a_ = None , a_ = None , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Any = size if size is not None else {'''shortest_edge''': 2_56} __snake_case : Tuple = get_size_dict(a_ , default_to_square=a_ ) __snake_case : Dict = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __snake_case : Union[str, Any] = get_size_dict(a_ , param_name='''crop_size''' ) __snake_case : Optional[int] = do_resize __snake_case : Tuple = size __snake_case : Optional[int] = resample __snake_case : str = do_center_crop __snake_case : str = crop_size __snake_case : Tuple = do_rescale __snake_case : Tuple = rescale_factor __snake_case : Dict = do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BICUBIC , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Tuple = get_resize_output_image_size(a_ , size=size['''shortest_edge'''] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' __snake_case : List[Any] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(a_ , size=(size['''height'''], size['''width''']) , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = None , **a_ ): '''simple docstring''' return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ = None , **a_ , ): '''simple docstring''' return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): '''simple docstring''' __snake_case : int = do_resize if do_resize is not None else self.do_resize __snake_case : Optional[Any] = size if size is not None else self.size __snake_case : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) __snake_case : str = resample if resample is not None else self.resample __snake_case : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size __snake_case : List[Any] = get_size_dict(a_ , param_name='''crop_size''' ) __snake_case : int = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Dict = image_mean if image_mean is not None else self.image_mean __snake_case : Tuple = image_std if image_std is not None else self.image_std __snake_case : Dict = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __snake_case : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case : Dict = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case : List[Any] = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case : Tuple = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case : str = {'''pixel_values''': images} return BatchFeature(data=a_ , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(a_ ): __snake_case : Optional[Any] = target_sizes.numpy() __snake_case : Dict = [] for idx in range(len(a_ ) ): __snake_case : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=a_ ) __snake_case : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: __snake_case : int = logits.argmax(dim=1 ) __snake_case : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
102
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _a = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
0
import math import random from typing import Any from .hill_climbing import SearchProblem def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : bool = True ,__UpperCamelCase : float = math.inf ,__UpperCamelCase : float = -math.inf ,__UpperCamelCase : float = math.inf ,__UpperCamelCase : float = -math.inf ,__UpperCamelCase : bool = False ,__UpperCamelCase : float = 100 ,__UpperCamelCase : float = 0.0_1 ,__UpperCamelCase : float = 1 ,): lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[Any] = search_prob lowerCAmelCase_ : int = start_temperate lowerCAmelCase_ : Any = [] lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Union[str, Any] = None while not search_end: lowerCAmelCase_ : int = current_state.score() if best_state is None or current_score > best_state.score(): lowerCAmelCase_ : Optional[int] = current_state scores.append(__UpperCamelCase ) iterations += 1 lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Union[str, Any] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to lowerCAmelCase_ : Any = random.randint(0 ,len(__UpperCamelCase ) - 1 ) # picking a random neighbor lowerCAmelCase_ : Optional[int] = neighbors.pop(__UpperCamelCase ) lowerCAmelCase_ : Any = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: lowerCAmelCase_ : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution lowerCAmelCase_ : Union[str, Any] = picked_neighbor else: lowerCAmelCase_ : Optional[int] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability lowerCAmelCase_ : Optional[int] = picked_neighbor lowerCAmelCase_ : int = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor lowerCAmelCase_ : Optional[int] = True else: lowerCAmelCase_ : Optional[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__UpperCamelCase ) ,__UpperCamelCase ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def UpperCamelCase( __UpperCamelCase : Dict ,__UpperCamelCase : str ): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) A__ : str = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A__ : Tuple = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) A__ : Union[str, Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) A__ : Tuple = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def UpperCamelCase( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ): return (3 * x**2) - (6 * y) A__ : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A__ : Optional[Any] = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' ) A__ : Union[str, Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) A__ : Any = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' F'''{local_min.score()}''' )
103
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" _UpperCAmelCase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F"""{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) _a = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _a = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: """simple docstring""" try: _UpperCAmelCase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" F""" {n_student}""" ) return list(range(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[int]: """simple docstring""" if n_student > n_teacher: raise ValueError(F"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __A ( __lowerCAmelCase , __lowerCAmelCase = "student" , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , )-> Tuple[PreTrainedModel, List[int], List[int]]: """simple docstring""" _UpperCAmelCase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F"""teacher must be a model or string got type {type(__lowerCAmelCase )}""" _UpperCAmelCase = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase = teacher_e if d is None: _UpperCAmelCase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights _UpperCAmelCase = teacher.config_class(**__lowerCAmelCase ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" F""" {save_path}""" ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) _UpperCAmelCase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
39
0
'''simple docstring''' from datetime import datetime import requests def _A ( A__ ): """simple docstring""" __lowercase = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __lowercase = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(A__ ).content if __name__ == "__main__": lowerCAmelCase__ = input('''Enter Video/IGTV url: ''').strip() lowerCAmelCase__ = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f'Done. Video saved to disk as {file_name}.')
104
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def __A ( __lowerCAmelCase , __lowerCAmelCase=False )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False )-> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase = '' else: _UpperCAmelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase = in_proj_bias[: config.hidden_size] _UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase = in_proj_bias[-config.hidden_size :] def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = dct.pop(__lowerCAmelCase ) _UpperCAmelCase = val def __A ( )-> str: """simple docstring""" _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True )-> List[str]: """simple docstring""" _UpperCAmelCase = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase = 8 # set labels if required if not base_model: _UpperCAmelCase = 1_000 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase = 384 _UpperCAmelCase = 1_536 _UpperCAmelCase = 12 _UpperCAmelCase = 6 # load original model from torch hub _UpperCAmelCase = torch.hub.load('facebookresearch/dino:main' , __lowerCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase = original_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) _UpperCAmelCase = create_rename_keys(__lowerCAmelCase , base_model=__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if base_model: _UpperCAmelCase = ViTModel(__lowerCAmelCase , add_pooling_layer=__lowerCAmelCase ).eval() else: _UpperCAmelCase = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase = ViTImageProcessor() _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = model(__lowerCAmelCase ) if base_model: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert torch.allclose(__lowerCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase = original_model(__lowerCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCAmelCase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''dino_vitb16''', type=str, help='''Name of the model trained with DINO you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether to only convert the base model (no projection head weights).''', ) parser.set_defaults(base_model=True) _a = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
39
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a : List[Any] = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] =["""input_features""", """is_longer"""] def __init__( self , lowerCAmelCase__=64 , lowerCAmelCase__=4_8000 , lowerCAmelCase__=480 , lowerCAmelCase__=10 , lowerCAmelCase__=1024 , lowerCAmelCase__=0.0 , lowerCAmelCase__=False , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 1_4000 , lowerCAmelCase__ = None , lowerCAmelCase__ = "fusion" , lowerCAmelCase__ = "repeatpad" , **lowerCAmelCase__ , ) -> str: super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : List[str] = top_db a : str = truncation a : List[Any] = padding a : Dict = fft_window_size a : Tuple = (fft_window_size >> 1) + 1 a : Optional[Any] = hop_length a : List[str] = max_length_s a : Union[str, Any] = max_length_s * sampling_rate a : Optional[int] = sampling_rate a : List[Any] = frequency_min a : Dict = frequency_max a : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm=lowerCAmelCase__ , mel_scale="htk" , ) a : str = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm="slaney" , mel_scale="slaney" , ) def __a ( self ) -> Dict[str, Any]: a : Optional[Any] = copy.deepcopy(self.__dict__ ) a : Dict = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> np.ndarray: a : Dict = spectrogram( lowerCAmelCase__ , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase__ , log_mel="dB" , ) return log_mel_spectrogram.T def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : Optional[int] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a : Any = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a : int = [0] # randomly choose index for each part a : Optional[int] = np.random.choice(ranges[0] ) a : List[Any] = np.random.choice(ranges[1] ) a : List[str] = np.random.choice(ranges[2] ) a : Union[str, Any] = mel[idx_front : idx_front + chunk_frames, :] a : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] a : Optional[Any] = mel[idx_back : idx_back + chunk_frames, :] a : Any = torch.tensor(mel[None, None, :] ) a : Any = torch.nn.functional.interpolate( lowerCAmelCase__ , size=[chunk_frames, 64] , mode="bilinear" , align_corners=lowerCAmelCase__ ) a : Optional[int] = mel_shrink[0][0].numpy() a : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": a : Optional[Any] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a : Optional[int] = len(lowerCAmelCase__ ) - max_length a : List[str] = np.random.randint(0 , overflow + 1 ) a : int = waveform[idx : idx + max_length] a : int = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": a : Optional[Any] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) a : str = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a : Union[str, Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a : Optional[int] = np.stack([mel, mel, mel, mel] , axis=0 ) a : str = False else: a : Optional[int] = self._random_mel_fusion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: a : Optional[int] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a : Optional[int] = int(max_length / len(lowerCAmelCase__ ) ) a : List[str] = np.stack(np.tile(lowerCAmelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a : Union[str, Any] = int(max_length / len(lowerCAmelCase__ ) ) a : Optional[Any] = np.stack(np.tile(lowerCAmelCase__ , lowerCAmelCase__ ) ) a : Optional[int] = np.pad(lowerCAmelCase__ , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": a : List[str] = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters ) a : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: a : str = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchFeature: a : Union[str, Any] = truncation if truncation is not None else self.truncation a : Dict = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) a : List[Any] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) a : int = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a : List[str] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): a : int = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a : int = [np.asarray(lowerCAmelCase__ )] # convert to mel spectrogram, truncate and pad if needed. a : List[Any] = [ self._get_input_mel(lowerCAmelCase__ , max_length if max_length else self.nb_max_samples , lowerCAmelCase__ , lowerCAmelCase__ ) for waveform in raw_speech ] a : int = [] a : int = [] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase__ ) is_longer.append(lowerCAmelCase__ ) if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a : Tuple = np.random.randint(0 , len(lowerCAmelCase__ ) ) a : Union[str, Any] = True if isinstance(input_mel[0] , lowerCAmelCase__ ): a : Dict = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a : Optional[int] = [[longer] for longer in is_longer] a : Tuple = {"input_features": input_mel, "is_longer": is_longer} a : Any = BatchFeature(lowerCAmelCase__ ) if return_tensors is not None: a : str = input_features.convert_to_tensors(lowerCAmelCase__ ) return input_features
105
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __A ( )-> Tuple: """simple docstring""" raise RuntimeError('CUDA out of memory.' ) class __lowerCamelCase ( nn.Module): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(3 , 4 ) _UpperCAmelCase = nn.BatchNormad(4 ) _UpperCAmelCase = nn.Linear(4 , 5 ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase ) ) ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _UpperCAmelCase , _UpperCAmelCase = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase ): pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = torch.cuda.memory_allocated() _UpperCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase ) _UpperCAmelCase = release_memory(UpperCAmelCase ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase )
39
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __UpperCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = ["pixel_values"] def __init__( self : List[str] ,lowercase_ : bool = True ,lowercase_ : Optional[Dict[str, int]] = None ,lowercase_ : PILImageResampling = PILImageResampling.BILINEAR ,lowercase_ : bool = True ,lowercase_ : Dict[str, int] = None ,lowercase_ : bool = True ,lowercase_ : Union[int, float] = 1 / 2_5_5 ,lowercase_ : bool = True ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,**lowercase_ : int ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : int = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase__ : Dict = get_size_dict(lowercase_ ,param_name='''crop_size''' ) lowerCAmelCase__ : Optional[int] = do_resize lowerCAmelCase__ : List[str] = size lowerCAmelCase__ : Tuple = resample lowerCAmelCase__ : str = do_center_crop lowerCAmelCase__ : int = crop_size lowerCAmelCase__ : Any = do_rescale lowerCAmelCase__ : Optional[Any] = rescale_factor lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : PILImageResampling = PILImageResampling.BICUBIC ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Union[str, Any] ,): lowerCAmelCase__ : Tuple = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : Optional[int] = get_resize_output_image_size(lowercase_ ,size=size['''shortest_edge'''] ,default_to_square=lowercase_ ) return resize(lowercase_ ,size=lowercase_ ,resample=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : np.ndarray ,lowercase_ : Dict[str, int] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : Any ,): lowerCAmelCase__ : List[str] = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowercase_ ,size=(size['''height'''], size['''width''']) ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : np.ndarray ,lowercase_ : float ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : List[str] ): return rescale(lowercase_ ,scale=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : List[Any] ,lowercase_ : np.ndarray ,lowercase_ : Union[float, List[float]] ,lowercase_ : Union[float, List[float]] ,lowercase_ : Optional[Union[str, ChannelDimension]] = None ,**lowercase_ : List[Any] ,): return normalize(lowercase_ ,mean=lowercase_ ,std=lowercase_ ,data_format=lowercase_ ,**lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : ImageInput ,lowercase_ : Optional[bool] = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : PILImageResampling = None ,lowercase_ : bool = None ,lowercase_ : Dict[str, int] = None ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[float] = None ,lowercase_ : Optional[bool] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[float, List[float]]] = None ,lowercase_ : Optional[Union[str, TensorType]] = None ,lowercase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**lowercase_ : Optional[int] ,): lowerCAmelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Optional[Any] = size if size is not None else self.size lowerCAmelCase__ : Optional[Any] = get_size_dict(lowercase_ ,default_to_square=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : str = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : int = get_size_dict(lowercase_ ,param_name='''crop_size''' ) lowerCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[str] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Any = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Union[str, Any] = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ : Dict = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowerCAmelCase__ : int = [self.resize(image=lowercase_ ,size=lowercase_ ,resample=lowercase_ ) for image in images] if do_center_crop: lowerCAmelCase__ : Optional[int] = [self.center_crop(image=lowercase_ ,size=lowercase_ ) for image in images] if do_rescale: lowerCAmelCase__ : str = [self.rescale(image=lowercase_ ,scale=lowercase_ ) for image in images] if do_normalize: lowerCAmelCase__ : Union[str, Any] = [self.normalize(image=lowercase_ ,mean=lowercase_ ,std=lowercase_ ) for image in images] lowerCAmelCase__ : int = [to_channel_dimension_format(lowercase_ ,lowercase_ ) for image in images] lowerCAmelCase__ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=lowercase_ ,tensor_type=lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : List[str] ,lowercase_ : List[Tuple] = None ): lowerCAmelCase__ : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase_ ) != len(lowercase_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase_ ): lowerCAmelCase__ : Optional[int] = target_sizes.numpy() lowerCAmelCase__ : Any = [] for idx in range(len(lowercase_ ) ): lowerCAmelCase__ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='''bilinear''' ,align_corners=lowercase_ ) lowerCAmelCase__ : List[str] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase_ ) else: lowerCAmelCase__ : Dict = logits.argmax(dim=1 ) lowerCAmelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
106
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=10 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = embeddings_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_act _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = len(UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = TFResNetModel(config=UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFResNetForImageClassification(UpperCAmelCase ) _UpperCAmelCase = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCamelCase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase__ = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self ): """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def UpperCamelCase ( self ): """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def UpperCamelCase ( self ): """simple docstring""" pass def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = model_class(UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCAmelCase = layer_type _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFResNetModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @cached_property def UpperCamelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=UpperCAmelCase , return_tensors='tf' ) # forward pass _UpperCAmelCase = model(**UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _UpperCAmelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCAmelCase , atol=1e-4 ) )
39
0
def __magic_name__ ( A : str ): '''simple docstring''' a = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __magic_name__ ( A : str ): '''simple docstring''' a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key a = remove_duplicates(key.upper() ) a = len(A ) # First fill cipher with key characters a = {alphabet[i]: char for i, char in enumerate(A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A ), 26 ): a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a = alphabet[i - offset] a = char return cipher_alphabet def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( A : str, A : dict[str, str] ): '''simple docstring''' a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A, A ) for ch in message.upper() ) def __magic_name__ ( ): '''simple docstring''' a = input("Enter message to encode or decode: " ).strip() a = input("Enter keyword: " ).strip() a = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: a = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) a = create_cipher_map(A ) print(func(A, A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
107
def __A ( __lowerCAmelCase )-> list: """simple docstring""" if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: _UpperCAmelCase = False if low == high: return swapped _UpperCAmelCase = low _UpperCAmelCase = high while left < right: if collection[left] > collection[right]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right], collection[left], ) _UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _UpperCAmelCase , _UpperCAmelCase = ( collection[right + 1], collection[left], ) _UpperCAmelCase = True _UpperCAmelCase = low + int((high - low) / 2 ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap _UpperCAmelCase = True while is_not_sorted is True: _UpperCAmelCase = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": _a = input('''Enter numbers separated by a comma:\n''').strip() _a = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
39
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[Any] = original_name.split("." )[0] lowerCAmelCase : Any = key.split("." ) lowerCAmelCase : List[str] = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowerCAmelCase : Tuple = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowerCAmelCase : str = orig_block_num - offset lowerCAmelCase : Optional[int] = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : int = OrderedDict() lowerCAmelCase , lowerCAmelCase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): lowerCAmelCase : Optional[Any] = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 lowerCAmelCase : Any = key[: key.find("proj" )] lowerCAmelCase : Any = key.replace(SCREAMING_SNAKE_CASE , f"""patch_embeddings.{total_embed_found}.""" ) lowerCAmelCase : int = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: lowerCAmelCase : Optional[int] = "poolformer.encoder." + key if "mlp.fc1" in key: lowerCAmelCase : Optional[int] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: lowerCAmelCase : List[str] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "mlp.fc2" , "output.conv2" ) if "norm1" in key: lowerCAmelCase : Optional[Any] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm1" , "before_norm" ) if "norm2" in key: lowerCAmelCase : int = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "norm2" , "after_norm" ) if "layer_scale_1" in key: lowerCAmelCase : Tuple = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: lowerCAmelCase : List[Any] = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "layer_scale_2" , "layer_scale_2" ) if "head" in key: lowerCAmelCase : Optional[int] = key.replace("head" , "classifier" ) lowerCAmelCase : List[str] = value return new_state_dict def a__ ( ): '''simple docstring''' lowerCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = PoolFormerConfig() # set attributes based on model_name lowerCAmelCase : List[str] = "huggingface/label-files" lowerCAmelCase : str = model_name[-3:] lowerCAmelCase : List[Any] = 1_0_0_0 lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : int = (1, 1_0_0_0) # set config attributes lowerCAmelCase : int = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : List[Any] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : List[Any] = idalabel lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "s12": lowerCAmelCase : Union[str, Any] = [2, 2, 6, 2] lowerCAmelCase : Tuple = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : str = 4.0 lowerCAmelCase : Dict = 0.9 elif size == "s24": lowerCAmelCase : Dict = [4, 4, 1_2, 4] lowerCAmelCase : Dict = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : Optional[int] = 4.0 lowerCAmelCase : List[str] = 0.9 elif size == "s36": lowerCAmelCase : List[Any] = [6, 6, 1_8, 6] lowerCAmelCase : int = [6_4, 1_2_8, 3_2_0, 5_1_2] lowerCAmelCase : Dict = 4.0 lowerCAmelCase : int = 1E-6 lowerCAmelCase : Union[str, Any] = 0.9 elif size == "m36": lowerCAmelCase : List[Any] = [6, 6, 1_8, 6] lowerCAmelCase : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] lowerCAmelCase : Tuple = 4.0 lowerCAmelCase : int = 1E-6 lowerCAmelCase : Optional[Any] = 0.95 elif size == "m48": lowerCAmelCase : Tuple = [8, 8, 2_4, 8] lowerCAmelCase : Tuple = [9_6, 1_9_2, 3_8_4, 7_6_8] lowerCAmelCase : str = 4.0 lowerCAmelCase : Optional[Any] = 1E-6 lowerCAmelCase : Tuple = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor lowerCAmelCase : Optional[Any] = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowerCAmelCase : Dict = prepare_img() lowerCAmelCase : str = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict lowerCAmelCase : Dict = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("cpu" ) ) # rename keys lowerCAmelCase : str = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase : List[Any] = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowerCAmelCase : Any = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass lowerCAmelCase : List[Any] = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = outputs.logits # define expected logit slices for different models if size == "s12": lowerCAmelCase : Optional[Any] = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowerCAmelCase : Any = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowerCAmelCase : int = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowerCAmelCase : str = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowerCAmelCase : Optional[Any] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
108
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = ["image_processor", "tokenizer"] UpperCamelCase__ = "Pix2StructImageProcessor" UpperCamelCase__ = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = False super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 2048 , UpperCAmelCase = 0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = True , UpperCAmelCase = None , **UpperCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , **UpperCAmelCase ) else: # add pixel_values and bbox _UpperCAmelCase = self.image_processor( UpperCAmelCase , return_tensors=UpperCAmelCase , max_patches=UpperCAmelCase , header_text=UpperCAmelCase , **UpperCAmelCase ) if text is not None and not self.image_processor.is_vqa: _UpperCAmelCase = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) if "attention_mask" in text_encoding: _UpperCAmelCase = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _UpperCAmelCase = text_encoding.pop('input_ids' ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
39
0
"""simple docstring""" import re def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Optional[int] = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(UpperCamelCase , UpperCamelCase ) ) if __name__ == "__main__": A: int = "0094702343221" print(is_sri_lankan_phone_number(phone))
109
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
110
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class __lowerCamelCase : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase="<s>" , UpperCAmelCase="<pad>" , UpperCAmelCase="</s>" , UpperCAmelCase="<unk>" , UpperCAmelCase=None , ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = bos, unk, pad, eos _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = {} _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = self.add_symbol(UpperCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase ) _UpperCAmelCase = len(self.symbols ) def __eq__( self , UpperCAmelCase ): """simple docstring""" return self.indices == other.indices def __getitem__( self , UpperCAmelCase ): """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ): """simple docstring""" return len(self.symbols ) def __contains__( self , UpperCAmelCase ): """simple docstring""" return sym in self.indices @classmethod def UpperCamelCase ( cls , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = cls() d.add_from_file(UpperCAmelCase ) return d def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=False ): """simple docstring""" if word in self.indices and not overwrite: _UpperCAmelCase = self.indices[word] _UpperCAmelCase = self.count[idx] + n return idx else: _UpperCAmelCase = len(self.symbols ) _UpperCAmelCase = idx self.symbols.append(UpperCAmelCase ) self.count.append(UpperCAmelCase ) return idx def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" return 0 def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if isinstance(UpperCAmelCase , UpperCAmelCase ): try: with open(UpperCAmelCase , 'r' , encoding='utf-8' ) as fd: self.add_from_file(UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(UpperCAmelCase ) ) return _UpperCAmelCase = f.readlines() _UpperCAmelCase = self._load_meta(UpperCAmelCase ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = line.rsplit(' ' , 1 ) else: _UpperCAmelCase = False _UpperCAmelCase = int(UpperCAmelCase ) _UpperCAmelCase = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(UpperCAmelCase ) ) self.add_symbol(UpperCAmelCase , n=UpperCAmelCase , overwrite=UpperCAmelCase ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __A ( __lowerCAmelCase )-> str: """simple docstring""" _UpperCAmelCase = dict((re.sub(R'@@$' , '' , __lowerCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , __lowerCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase = d[k] # restore return da def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if not os.path.exists(__lowerCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'checkpoint.pt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase = torch.load(__lowerCAmelCase , map_location='cpu' ) _UpperCAmelCase = chkpt['cfg']['model'] # dicts _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'dict.txt' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase = Dictionary.load(__lowerCAmelCase ) _UpperCAmelCase = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase = len(__lowerCAmelCase ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['vocab_file'] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'bpecodes' ) if not os.path.isfile(__lowerCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__lowerCAmelCase , __lowerCAmelCase ) # model config _UpperCAmelCase = os.path.join(__lowerCAmelCase , 'config.json' ) _UpperCAmelCase = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.02, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-12, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # tokenizer config _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1_024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) ) # model _UpperCAmelCase = chkpt['model'] # remove unneeded keys _UpperCAmelCase = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) else: _UpperCAmelCase = model_state_dict.pop(__lowerCAmelCase ) _UpperCAmelCase = BioGptConfig.from_pretrained(__lowerCAmelCase ) _UpperCAmelCase = BioGptForCausalLM(__lowerCAmelCase ) # check that it loads ok model_new.load_state_dict(__lowerCAmelCase ) # save _UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) print('Conversion is done!' ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
39
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( snake_case__ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = ort.SessionOptions() A__ = False return options def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) A__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) A__ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) A__ = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=lowercase , safety_checker=lowercase , feature_extractor=lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase ) A__ = "A red cat sitting on a park bench" A__ = np.random.RandomState(0 ) A__ = pipe( prompt=lowercase , image=lowercase , mask_image=lowercase , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase , output_type="np" , ) A__ = output.images A__ = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) A__ = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
68
from __future__ import annotations import collections import pprint from pathlib import Path def __A ( __lowerCAmelCase )-> str: """simple docstring""" return "".join(sorted(__lowerCAmelCase ) ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" return word_by_signature[signature(__lowerCAmelCase )] _a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _a = sorted({word.strip().lower() for word in data.splitlines()}) _a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
39
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[Any] = IFInpaintingPipeline __UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ ( self : Tuple ): """simple docstring""" return self._get_dummy_components() def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str]=0 ): """simple docstring""" if str(lowerCAmelCase_ ).startswith('''mps''' ): _A: Any = torch.manual_seed(lowerCAmelCase_ ) else: _A: Optional[int] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _A: str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _A: List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __magic_name__ ( self : Union[str, Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __magic_name__ ( self : Tuple ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __magic_name__ ( self : List[Any] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def __magic_name__ ( self : int ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __magic_name__ ( self : Optional[int] ): """simple docstring""" self._test_save_load_local() def __magic_name__ ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
121
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
"""simple docstring""" import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class _UpperCAmelCase( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , __a , __a , __a , __a = 1.0 , __a = None , ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = initial_learning_rate _UpperCamelCase = warmup_steps _UpperCamelCase = power _UpperCamelCase = decay_schedule_fn _UpperCamelCase = name def __call__( self , __a) -> List[str]: '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. _UpperCamelCase = tf.cast(__a , tf.floataa) _UpperCamelCase = tf.cast(self.warmup_steps , tf.floataa) _UpperCamelCase = global_step_float / warmup_steps_float _UpperCamelCase = self.initial_learning_rate * tf.math.pow(__a , self.power) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps) , name=__a , ) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case = 0.0, __snake_case = 0.9, __snake_case = 0.999, __snake_case = 1e-8, __snake_case = None, __snake_case = None, __snake_case = 0.0, __snake_case = 1.0, __snake_case = None, ) -> List[Any]: """simple docstring""" _UpperCamelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__lowerCAmelCase, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=__lowerCAmelCase, ) if num_warmup_steps: _UpperCamelCase = WarmUp( initial_learning_rate=__lowerCAmelCase, decay_schedule_fn=__lowerCAmelCase, warmup_steps=__lowerCAmelCase, ) if weight_decay_rate > 0.0: _UpperCamelCase = AdamWeightDecay( learning_rate=__lowerCAmelCase, weight_decay_rate=__lowerCAmelCase, beta_a=__lowerCAmelCase, beta_a=__lowerCAmelCase, epsilon=__lowerCAmelCase, clipnorm=__lowerCAmelCase, global_clipnorm=__lowerCAmelCase, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=__lowerCAmelCase, ) else: _UpperCamelCase = tf.keras.optimizers.Adam( learning_rate=__lowerCAmelCase, beta_a=__lowerCAmelCase, beta_a=__lowerCAmelCase, epsilon=__lowerCAmelCase, clipnorm=__lowerCAmelCase, global_clipnorm=__lowerCAmelCase, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class _UpperCAmelCase( snake_case__ ): def __init__( self , __a = 0.001 , __a = 0.9 , __a = 0.999 , __a = 1e-7 , __a = False , __a = 0.0 , __a = None , __a = None , __a = "AdamWeightDecay" , **__a , ) -> Dict: '''simple docstring''' super().__init__(__a , __a , __a , __a , __a , __a , **__a) _UpperCamelCase = weight_decay_rate _UpperCamelCase = include_in_weight_decay _UpperCamelCase = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = {'''WarmUp''': WarmUp} return super(__a , cls).from_config(__a , custom_objects=__a) def UpperCAmelCase ( self , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' super(__a , self)._prepare_local(__a , __a , __a) _UpperCamelCase = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''') def UpperCAmelCase ( self , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , __a , __a=None , **__a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = list(zip(*__a)) return super(__a , self).apply_gradients(zip(__a , __a) , name=__a , **__a) def UpperCAmelCase ( self , __a , __a , __a) -> Tuple: '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} _UpperCamelCase = apply_state or {} _UpperCamelCase = apply_state.get((var_device, var_dtype)) if coefficients is None: _UpperCamelCase = self._fallback_apply_state(__a , __a) _UpperCamelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , __a , __a , __a=None) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , __a) _UpperCamelCase = self._decay_weights_op(__a , __a , __a) with tf.control_dependencies([decay]): return super(__a , self)._resource_apply_dense(__a , __a , **__a) def UpperCAmelCase ( self , __a , __a , __a , __a=None) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , __a) _UpperCamelCase = self._decay_weights_op(__a , __a , __a) with tf.control_dependencies([decay]): return super(__a , self)._resource_apply_sparse(__a , __a , __a , **__a) def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate}) return config def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__a , __a) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__a , __a) is not None: return False return True class _UpperCAmelCase( snake_case__ ): def __init__( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = None @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' if self._accum_steps is None: _UpperCamelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa) , trainable=__a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''') return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __a) -> Dict: '''simple docstring''' if not self._gradients: _UpperCamelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__a) , trainable=__a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ]) if len(__a) != len(self._gradients): raise ValueError(F'''Expected {len(self._gradients)} gradients, but got {len(__a)}''') for accum_gradient, gradient in zip(self._gradients , __a): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__a) self._accum_steps.assign_add(1) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__a))
194
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __A ( )-> tuple[list[int], int]: """simple docstring""" _UpperCAmelCase = [randint(-1_000 , 1_000 ) for i in range(10 )] _UpperCAmelCase = randint(-5_000 , 5_000 ) return (arr, r) _a = make_dataset() def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, ...]: """simple docstring""" for triplet in permutations(__lowerCAmelCase , 3 ): if sum(__lowerCAmelCase ) == target: return tuple(sorted(__lowerCAmelCase ) ) return (0, 0, 0) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> tuple[int, int, int]: """simple docstring""" arr.sort() _UpperCAmelCase = len(__lowerCAmelCase ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __A ( )-> tuple[float, float]: """simple docstring""" _UpperCAmelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _UpperCAmelCase = '\ntriplet_sum1(*dataset)\n' _UpperCAmelCase = '\ntriplet_sum2(*dataset)\n' _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) _UpperCAmelCase = repeat(setup=__lowerCAmelCase , stmt=__lowerCAmelCase , repeat=5 , number=10_000 ) return (min(__lowerCAmelCase ), min(__lowerCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() _a = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
39
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowerCAmelCase ( snake_case__ ): lowerCamelCase_ : Any = '''detr''' lowerCamelCase_ : Any = ['''past_key_values'''] lowerCamelCase_ : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , __magic_name__=True , __magic_name__=None , __magic_name__=3 , __magic_name__=100 , __magic_name__=6 , __magic_name__=2048 , __magic_name__=8 , __magic_name__=6 , __magic_name__=2048 , __magic_name__=8 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=True , __magic_name__="relu" , __magic_name__=256 , __magic_name__=0.1 , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1.0 , __magic_name__=False , __magic_name__="sine" , __magic_name__="resnet50" , __magic_name__=True , __magic_name__=False , __magic_name__=1 , __magic_name__=5 , __magic_name__=2 , __magic_name__=1 , __magic_name__=1 , __magic_name__=5 , __magic_name__=2 , __magic_name__=0.1 , **__magic_name__ , ) -> Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case_ : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__magic_name__ , __magic_name__ ): snake_case_ : int = backbone_config.get('''model_type''' ) snake_case_ : Dict = CONFIG_MAPPING[backbone_model_type] snake_case_ : Any = config_class.from_dict(__magic_name__ ) # set timm attributes to None snake_case_ , snake_case_ , snake_case_ : Optional[Any] = None, None, None snake_case_ : Tuple = use_timm_backbone snake_case_ : List[Any] = backbone_config snake_case_ : Tuple = num_channels snake_case_ : Tuple = num_queries snake_case_ : int = d_model snake_case_ : str = encoder_ffn_dim snake_case_ : Tuple = encoder_layers snake_case_ : Union[str, Any] = encoder_attention_heads snake_case_ : Tuple = decoder_ffn_dim snake_case_ : Tuple = decoder_layers snake_case_ : Union[str, Any] = decoder_attention_heads snake_case_ : Any = dropout snake_case_ : Dict = attention_dropout snake_case_ : Optional[Any] = activation_dropout snake_case_ : int = activation_function snake_case_ : Any = init_std snake_case_ : List[Any] = init_xavier_std snake_case_ : Optional[int] = encoder_layerdrop snake_case_ : List[str] = decoder_layerdrop snake_case_ : str = encoder_layers snake_case_ : Union[str, Any] = auxiliary_loss snake_case_ : Optional[Any] = position_embedding_type snake_case_ : int = backbone snake_case_ : List[str] = use_pretrained_backbone snake_case_ : List[Any] = dilation # Hungarian matcher snake_case_ : Optional[Any] = class_cost snake_case_ : List[Any] = bbox_cost snake_case_ : Any = giou_cost # Loss coefficients snake_case_ : List[Any] = mask_loss_coefficient snake_case_ : Union[str, Any] = dice_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : str = giou_loss_coefficient snake_case_ : Any = eos_coefficient super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' return self.d_model @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' return cls(backbone_config=__magic_name__ , **__magic_name__ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' snake_case_ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ : Any = self.backbone_config.to_dict() snake_case_ : Any = self.__class__.model_type return output class __lowerCAmelCase ( snake_case__ ): lowerCamelCase_ : Union[str, Any] = version.parse('''1.11''' ) @property def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def lowerCamelCase (self ) -> int: '''simple docstring''' return 1e-5 @property def lowerCamelCase (self ) -> str: '''simple docstring''' return 12
279
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights _UpperCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) _UpperCAmelCase = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , 'snapshots' ) )] _UpperCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 4 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5e-1 _UpperCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = scheduler.create_state() _UpperCAmelCase = scheduler_state _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = 50 _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = jax.random.split(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5e-1 def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # With memory efficient attention _UpperCAmelCase , _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) _UpperCAmelCase = replicate(UpperCAmelCase ) _UpperCAmelCase = pipeline.prepare_inputs(UpperCAmelCase ) _UpperCAmelCase = shard(UpperCAmelCase ) _UpperCAmelCase = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) _UpperCAmelCase = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
39
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] lowercase__ =[ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] lowercase__ =[] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks lowercase__ =F"""down_blocks.{i}.resnets.{j}.""" lowercase__ =F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 lowercase__ =F"""down_blocks.{i}.attentions.{j}.""" lowercase__ =F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks lowercase__ =F"""up_blocks.{i}.resnets.{j}.""" lowercase__ =F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 lowercase__ =F"""up_blocks.{i}.attentions.{j}.""" lowercase__ =F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 lowercase__ =F"""down_blocks.{i}.downsamplers.0.conv.""" lowercase__ =F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 lowercase__ =F"""up_blocks.{i}.upsamplers.0.""" lowercase__ =F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) lowercase__ ='mid_block.attentions.0.' lowercase__ ='middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): lowercase__ =F"""mid_block.resnets.{j}.""" lowercase__ =F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def __UpperCamelCase ( lowerCAmelCase__ : Any ): __a : Optional[Any] = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: __a : Dict = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: __a : Dict = v.replace(__lowerCAmelCase , __lowerCAmelCase ) __a : Any = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: __a : Any = v.replace(__lowerCAmelCase , __lowerCAmelCase ) __a : int = v __a : Optional[int] = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): lowercase__ =F"""encoder.down_blocks.{i}.resnets.{j}.""" lowercase__ =F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: lowercase__ =F"""down_blocks.{i}.downsamplers.0.""" lowercase__ =F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) lowercase__ =F"""up_blocks.{i}.upsamplers.0.""" lowercase__ =F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): lowercase__ =F"""decoder.up_blocks.{i}.resnets.{j}.""" lowercase__ =F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): lowercase__ =F"""mid_block.resnets.{i}.""" lowercase__ =F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) lowercase__ =[ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def __UpperCamelCase ( lowerCAmelCase__ : int ): return w.reshape(*w.shape , 1 , 1 ) def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : List[str] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: __a : int = v.replace(__lowerCAmelCase , __lowerCAmelCase ) __a : str = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: __a : int = v.replace(__lowerCAmelCase , __lowerCAmelCase ) __a : Optional[Any] = v __a : Optional[Any] = {v: vae_state_dict[k] for k, v in mapping.items()} __a : int = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"mid.attn_1.{weight_name}.weight" in k: print(f"Reshaping {k} for SD format" ) __a : Union[str, Any] = reshape_weight_for_sd(__lowerCAmelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# lowercase__ =[ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] lowercase__ ={re.escape(x[1]): x[0] for x in textenc_conversion_lst} lowercase__ =re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp lowercase__ ={'q': 0, 'k': 1, 'v': 2} def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : str = {} __a : str = {} __a : Optional[int] = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): __a : List[str] = k[: -len('''.q_proj.weight''' )] __a : Any = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: __a : Union[str, Any] = [None, None, None] __a : Any = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): __a : Tuple = k[: -len('''.q_proj.bias''' )] __a : Dict = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: __a : Optional[int] = [None, None, None] __a : int = v continue __a : Tuple = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase ) __a : List[str] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __a : Dict = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase ) __a : Union[str, Any] = torch.cat(__lowerCAmelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) __a : List[Any] = textenc_pattern.sub(lambda lowerCAmelCase__ : protected[re.escape(m.group(0 ) )] , __lowerCAmelCase ) __a : int = torch.cat(__lowerCAmelCase ) return new_state_dict def __UpperCamelCase ( lowerCAmelCase__ : int ): return text_enc_dict if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) lowercase__ =parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors lowercase__ =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') lowercase__ =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') lowercase__ =osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): lowercase__ =load_file(unet_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') lowercase__ =torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): lowercase__ =load_file(vae_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') lowercase__ =torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): lowercase__ =load_file(text_enc_path, device='cpu') else: lowercase__ =osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') lowercase__ =torch.load(text_enc_path, map_location='cpu') # Convert the UNet model lowercase__ =convert_unet_state_dict(unet_state_dict) lowercase__ ={'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model lowercase__ =convert_vae_state_dict(vae_state_dict) lowercase__ ={'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper lowercase__ ='text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm lowercase__ ={'transformer.' + k: v for k, v in text_enc_dict.items()} lowercase__ =convert_text_enc_state_dict_vaa(text_enc_dict) lowercase__ ={'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: lowercase__ =convert_text_enc_state_dict(text_enc_dict) lowercase__ ={'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint lowercase__ ={**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: lowercase__ ={k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: lowercase__ ={'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
216
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( snake_case__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = AlbertTokenizer UpperCamelCase__ = AlbertTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = True def UpperCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 'this is a test' _UpperCAmelCase = 'this is a test' return input_text, output_text def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = '<pad>' _UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(UpperCAmelCase ) , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def UpperCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = 'I was born in 92000, and this is falsé.' _UpperCAmelCase = tokenizer.tokenize(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(UpperCAmelCase ) _UpperCAmelCase = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) _UpperCAmelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [48, 25, 21, 1289] ) _UpperCAmelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) _UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = AlbertTokenizer(UpperCAmelCase ) _UpperCAmelCase = tokenizer.encode('sequence builders' ) _UpperCAmelCase = tokenizer.encode('multi-sequence build' ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) _UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
39
0
from functools import lru_cache @lru_cache def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
218
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _a = logging.get_logger(__name__) class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "AutoTokenizer" UpperCamelCase__ = ["tokenizer"] UpperCamelCase__ = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__( self , UpperCAmelCase , UpperCAmelCase=None ): """simple docstring""" super().__init__(UpperCAmelCase ) _UpperCAmelCase = speaker_embeddings @classmethod def UpperCamelCase ( cls , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , **UpperCAmelCase ): """simple docstring""" if speaker_embeddings_dict_path is not None: _UpperCAmelCase = get_file_from_repo( UpperCAmelCase , UpperCAmelCase , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"""`{os.path.join(UpperCAmelCase , UpperCAmelCase )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) _UpperCAmelCase = None else: with open(UpperCAmelCase ) as speaker_embeddings_json: _UpperCAmelCase = json.load(UpperCAmelCase ) else: _UpperCAmelCase = None _UpperCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) return cls(tokenizer=UpperCAmelCase , speaker_embeddings=UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase="speaker_embeddings_path.json" , UpperCAmelCase="speaker_embeddings" , UpperCAmelCase = False , **UpperCAmelCase , ): """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(UpperCAmelCase , UpperCAmelCase , 'v2' ) , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {} _UpperCAmelCase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) _UpperCAmelCase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , UpperCAmelCase , F"""{prompt_key}_{key}""" ) , voice_preset[key] , allow_pickle=UpperCAmelCase , ) _UpperCAmelCase = os.path.join(UpperCAmelCase , F"""{prompt_key}_{key}.npy""" ) _UpperCAmelCase = tmp_dict with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , 'w' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) super().save_pretrained(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase = None , **UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.speaker_embeddings[voice_preset] _UpperCAmelCase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"""Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].""" ) _UpperCAmelCase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , UpperCAmelCase ) , cache_dir=kwargs.pop('cache_dir' , UpperCAmelCase ) , force_download=kwargs.pop('force_download' , UpperCAmelCase ) , proxies=kwargs.pop('proxies' , UpperCAmelCase ) , resume_download=kwargs.pop('resume_download' , UpperCAmelCase ) , local_files_only=kwargs.pop('local_files_only' , UpperCAmelCase ) , use_auth_token=kwargs.pop('use_auth_token' , UpperCAmelCase ) , revision=kwargs.pop('revision' , UpperCAmelCase ) , ) if path is None: raise ValueError( F"""`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) _UpperCAmelCase = np.load(UpperCAmelCase ) return voice_preset_dict def UpperCamelCase ( self , UpperCAmelCase = None ): """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"""Voice preset unrecognized, missing {key} as a key.""" ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"""{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.""" ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="pt" , UpperCAmelCase=256 , UpperCAmelCase=False , UpperCAmelCase=True , UpperCAmelCase=False , **UpperCAmelCase , ): """simple docstring""" if voice_preset is not None and not isinstance(UpperCAmelCase , UpperCAmelCase ): if ( isinstance(UpperCAmelCase , UpperCAmelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase = self._load_voice_preset(UpperCAmelCase ) else: if isinstance(UpperCAmelCase , UpperCAmelCase ) and not voice_preset.endswith('.npz' ): _UpperCAmelCase = voice_preset + '.npz' _UpperCAmelCase = np.load(UpperCAmelCase ) if voice_preset is not None: self._validate_voice_preset_dict(UpperCAmelCase , **UpperCAmelCase ) _UpperCAmelCase = BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) _UpperCAmelCase = self.tokenizer( UpperCAmelCase , return_tensors=UpperCAmelCase , padding='max_length' , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , add_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) if voice_preset is not None: _UpperCAmelCase = voice_preset return encoded_text
39
0
# using dfs for finding eulerian path traversal def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=None ) -> Optional[Any]: __UpperCAmelCase : str = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = True, True __UpperCAmelCase : Optional[Any] = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) return path def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Dict = -1 for i in range(__lowerCAmelCase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCAmelCase : Dict = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: __UpperCAmelCase : int = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCAmelCase , __UpperCAmelCase : Any = check_circuit_or_path(__lowerCAmelCase, __lowerCAmelCase ) if check == 3: print("graph is not Eulerian" ) print("no path" ) return __UpperCAmelCase : Optional[Any] = 1 if check == 2: __UpperCAmelCase : str = odd_node print("graph has a Euler path" ) if check == 1: print("graph has a Euler cycle" ) __UpperCAmelCase : Dict = dfs(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) print(__lowerCAmelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : str = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCAmelCase : Any = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCAmelCase : Optional[Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCAmelCase : Dict = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCAmelCase : int = { 1: [], 2: [] # all degree is zero } __UpperCAmelCase : Dict = 10 check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) check_euler(__lowerCAmelCase, __lowerCAmelCase ) if __name__ == "__main__": main()
157
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() _a = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCamelCase ( snake_case__): """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _UpperCAmelCase = {'source': 'What is love ?', 'target': 'life'} _UpperCAmelCase = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _UpperCAmelCase = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase = "pytorch" ): """simple docstring""" _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = os.path.join(UpperCAmelCase , 'output' ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) _UpperCAmelCase = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) _UpperCAmelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) _UpperCAmelCase = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: _UpperCAmelCase = json.load(UpperCAmelCase ) return result @require_torch_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
39
0
import os def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file: lowerCAmelCase__ : str = [ [int(__lowerCAmelCase ) for element in line.split(',' )] for line in input_file.readlines() ] lowerCAmelCase__ : Optional[Any] = len(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = len(matrix[0] ) lowerCAmelCase__ : List[Any] = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): lowerCAmelCase__ : List[str] = matrix[i][0] for j in range(1 , __lowerCAmelCase ): for i in range(__lowerCAmelCase ): lowerCAmelCase__ : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __lowerCAmelCase ): lowerCAmelCase__ : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCAmelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
212
class __lowerCamelCase : """simple docstring""" def __init__( self ): """simple docstring""" _UpperCAmelCase = {} # Mapping from char to TrieNode _UpperCAmelCase = False def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: _UpperCAmelCase = TrieNode() _UpperCAmelCase = curr.nodes[char] _UpperCAmelCase = True def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self for char in word: if char not in curr.nodes: return False _UpperCAmelCase = curr.nodes[char] return curr.is_leaf def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" def _delete(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> bool: if index == len(UpperCAmelCase ): # If word does not exist if not curr.is_leaf: return False _UpperCAmelCase = False return len(curr.nodes ) == 0 _UpperCAmelCase = word[index] _UpperCAmelCase = curr.nodes.get(UpperCAmelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _UpperCAmelCase = _delete(UpperCAmelCase , UpperCAmelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCAmelCase , 0 ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" if node.is_leaf: print(__lowerCAmelCase , end=' ' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( __lowerCAmelCase , __lowerCAmelCase )-> None: """simple docstring""" print(str(__lowerCAmelCase ) , 'works!' if passes else 'doesn\'t work :(' ) def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
39
0
from collections import deque def UpperCAmelCase ( a_ ) -> str: """simple docstring""" __A = len(__lowerCAmelCase ) __A = deque() __A = [False for _ in range(__lowerCAmelCase )] __A = [-1 for _ in range(__lowerCAmelCase )] __A = index_of[:] def strong_connect(a_ , a_ , a_ ): __A = index # the number when this node is seen __A = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) __A = True for w in g[v]: if index_of[w] == -1: __A = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: __A = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: __A = [] __A = stack.pop() __A = False component.append(__lowerCAmelCase ) while w != v: __A = stack.pop() __A = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index __A = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" __A = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test SCREAMING_SNAKE_CASE :Optional[Any] = 7 SCREAMING_SNAKE_CASE :List[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] SCREAMING_SNAKE_CASE :int = [1, 3, 2, 0, 1, 4, 5, 6, 5] SCREAMING_SNAKE_CASE :int = [(u, v) for u, v in zip(source, target)] SCREAMING_SNAKE_CASE :Dict = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
15
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _a = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: UpperCamelCase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: UpperCamelCase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = ZeroShotClassificationPipeline( model=UpperCAmelCase , tokenizer=UpperCAmelCase , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # No kwarg _UpperCAmelCase = classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _UpperCAmelCase = classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(UpperCAmelCase , {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( UpperCAmelCase , [ {'sequence': ANY(UpperCAmelCase ), 'labels': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )], 'scores': [ANY(UpperCAmelCase ), ANY(UpperCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(UpperCAmelCase ): classifier('' , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier(UpperCAmelCase , candidate_labels='politics' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(UpperCAmelCase ): classifier('Who are you voting for in 2020?' , candidate_labels=UpperCAmelCase ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(UpperCAmelCase ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=UpperCAmelCase , ) self.run_entailment_id(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(UpperCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _UpperCAmelCase = zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _UpperCAmelCase = zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=UpperCAmelCase , ) self.assertEqual( nested_simplify(UpperCAmelCase ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
39
0