code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __a = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __a = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" __a = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase ( self : Dict ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""http://www.cs.umd.edu/~snover/tercom/""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#ter"""] , reference_urls=[ """https://github.com/jhclark/tercom""", ] , ) def lowerCamelCase ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : bool = False , ): snake_case__ : Optional[Any] = len(references[0] ) if any(len(snake_case_ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) snake_case__ : Dict = [[refs[i] for refs in references] for i in range(snake_case_ )] snake_case__ : Dict = TER( normalized=snake_case_ , no_punct=snake_case_ , asian_support=snake_case_ , case_sensitive=snake_case_ , ) snake_case__ : Union[str, Any] = sb_ter.corpus_score(snake_case_ , snake_case_ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
35
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : List[Any] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) snake_case__ : Optional[int] = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(snake_case_ ) , torch_builtin(snake_case_ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case_ ) , gelu_new(snake_case_ ) ) ) def lowerCamelCase ( self : int ): snake_case__ : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) snake_case__ : Union[str, Any] = get_activation("""gelu""" ) snake_case__ : Optional[Any] = get_activation("""gelu_10""" ) snake_case__ : Any = torch_builtin(snake_case_ ) snake_case__ : Any = geluaa(snake_case_ ) snake_case__ : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCamelCase ( self : Union[str, Any] ): get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(snake_case_ ): get_activation("""bogus""" ) with self.assertRaises(snake_case_ ): get_activation(snake_case_ ) def lowerCamelCase ( self : List[Any] ): snake_case__ : Optional[Any] = get_activation("""gelu""" ) snake_case__ : Tuple = 1 snake_case__ : Dict = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case_ ): snake_case__ : Union[str, Any] = acta.a
35
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
1
'''simple docstring''' from typing import Any import numpy as np def __snake_case( _lowerCAmelCase ) -> bool: return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : int = v.conjugate().T snake_case__ : Optional[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __snake_case( ) -> None: snake_case__ : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) snake_case__ : List[str] = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) snake_case__ : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f"{a} is not hermitian." assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
35
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = 0 def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[str] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[int] = Path(snake_case_ ) / """preprocessor_config.json""" snake_case__ : List[str] = Path(snake_case_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case_ , """w""" ) ) snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Union[str, Any] = Path(snake_case_ ) / """preprocessor_config.json""" snake_case__ : Dict = Path(snake_case_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case_ , """w""" ) ) snake_case__ : Tuple = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Optional[Any] = CLIPConfig() # Create a dummy config file with image_proceesor_type snake_case__ : List[str] = Path(snake_case_ ) / """preprocessor_config.json""" snake_case__ : List[Any] = Path(snake_case_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case_ , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally snake_case__ : Any = AutoImageProcessor.from_pretrained(snake_case_ ).to_dict() config_dict.pop("""image_processor_type""" ) snake_case__ : Tuple = CLIPImageProcessor(**snake_case_ ) # save in new folder model_config.save_pretrained(snake_case_ ) config.save_pretrained(snake_case_ ) snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained(snake_case_ ) # make sure private variable is not incorrectly saved snake_case__ : Tuple = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Any ): with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : Tuple = Path(snake_case_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(snake_case_ , """w""" ) , ) snake_case__ : List[Any] = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[int] ): with self.assertRaisesRegex( snake_case_ , """clip-base is not a local folder and is not a valid model identifier""" ): snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCamelCase ( self : Any ): with self.assertRaisesRegex( snake_case_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): snake_case__ : List[str] = AutoImageProcessor.from_pretrained(snake_case_ , revision="""aaaaaa""" ) def lowerCamelCase ( self : Any ): with self.assertRaisesRegex( snake_case_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): snake_case__ : Optional[int] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase ( self : List[str] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(snake_case_ ): snake_case__ : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case_ ): snake_case__ : str = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case_ ) snake_case__ : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case_ ) snake_case__ : Tuple = AutoImageProcessor.from_pretrained(snake_case_ , trust_remote_code=snake_case_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def lowerCamelCase ( self : str ): try: AutoConfig.register("""custom""" , snake_case_ ) AutoImageProcessor.register(snake_case_ , snake_case_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case_ ): AutoImageProcessor.register(snake_case_ , snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : int = Path(snake_case_ ) / """preprocessor_config.json""" snake_case__ : int = Path(snake_case_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(snake_case_ , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(snake_case_ , """w""" ) ) snake_case__ : Dict = CustomImageProcessor.from_pretrained(snake_case_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case_ ) snake_case__ : int = AutoImageProcessor.from_pretrained(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Tuple ): class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = True try: AutoConfig.register("""custom""" , snake_case_ ) AutoImageProcessor.register(snake_case_ , snake_case_ ) # If remote code is not set, the default is to use local snake_case__ : int = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. snake_case__ : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub snake_case__ : Dict = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=snake_case_ ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(snake_case_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
35
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
1
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __a = 5_0000 __a = 5000 __a , __a = os.path.split(__file__) __a = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for i in range(_lowerCAmelCase ): snake_case__ : str = dataset[i] @get_duration def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: for i in range(0 , len(_lowerCAmelCase ) , _lowerCAmelCase ): snake_case__ : Optional[Any] = dataset[i : i + batch_size] @get_duration def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(_lowerCAmelCase ): snake_case__ : Tuple = dataset[i] @get_duration def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: with dataset.formatted_as(type=_lowerCAmelCase ): for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Tuple = dataset[i : i + batch_size] def __snake_case( ) -> str: snake_case__ : List[str] = {"""num examples""": SPEED_TEST_N_EXAMPLES} snake_case__ : str = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] snake_case__ : Union[str, Any] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) snake_case__ : Tuple = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) snake_case__ : Optional[int] = generate_example_dataset( os.path.join(_lowerCAmelCase , """dataset.arrow""" ) , _lowerCAmelCase , num_examples=_lowerCAmelCase , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(_lowerCAmelCase ) ) snake_case__ : int = func(_lowerCAmelCase , **_lowerCAmelCase ) print("""shuffling dataset""" ) snake_case__ : Optional[Any] = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(_lowerCAmelCase ) ) snake_case__ : Dict = func( _lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , """wb""" ) as f: f.write(json.dumps(_lowerCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
35
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
1
'''simple docstring''' import re import string import numpy as np import datasets __a = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" __a = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" __a = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def lowerCamelCase ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowerCamelCase ( self : Tuple , snake_case_ : int , snake_case_ : Tuple , snake_case_ : List[Any]=None , snake_case_ : Any=False , snake_case_ : Optional[int]=False , snake_case_ : str=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case__ : int = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in predictions] ) snake_case__ : Any = np.array([re.sub(snake_case_ , """""" , snake_case_ ) for x in references] ) else: snake_case__ : int = np.asarray(snake_case_ ) snake_case__ : Optional[int] = np.asarray(snake_case_ ) if ignore_case: snake_case__ : Dict = np.char.lower(snake_case_ ) snake_case__ : Tuple = np.char.lower(snake_case_ ) if ignore_punctuation: snake_case__ : str = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case__ : Tuple = np.char.translate(snake_case_ , table=snake_case_ ) snake_case__ : Dict = np.char.translate(snake_case_ , table=snake_case_ ) if ignore_numbers: snake_case__ : Any = string.digits.maketrans("""""" , """""" , string.digits ) snake_case__ : Union[str, Any] = np.char.translate(snake_case_ , table=snake_case_ ) snake_case__ : Union[str, Any] = np.char.translate(snake_case_ , table=snake_case_ ) snake_case__ : Tuple = predictions == references return {"exact_match": np.mean(snake_case_ ) * 100}
35
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/beit-base-patch16-224-pt22k": ( "https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "beit" def __init__( self : List[str] , snake_case_ : Union[str, Any]=8_192 , snake_case_ : int=768 , snake_case_ : Any=12 , snake_case_ : int=12 , snake_case_ : List[Any]=3_072 , snake_case_ : Optional[int]="gelu" , snake_case_ : str=0.0 , snake_case_ : Any=0.0 , snake_case_ : int=0.02 , snake_case_ : int=1E-1_2 , snake_case_ : Union[str, Any]=224 , snake_case_ : str=16 , snake_case_ : List[str]=3 , snake_case_ : List[str]=False , snake_case_ : List[Any]=False , snake_case_ : Union[str, Any]=False , snake_case_ : List[Any]=False , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Dict=True , snake_case_ : List[str]=[3, 5, 7, 11] , snake_case_ : Optional[Any]=[1, 2, 3, 6] , snake_case_ : str=True , snake_case_ : List[str]=0.4 , snake_case_ : List[Any]=256 , snake_case_ : str=1 , snake_case_ : Dict=False , snake_case_ : Optional[int]=255 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Any = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Optional[int] = num_hidden_layers snake_case__ : Optional[int] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : int = initializer_range snake_case__ : Dict = layer_norm_eps snake_case__ : List[Any] = image_size snake_case__ : List[Any] = patch_size snake_case__ : List[Any] = num_channels snake_case__ : Union[str, Any] = use_mask_token snake_case__ : List[str] = use_absolute_position_embeddings snake_case__ : List[Any] = use_relative_position_bias snake_case__ : List[str] = use_shared_relative_position_bias snake_case__ : Dict = layer_scale_init_value snake_case__ : Optional[int] = drop_path_rate snake_case__ : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) snake_case__ : Optional[int] = out_indices snake_case__ : str = pool_scales # auxiliary head attributes (semantic segmentation) snake_case__ : Dict = use_auxiliary_head snake_case__ : Any = auxiliary_loss_weight snake_case__ : int = auxiliary_channels snake_case__ : Optional[int] = auxiliary_num_convs snake_case__ : Optional[int] = auxiliary_concat_input snake_case__ : Tuple = semantic_loss_ignore_index class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = version.parse("1.11" ) @property def lowerCamelCase ( self : int ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase ( self : Dict ): return 1E-4
35
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
1
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : Optional[Any]=7 , snake_case_ : List[Any]=True , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : Optional[Any]=99 , snake_case_ : Any=32 , snake_case_ : List[Any]=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : Any=37 , snake_case_ : int="gelu" , snake_case_ : List[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : str=512 , snake_case_ : int=16 , snake_case_ : Dict=2 , snake_case_ : Dict=0.02 , snake_case_ : List[Any]=4 , ): snake_case__ : List[Any] = parent snake_case__ : List[str] = batch_size snake_case__ : Tuple = seq_length snake_case__ : Dict = is_training snake_case__ : List[Any] = use_attention_mask snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : Tuple = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Tuple = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : int = num_choices def lowerCamelCase ( self : Any ): snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : int = None if self.use_attention_mask: snake_case__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : str = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase ( self : str ): snake_case__ : Tuple = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = True lowercase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = FlaxRoFormerModelTester(self ) @slow def lowerCamelCase ( self : int ): for model_class_name in self.all_model_classes: snake_case__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=snake_case_ ) snake_case__ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case_ ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case__ : Dict = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : List[str] = model(snake_case_ )[0] snake_case__ : Union[str, Any] = 50_000 snake_case__ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , snake_case_ ) snake_case__ : Tuple = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , snake_case_ , atol=1E-4 ) )
35
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
1
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __snake_case( _lowerCAmelCase ) -> str: return "".join(sorted(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase ) -> list[str]: return word_by_signature[signature(_lowerCAmelCase )] __a = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") __a = sorted({word.strip().lower() for word in data.splitlines()}) __a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
35
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase ) -> List[List[ImageInput]]: if isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowerCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = ["pixel_values"] def __init__( self : str , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : bool = True , snake_case_ : Dict[str, int] = None , snake_case_ : bool = True , snake_case_ : Union[int, float] = 1 / 255 , snake_case_ : bool = True , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , **snake_case_ : Union[str, Any] , ): super().__init__(**snake_case_ ) snake_case__ : Dict = size if size is not None else {"""shortest_edge""": 224} snake_case__ : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) snake_case__ : List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} snake_case__ : Dict = get_size_dict(snake_case_ , param_name="""crop_size""" ) snake_case__ : int = do_resize snake_case__ : int = size snake_case__ : Dict = do_center_crop snake_case__ : List[str] = crop_size snake_case__ : List[str] = resample snake_case__ : Dict = do_rescale snake_case__ : Tuple = rescale_factor snake_case__ : Union[str, Any] = do_normalize snake_case__ : Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case__ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase ( self : Tuple , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : PILImageResampling = PILImageResampling.BILINEAR , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): snake_case__ : Optional[int] = get_size_dict(snake_case_ , default_to_square=snake_case_ ) if "shortest_edge" in size: snake_case__ : int = get_resize_output_image_size(snake_case_ , size["""shortest_edge"""] , default_to_square=snake_case_ ) elif "height" in size and "width" in size: snake_case__ : str = (size["""height"""], size["""width"""]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : str , snake_case_ : np.ndarray , snake_case_ : Dict[str, int] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): snake_case__ : Optional[Any] = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(snake_case_ , size=(size["""height"""], size["""width"""]) , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : np.ndarray , snake_case_ : Union[int, float] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : str , ): return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : np.ndarray , snake_case_ : Union[float, List[float]] , snake_case_ : Union[float, List[float]] , snake_case_ : Optional[Union[str, ChannelDimension]] = None , **snake_case_ : List[str] , ): return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. snake_case__ : Union[str, Any] = to_numpy_array(snake_case_ ) if do_resize: snake_case__ : Any = self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) if do_center_crop: snake_case__ : Dict = self.center_crop(snake_case_ , size=snake_case_ ) if do_rescale: snake_case__ : Optional[Any] = self.rescale(image=snake_case_ , scale=snake_case_ ) if do_normalize: snake_case__ : Any = self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) snake_case__ : List[Any] = to_channel_dimension_format(snake_case_ , snake_case_ ) return image def lowerCamelCase ( self : List[str] , snake_case_ : ImageInput , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : PILImageResampling = None , snake_case_ : bool = None , snake_case_ : Dict[str, int] = None , snake_case_ : bool = None , snake_case_ : float = None , snake_case_ : bool = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[float, List[float]]] = None , snake_case_ : Optional[Union[str, TensorType]] = None , snake_case_ : ChannelDimension = ChannelDimension.FIRST , **snake_case_ : Optional[int] , ): snake_case__ : List[str] = do_resize if do_resize is not None else self.do_resize snake_case__ : str = resample if resample is not None else self.resample snake_case__ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : str = image_mean if image_mean is not None else self.image_mean snake_case__ : Union[str, Any] = image_std if image_std is not None else self.image_std snake_case__ : List[str] = size if size is not None else self.size snake_case__ : str = get_size_dict(snake_case_ , default_to_square=snake_case_ ) snake_case__ : List[str] = crop_size if crop_size is not None else self.crop_size snake_case__ : str = get_size_dict(snake_case_ , param_name="""crop_size""" ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) snake_case__ : Tuple = make_batched(snake_case_ ) snake_case__ : int = [ [ self._preprocess_image( image=snake_case_ , do_resize=snake_case_ , size=snake_case_ , resample=snake_case_ , do_center_crop=snake_case_ , crop_size=snake_case_ , do_rescale=snake_case_ , rescale_factor=snake_case_ , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , data_format=snake_case_ , ) for img in video ] for video in videos ] snake_case__ : Union[str, Any] = {"""pixel_values""": videos} return BatchFeature(data=snake_case_ , tensor_type=snake_case_ )
35
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def lowerCamelCase ( self : List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase ( self : List[str] ): snake_case__ : List[Any] = ort.SessionOptions() snake_case__ : List[Any] = False return options def lowerCamelCase ( self : str ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case__ : Optional[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[Any] = """A red cat sitting on a park bench""" snake_case__ : Optional[Any] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Optional[Any] = output.images snake_case__ : Dict = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case__ : Optional[int] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCamelCase ( self : List[str] ): snake_case__ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) snake_case__ : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) snake_case__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) snake_case__ : Optional[int] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : List[Any] = """A red cat sitting on a park bench""" snake_case__ : Optional[int] = np.random.RandomState(0 ) snake_case__ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , mask_image=snake_case_ , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Tuple = output.images snake_case__ : Optional[int] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) snake_case__ : Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
35
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
1
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection snake_case__ : Tuple = len(_lowerCAmelCase ) snake_case__ : Any = max(_lowerCAmelCase ) snake_case__ : List[Any] = min(_lowerCAmelCase ) # create the counting array snake_case__ : Optional[int] = coll_max + 1 - coll_min snake_case__ : Optional[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _lowerCAmelCase ): snake_case__ : Dict = counting_arr[i] + counting_arr[i - 1] # create the output collection snake_case__ : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _lowerCAmelCase ) ): snake_case__ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __snake_case( _lowerCAmelCase ) -> str: return "".join([chr(_lowerCAmelCase ) for i in counting_sort([ord(_lowerCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __a = input("Enter numbers separated by a comma:\n").strip() __a = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
35
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __a = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
1
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def __snake_case( _lowerCAmelCase ) -> np.ndarray: return vector * sigmoid(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
1
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> str: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'float' object cannot be interpreted as an integer""" ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""'str' object cannot be interpreted as an integer""" ) if num == 0: return "0b0" snake_case__ : List[str] = False if num < 0: snake_case__ : Optional[int] = True snake_case__ : Optional[int] = -num snake_case__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary ) return "0b" + "".join(str(_lowerCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
35
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = ["model.decoder.embed_positions.weights"] def __snake_case( _lowerCAmelCase ) -> Any: if "emb" in name: snake_case__ : int = name.replace("""emb""" , """model.decoder.embed_tokens""" ) if "transformer" in name: snake_case__ : int = name.replace("""transformer""" , """model.decoder""" ) if "cross_attention" in name: snake_case__ : Optional[int] = name.replace("""cross_attention""" , """encoder_attn""" ) if "linear1" in name: snake_case__ : Union[str, Any] = name.replace("""linear1""" , """fc1""" ) if "linear2" in name: snake_case__ : List[Any] = name.replace("""linear2""" , """fc2""" ) if "norm1" in name: snake_case__ : int = name.replace("""norm1""" , """self_attn_layer_norm""" ) if "norm_cross" in name: snake_case__ : Any = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" ) if "norm2" in name: snake_case__ : int = name.replace("""norm2""" , """final_layer_norm""" ) if "out_norm" in name: snake_case__ : str = name.replace("""out_norm""" , """model.decoder.layer_norm""" ) if "linears" in name: snake_case__ : Tuple = name.replace("""linears""" , """lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: snake_case__ : int = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" ) return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple[Dict, Dict]: snake_case__ : Any = list(state_dict.keys() ) snake_case__ : Tuple = {} for key in keys: snake_case__ : Tuple = state_dict.pop(_lowerCAmelCase ) snake_case__ : List[Any] = rename_keys(_lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj snake_case__ : List[Any] = val[:hidden_size, :] snake_case__ : List[Any] = val[hidden_size : 2 * hidden_size, :] snake_case__ : Dict = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case__ : Union[str, Any] = val else: snake_case__ : int = val return state_dict, enc_dec_proj_state_dict def __snake_case( _lowerCAmelCase ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case__ : Dict = 1_024 snake_case__ : Tuple = 24 snake_case__ : int = 16 elif checkpoint == "medium": snake_case__ : List[str] = 1_536 snake_case__ : List[Any] = 48 snake_case__ : int = 24 elif checkpoint == "large": snake_case__ : Optional[Any] = 2_048 snake_case__ : Optional[int] = 48 snake_case__ : List[Any] = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) snake_case__ : List[Any] = MusicgenDecoderConfig( hidden_size=_lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_lowerCAmelCase , num_attention_heads=_lowerCAmelCase , ) return config @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase="cpu" ) -> Any: snake_case__ : List[str] = MusicGen.get_pretrained(_lowerCAmelCase , device=_lowerCAmelCase ) snake_case__ : Any = decoder_config_from_checkpoint(_lowerCAmelCase ) snake_case__ : int = fairseq_model.lm.state_dict() snake_case__ , snake_case__ : List[Any] = rename_state_dict( _lowerCAmelCase , hidden_size=decoder_config.hidden_size ) snake_case__ : int = TaEncoderModel.from_pretrained("""t5-base""" ) snake_case__ : Dict = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) snake_case__ : str = MusicgenForCausalLM(_lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case__ , snake_case__ : Tuple = decoder.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}" ) if len(_lowerCAmelCase ) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model snake_case__ : Tuple = MusicgenForConditionalGeneration(text_encoder=_lowerCAmelCase , audio_encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_lowerCAmelCase ) # check we can do a forward pass snake_case__ : Optional[Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case__ : List[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case__ : Optional[int] = model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ).logits if logits.shape != (8, 1, 2_048): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""t5-base""" ) snake_case__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" ) snake_case__ : Tuple = MusicgenProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) # set the appropriate bos/pad token ids snake_case__ : Dict = 2_048 snake_case__ : Optional[int] = 2_048 # set other default generation config params snake_case__ : Tuple = int(30 * audio_encoder.config.frame_rate ) snake_case__ : Tuple = True snake_case__ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(_lowerCAmelCase ) processor.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __a = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
35
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["GLPNFeatureExtractor"] __a = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __a = 2_9979_2458 # Symbols __a , __a , __a , __a = symbols("ct x y z") def __snake_case( _lowerCAmelCase ) -> float: if velocity > c: raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("""Speed must be greater than or equal to 1!""" ) return velocity / c def __snake_case( _lowerCAmelCase ) -> float: return 1 / sqrt(1 - beta(_lowerCAmelCase ) ** 2 ) def __snake_case( _lowerCAmelCase ) -> np.ndarray: return np.array( [ [gamma(_lowerCAmelCase ), -gamma(_lowerCAmelCase ) * beta(_lowerCAmelCase ), 0, 0], [-gamma(_lowerCAmelCase ) * beta(_lowerCAmelCase ), gamma(_lowerCAmelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase = None ) -> np.ndarray: # Ensure event is not empty if event is None: snake_case__ : List[Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCAmelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __a = transform(2997_9245) print("Example of four vector: ") print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values __a = {ct: c, x: 1, y: 1, z: 1} __a = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
35
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( "stable diffusion controlnet", "0.22.0", "Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.", standard_warn=False, stacklevel=3, )
35
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "swinv2" lowercase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , snake_case_ : int=224 , snake_case_ : List[Any]=4 , snake_case_ : List[Any]=3 , snake_case_ : Optional[Any]=96 , snake_case_ : str=[2, 2, 6, 2] , snake_case_ : Tuple=[3, 6, 12, 24] , snake_case_ : Optional[Any]=7 , snake_case_ : List[str]=4.0 , snake_case_ : Optional[int]=True , snake_case_ : Any=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Any="gelu" , snake_case_ : Optional[Any]=False , snake_case_ : List[str]=0.02 , snake_case_ : Dict=1E-5 , snake_case_ : Optional[int]=32 , **snake_case_ : Dict , ): super().__init__(**snake_case_ ) snake_case__ : Optional[int] = image_size snake_case__ : Union[str, Any] = patch_size snake_case__ : Optional[int] = num_channels snake_case__ : str = embed_dim snake_case__ : List[str] = depths snake_case__ : int = len(snake_case_ ) snake_case__ : Union[str, Any] = num_heads snake_case__ : Tuple = window_size snake_case__ : str = mlp_ratio snake_case__ : Optional[Any] = qkv_bias snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Optional[Any] = drop_path_rate snake_case__ : Tuple = hidden_act snake_case__ : str = use_absolute_embeddings snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[int] = initializer_range snake_case__ : Dict = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model snake_case__ : List[str] = int(embed_dim * 2 ** (len(snake_case_ ) - 1) ) snake_case__ : Tuple = (0, 0, 0, 0)
35
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
1
UpperCAmelCase__ = tuple[float, float, float] UpperCAmelCase__ = tuple[float, float, float] def _a ( a :Pointad , a :Pointad ) -> Vectorad: a = end_pointa[0] - end_pointa[0] a = end_pointa[1] - end_pointa[1] a = end_pointa[2] - end_pointa[2] return (x, y, z) def _a ( a :Vectorad , a :Vectorad ) -> Vectorad: a = ab[1] * ac[2] - ab[2] * ac[1] # *i a = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j a = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _a ( a :Vectorad , a :int ) -> bool: return tuple(round(a , a ) for x in vector ) == (0, 0, 0) def _a ( a :Pointad , a :Pointad , a :Pointad , a :int = 10 ) -> bool: a = create_vector(a , a ) a = create_vector(a , a ) return is_zero_vector(get_ad_vectors_cross(a , a ) , a )
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[str] ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_: List[Any] ={ 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __A ( UpperCamelCase__ ): a__ : int = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Any = ["""input_ids""", """attention_mask"""] a__ : Any = None def __init__(self : Optional[int] , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : Dict=None , __a : List[Any]="<unk>" , __a : Union[str, Any]="<s>" , __a : Any="</s>" , __a : int="<pad>" , __a : str=False , __a : str=False , **__a : int , ): super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCAmelCase_ = getattr(__a , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**__a ) UpperCAmelCase_ = add_prefix_space def _lowercase (self : Tuple , *__a : Optional[Any] , **__a : str ): UpperCAmelCase_ = kwargs.get("is_split_into_words" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def _lowercase (self : Tuple , *__a : Tuple , **__a : int ): UpperCAmelCase_ = kwargs.get("is_split_into_words" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def _lowercase (self : Optional[int] , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def _lowercase (self : Optional[int] , __a : "Conversation" ): UpperCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: UpperCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : Any = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class A ( __snake_case ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __magic_name__ = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __magic_name__ = Features({'''text''': Value('''string''' )} ) __magic_name__ = Features({'''summary''': Value('''string''' )} ) __magic_name__ = "text" __magic_name__ = "summary" @property def __lowerCAmelCase ( self ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text", self.summary_column: "summary"}
3
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
0
'''simple docstring''' from collections import Counter from timeit import timeit def a_ ( lowerCamelCase : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def a_ ( lowerCamelCase : str = "" ): if len(lowerCamelCase ) == 0: return True lowerCAmelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase = {} for character in lower_case_input_str: lowerCAmelCase = character_freq_dict.get(lowerCamelCase , 0 ) + 1 lowerCAmelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def a_ ( lowerCamelCase : str = "" ): print('\nFor string = ' , lowerCamelCase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(lowerCamelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(lowerCamelCase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": __snake_case =input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) __snake_case =can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {"" if status else "not "}be rearranged as a palindrome''')
4
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
0
from random import randint from tempfile import TemporaryFile import numpy as np def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" _lowercase =0 if start < end: _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase , _lowercase =_in_place_partition(__snake_case , __snake_case , __snake_case ) count += _in_place_quick_sort(__snake_case , __snake_case , p - 1 ) count += _in_place_quick_sort(__snake_case , p + 1 , __snake_case ) return count def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" _lowercase =0 _lowercase =randint(__snake_case , __snake_case ) _lowercase =a[end] _lowercase =a[pivot] _lowercase =temp _lowercase =start - 1 for index in range(__snake_case , __snake_case ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowercase =new_pivot_index + 1 _lowercase =a[new_pivot_index] _lowercase =a[index] _lowercase =temp _lowercase =a[new_pivot_index + 1] _lowercase =a[end] _lowercase =temp return new_pivot_index + 1, count UpperCAmelCase__ = TemporaryFile() UpperCAmelCase__ = 100 # 1000 elements are to be sorted UpperCAmelCase__ ,UpperCAmelCase__ = 0, 1 # mean and standard deviation UpperCAmelCase__ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array UpperCAmelCase__ = np.load(outfile) UpperCAmelCase__ = len(M) - 1 UpperCAmelCase__ = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
5
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
0
from sklearn.metrics import matthews_corrcoef import datasets A : int = '\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' A : Dict = '\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' A : Optional[int] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case=None ) -> Any: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(_snake_case , _snake_case , sample_weight=_snake_case ) ), }
6
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = OpenAIGPTTokenizer lowerCamelCase = OpenAIGPTTokenizerFast lowerCamelCase = True lowerCamelCase = False def snake_case__ ( self : List[Any] )-> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] A__ = dict(zip(lowercase_,range(len(lowercase_ ) ) ) ) A__ = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file,'w' ) as fp: fp.write(json.dumps(lowercase_ ) ) with open(self.merges_file,'w' ) as fp: fp.write('\n'.join(lowercase_ ) ) def snake_case__ ( self : Optional[int],lowercase_ : int )-> Optional[int]: '''simple docstring''' return "lower newer", "lower newer" def snake_case__ ( self : List[str] )-> Union[str, Any]: '''simple docstring''' A__ = OpenAIGPTTokenizer(self.vocab_file,self.merges_file ) A__ = 'lower' A__ = ['low', 'er</w>'] A__ = tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokens + ['<unk>'] A__ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),lowercase_ ) def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=1_5 )-> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ ) # Simple input A__ = 'This is a simple input' A__ = ['This is a simple input 1', 'This is a simple input 2'] A__ = ('This is a simple input', 'This is a pair') A__ = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Simple input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' ) # Pair input self.assertRaises( lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',) def snake_case__ ( self : List[str] )-> Optional[int]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A ( _UpperCAmelCase ): """simple docstring""" pass
7
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase_ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
from math import ceil def _UpperCamelCase ( lowercase__ = 1001 ): __SCREAMING_SNAKE_CASE : Dict = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = 2 * i + 1 __SCREAMING_SNAKE_CASE : Tuple = 2 * i __SCREAMING_SNAKE_CASE : int = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __lowerCAmelCase : str =int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
9
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCAmelCase_ ( __a , __a ) -> Dict: """simple docstring""" return (-y * np.log(__a ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase_ ( __a , __a , __a ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =np.dot(__a , __a ) return np.sum(y * scores - np.log(1 + np.exp(__a ) ) ) def lowerCAmelCase_ ( __a , __a , __a , __a=70000 ) -> List[str]: """simple docstring""" lowerCamelCase__: Optional[Any] =np.zeros(x.shape[1] ) for iterations in range(__a ): lowerCamelCase__: Tuple =np.dot(__a , __a ) lowerCamelCase__: Union[str, Any] =sigmoid_function(__a ) lowerCamelCase__: Union[str, Any] =np.dot(x.T , h - y ) / y.size lowerCamelCase__: Optional[Any] =theta - alpha * gradient # updating the weights lowerCamelCase__: List[str] =np.dot(__a , __a ) lowerCamelCase__: List[str] =sigmoid_function(__a ) lowerCamelCase__: str =cost_function(__a , __a ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __A = datasets.load_iris() __A = iris.data[:, :2] __A = (iris.target != 0) * 1 __A = 0.1 __A = logistic_reg(alpha, x, y, max_iterations=7_0000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCAmelCase_ ( __a ) -> Union[str, Any]: """simple docstring""" return sigmoid_function( np.dot(__a , __a ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((__A) , (__A)) = (x[:, 0].min(), x[:, 0].max()) ((__A) , (__A)) = (x[:, 1].min(), x[:, 1].max()) ((__A) , (__A)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __A = np.c_[xxa.ravel(), xxa.ravel()] __A = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
10
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = False , __lowerCamelCase = False , __lowerCamelCase = None , **__lowerCamelCase , ) -> Any: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) _A : Optional[Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase) else {self.split: path_or_paths} _A : str = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self) -> Any: # Build iterable dataset if self.streaming: _A : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _A : Tuple = None _A : Tuple = None _A : Tuple = None _A : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) _A : List[str] = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory) return dataset
11
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase__ ( self: str ): __lowerCamelCase = 1 __lowerCamelCase = 3 __lowerCamelCase = (32, 32) __lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCamelCase_ ) return image @property def lowerCAmelCase__ ( self: List[str] ): torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase__ ( self: Optional[Any] ): torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase__ ( self: Any ): torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(UpperCamelCase_ ) @property def lowerCAmelCase__ ( self: Tuple ): def extract(*UpperCamelCase_: Tuple , **UpperCamelCase_: Union[str, Any] ): class lowerCamelCase__: def __init__( self: Dict ): __lowerCamelCase = torch.ones([0] ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: List[Any] ): self.pixel_values.to(UpperCamelCase_ ) return self return Out() return extract def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """A painting of a squirrel eating a burger""" __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCamelCase_ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """A painting of a squirrel eating a burger""" __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = sd_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCamelCase = output.images __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=UpperCamelCase_ , )[0] __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Optional[int] ): __lowerCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=UpperCamelCase_ ) assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert isinstance(pipe.scheduler , UpperCamelCase_ ) assert pipe.safety_checker is None __lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = StableDiffusionPipeline.from_pretrained(UpperCamelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = self.dummy_cond_unet __lowerCamelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) __lowerCamelCase = self.dummy_vae __lowerCamelCase = self.dummy_text_encoder __lowerCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __lowerCamelCase = unet.half() __lowerCamelCase = vae.half() __lowerCamelCase = bert.half() # make sure here that pndm scheduler skips prk __lowerCamelCase = StableDiffusionPipeline( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """A painting of a squirrel eating a burger""" __lowerCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCamelCase_ ) __lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __lowerCamelCase = 40_03_66_03_46 __lowerCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=UpperCamelCase_ ) __lowerCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __lowerCamelCase = 27_34_97_17_55 __lowerCamelCase = 7 __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __lowerCamelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __lowerCamelCase = 10_44_35_52_34 __lowerCamelCase = 12 __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) __lowerCamelCase = sd_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase = output.images __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True ): model.train() SCREAMING_SNAKE_CASE_: Any = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = F.mse_loss(_UpperCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_UpperCAmelCase ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False ): set_seed(42 ) SCREAMING_SNAKE_CASE_: Tuple = RegressionModel() SCREAMING_SNAKE_CASE_: Optional[int] = deepcopy(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE_: Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE_: List[Any] = AdamW(params=model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_: str = AdamW(params=ddp_model.parameters() , lr=1e-3 ) SCREAMING_SNAKE_CASE_: Union[str, Any] = LambdaLR(_UpperCAmelCase , lr_lambda=lambda _UpperCAmelCase : epoch**0.6_5 ) SCREAMING_SNAKE_CASE_: List[Any] = LambdaLR(_UpperCAmelCase , lr_lambda=lambda _UpperCAmelCase : epoch**0.6_5 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A_ ( _UpperCAmelCase ): # Test when on a single CPU or GPU that the context manager does nothing SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = get_training_setup(_UpperCAmelCase ) # Use a single batch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = next(iter(_UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_UpperCAmelCase ): step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: # Sync grads step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_: Optional[Any] = ddp_input[torch.randperm(len(_UpperCAmelCase ) )] def A_ ( _UpperCAmelCase ): # Test on distributed setup that context manager behaves properly SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = get_training_setup(_UpperCAmelCase ) # Use a single batch SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = next(iter(_UpperCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_UpperCAmelCase ): step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: # Sync grads step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_: Any = ddp_input[torch.randperm(len(_UpperCAmelCase ) )] def A_ ( _UpperCAmelCase=False , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: List[str] = Accelerator( split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = get_training_setup(_UpperCAmelCase ) for iteration, batch in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_UpperCAmelCase ): step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_UpperCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) SCREAMING_SNAKE_CASE_: Dict = ddp_input[torch.randperm(len(_UpperCAmelCase ) )] GradientState._reset_state() def A_ ( _UpperCAmelCase=False , _UpperCAmelCase=False ): SCREAMING_SNAKE_CASE_: List[Any] = Accelerator( split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = get_training_setup(_UpperCAmelCase , _UpperCAmelCase ) for iteration, batch in enumerate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: int = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_UpperCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_UpperCAmelCase ): step_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n" SCREAMING_SNAKE_CASE_: Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_UpperCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = Accelerator() SCREAMING_SNAKE_CASE_: Dict = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE_: Optional[Any] = DataLoader(_UpperCAmelCase , batch_size=16 ) SCREAMING_SNAKE_CASE_: Any = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE_: Optional[Any] = DataLoader(_UpperCAmelCase , batch_size=16 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Optional[int] = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCAmelCase ) if iteration < len(_UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_UpperCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(_UpperCAmelCase ) if batch_num < len(_UpperCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Accelerator() SCREAMING_SNAKE_CASE_: int = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_UpperCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_UpperCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation(_UpperCAmelCase , _UpperCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**" , ) test_gradient_accumulation_with_opt_and_scheduler(_UpperCAmelCase , _UpperCAmelCase ) def A_ ( _UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
13
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt"""} _lowerCamelCase : List[Any] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } _lowerCamelCase : List[str] = { """openbmb/cpm-ant-10b""": 1024, } def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" A__ = collections.OrderedDict() with open(lowercase_ , '''r''' , encoding='''utf-8''' ) as reader: A__ = reader.readlines() for index, token in enumerate(lowercase_ ): A__ = token.rstrip('''\n''' ) A__ = index return vocab class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str]="<unk>" , UpperCAmelCase__ : Union[str, Any]=200) ->List[str]: '''simple docstring''' A__ = vocab A__ = unk_token A__ = max_input_chars_per_word def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[int]) ->Optional[int]: '''simple docstring''' A__ = list(UpperCAmelCase__) if len(UpperCAmelCase__) > self.max_input_chars_per_word: return [self.unk_token] A__ = 0 A__ = [] while start < len(UpperCAmelCase__): A__ = len(UpperCAmelCase__) A__ = None while start < end: A__ = ''''''.join(chars[start:end]) if substr in self.vocab: A__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token) start += 1 else: sub_tokens.append(UpperCAmelCase__) A__ = end return sub_tokens class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = False def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]="<d>" , UpperCAmelCase__ : Union[str, Any]="</d>" , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Optional[int]="</s>" , UpperCAmelCase__ : Optional[int]="<pad>" , UpperCAmelCase__ : Dict="<unk>" , UpperCAmelCase__ : Optional[Any]="</n>" , UpperCAmelCase__ : List[Any]="</_>" , UpperCAmelCase__ : Optional[Any]="left" , **UpperCAmelCase__ : Union[str, Any] , ) ->Dict: '''simple docstring''' requires_backends(self , ['''jieba''']) super().__init__( bod_token=UpperCAmelCase__ , eod_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , line_token=UpperCAmelCase__ , space_token=UpperCAmelCase__ , padding_side=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = bod_token A__ = eod_token A__ = load_vocab(UpperCAmelCase__) A__ = self.encoder[space_token] A__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] A__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase__: x[1])) A__ = {v: k for k, v in self.encoder.items()} A__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token) @property def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' return self.encoder[self.bod_token] @property def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->List[Any]: '''simple docstring''' return self.encoder[self.eod_token] @property def SCREAMING_SNAKE_CASE ( self : int) ->List[Any]: '''simple docstring''' return self.encoder["\n"] @property def SCREAMING_SNAKE_CASE ( self : int) ->int: '''simple docstring''' return len(self.encoder) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : Any) ->Union[str, Any]: '''simple docstring''' A__ = [] for x in jieba.cut(UpperCAmelCase__ , cut_all=UpperCAmelCase__): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCAmelCase__)) return output_tokens def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Dict) ->List[str]: '''simple docstring''' A__ = [i for i in token_ids if i >= 0] A__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any]) ->Tuple: '''simple docstring''' return token in self.encoder def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[str]) ->str: '''simple docstring''' return "".join(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : int) ->Union[str, Any]: '''simple docstring''' return self.encoder.get(UpperCAmelCase__ , self.encoder.get(self.unk_token)) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[str]) ->Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase__ , self.unk_token) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None) ->Tuple[str]: '''simple docstring''' if os.path.isdir(UpperCAmelCase__): A__ = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) else: A__ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory A__ = 0 if " " in self.encoder: A__ = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: A__ = self.encoder['''\n'''] del self.encoder["\n"] A__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCAmelCase__: x[1])) with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''') as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''') A__ = token_index writer.write(token + '''\n''') index += 1 return (vocab_file,) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : List[int] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__)) + [1] + ([0] * len(UpperCAmelCase__)) return [1] + ([0] * len(UpperCAmelCase__))
14
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "time_series_transformer" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "student_t" ,A : str = "nll" ,A : int = 1 ,A : List[int] = [1, 2, 3, 4, 5, 6, 7] ,A : Optional[Union[str, bool]] = "mean" ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : Optional[List[int]] = None ,A : Optional[List[int]] = None ,A : int = 32 ,A : int = 32 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : bool = True ,A : str = "gelu" ,A : int = 64 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : int = 1_00 ,A : float = 0.02 ,A : Union[str, Any]=True ,**A : Optional[int] ,): # time series specific configuration __A = prediction_length __A = context_length or prediction_length __A = distribution_output __A = loss __A = input_size __A = num_time_features __A = lags_sequence __A = scaling __A = num_dynamic_real_features __A = num_static_real_features __A = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __A = cardinality else: __A = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __A = embedding_dimension else: __A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] __A = num_parallel_samples # Transformer architecture configuration __A = input_size * len(A ) + self._number_of_features __A = d_model __A = encoder_attention_heads __A = decoder_attention_heads __A = encoder_ffn_dim __A = decoder_ffn_dim __A = encoder_layers __A = decoder_layers __A = dropout __A = attention_dropout __A = activation_dropout __A = encoder_layerdrop __A = decoder_layerdrop __A = activation_function __A = init_std __A = use_cache super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
15
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } lowerCAmelCase_ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } lowerCAmelCase_ = { 'ctrl': 256, } lowerCAmelCase_ = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def __UpperCAmelCase ( __lowerCamelCase ) -> Union[str, Any]: lowercase__ : Dict = set() lowercase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Dict = char lowercase__ : Tuple = set(__lowerCamelCase ) return pairs class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[str] = VOCAB_FILES_NAMES lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Optional[Any] = CONTROL_CODES def __init__( self : int ,_snake_case : str ,_snake_case : Tuple ,_snake_case : List[str]="<unk>" ,**_snake_case : List[str] ) -> Tuple: """simple docstring""" super().__init__(unk_token=_snake_case ,**_snake_case ) with open(_snake_case ,encoding='''utf-8''' ) as vocab_handle: lowercase__ : Dict = json.load(_snake_case ) lowercase__ : str = {v: k for k, v in self.encoder.items()} with open(_snake_case ,encoding='''utf-8''' ) as merges_handle: lowercase__ : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1] lowercase__ : List[Any] = [tuple(merge.split() ) for merge in merges] lowercase__ : List[str] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) lowercase__ : int = {} @property def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return len(self.encoder ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase ( self : Any ,_snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ : str = tuple(_snake_case ) lowercase__ : Dict = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowercase__ : Any = get_pairs(_snake_case ) if not pairs: return token while True: lowercase__ : Dict = min(_snake_case ,key=lambda _snake_case : self.bpe_ranks.get(_snake_case ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : Any = bigram lowercase__ : Tuple = [] lowercase__ : Any = 0 while i < len(_snake_case ): try: lowercase__ : Optional[Any] = word.index(_snake_case ,_snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ : int = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : Tuple = tuple(_snake_case ) lowercase__ : int = new_word if len(_snake_case ) == 1: break else: lowercase__ : Optional[Any] = get_pairs(_snake_case ) lowercase__ : Union[str, Any] = '''@@ '''.join(_snake_case ) lowercase__ : List[Any] = word[:-4] lowercase__ : int = word return word def UpperCAmelCase ( self : Optional[Any] ,_snake_case : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = [] lowercase__ : int = re.findall(r'''\S+\n?''' ,_snake_case ) for token in words: split_tokens.extend(list(self.bpe(_snake_case ).split(''' ''' ) ) ) return split_tokens def UpperCAmelCase ( self : List[Any] ,_snake_case : List[Any] ) -> Tuple: """simple docstring""" return self.encoder.get(_snake_case ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase ( self : Optional[int] ,_snake_case : str ) -> Optional[Any]: """simple docstring""" return self.decoder.get(_snake_case ,self.unk_token ) def UpperCAmelCase ( self : List[str] ,_snake_case : str ) -> Any: """simple docstring""" lowercase__ : List[str] = ''' '''.join(_snake_case ).replace('''@@ ''' ,'''''' ).strip() return out_string def UpperCAmelCase ( self : Dict ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : int = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=_snake_case ,ensure_ascii=_snake_case ) + '''\n''' ) lowercase__ : Optional[int] = 0 with open(_snake_case ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ : List[Any] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
16
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
0
"""simple docstring""" def _A ( UpperCamelCase_ : list[int]) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty") __lowercase = sum(UpperCamelCase_) / len(UpperCamelCase_) # Calculate the average return sum(abs(x - average) for x in nums) / len(UpperCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a__ : def __init__( self : int,_A : Tuple,_A : Union[str, Any]=14,_A : int=7,_A : Tuple=True,_A : Tuple=True,_A : int=False,_A : Dict=True,_A : List[Any]=99,_A : List[Any]=32,_A : Union[str, Any]=4,_A : List[str]=4,_A : str=4,_A : List[Any]=37,_A : int="gelu",_A : str=0.1,_A : Tuple=0.1,_A : Tuple=512,_A : int=0.02,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : Dict = is_training SCREAMING_SNAKE_CASE_ : str = use_input_mask SCREAMING_SNAKE_CASE_ : int = use_token_type_ids SCREAMING_SNAKE_CASE_ : Optional[Any] = use_labels SCREAMING_SNAKE_CASE_ : Any = vocab_size SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = rotary_dim SCREAMING_SNAKE_CASE_ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : str = vocab_size - 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size - 1 SCREAMING_SNAKE_CASE_ : int = vocab_size - 1 def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : int = GPTJConfig( vocab_size=self.vocab_size,n_embd=self.hidden_size,n_layer=self.num_hidden_layers,n_head=self.num_attention_heads,n_positions=self.max_position_embeddings,use_cache=_A,bos_token_id=self.bos_token_id,eos_token_id=self.eos_token_id,pad_token_id=self.pad_token_id,rotary_dim=self.rotary_dim,) return (config, input_ids, input_mask) def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def __UpperCamelCase ( self : int,_A : Tuple,_A : str,_A : Union[str, Any],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 20 SCREAMING_SNAKE_CASE_ : Any = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : Dict = model.init_cache(input_ids.shape[0],_A ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.ones((input_ids.shape[0], max_decoder_length),dtype="i4" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :],(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : str = model( input_ids[:, :-1],attention_mask=_A,past_key_values=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : Any = model( input_ids[:, -1:],attention_mask=_A,past_key_values=outputs_cache.past_key_values,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Any = model(_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) def __UpperCamelCase ( self : Optional[Any],_A : int,_A : Union[str, Any],_A : int,_A : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20 SCREAMING_SNAKE_CASE_ : List[str] = model_class_name(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )],axis=-1,) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(input_ids.shape[0],_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :],(input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE_ : List[str] = model( input_ids[:, :-1],attention_mask=_A,past_key_values=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Dict = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]],dtype="i4" ) SCREAMING_SNAKE_CASE_ : int = model( input_ids[:, -1:],past_key_values=outputs_cache.past_key_values,attention_mask=_A,position_ids=_A,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(_A,attention_mask=_A ) SCREAMING_SNAKE_CASE_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3,msg=F'Max diff is {diff}' ) @require_flax class a__ ( A__ , A__ , unittest.TestCase ): A = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = FlaxGPTJModelTester(self ) def __UpperCamelCase ( self : Dict ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_A,_A,_A,_A ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _A,_A,_A,_A ) @tooslow def __UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer.from_pretrained("gpt2",pad_token="<|endoftext|>",padding_side="left" ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(["Hello this is a long string", "Hey"],return_tensors="np",padding=_A,truncation=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Any = model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Dict = jax.jit(model.generate ) SCREAMING_SNAKE_CASE_ : str = jit_generate( inputs["input_ids"],attention_mask=inputs["attention_mask"],pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.batch_decode(_A,skip_special_tokens=_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(_A,_A ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : str = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : str = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randint(0,seq_length - 1,size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Any = 1 SCREAMING_SNAKE_CASE_ : List[Any] = pt_model_class(_A ).eval() SCREAMING_SNAKE_CASE_ : Dict = model_class(_A,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict(),_A ) SCREAMING_SNAKE_CASE_ : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ : Union[str, Any] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : int = model_class.from_pretrained(_A,from_pt=_A ) SCREAMING_SNAKE_CASE_ : str = fx_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output_loaded[:, -1],pt_output[:, -1].numpy(),4E-2 ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE_ : str = self._prepare_for_class(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(_A,_A ) SCREAMING_SNAKE_CASE_ : List[str] = pt_model_class(_A ).eval() SCREAMING_SNAKE_CASE_ : Any = model_class(_A,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Tuple = load_flax_weights_in_pytorch_model(_A,fx_model.params ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_inputs["input_ids"].shape SCREAMING_SNAKE_CASE_ : Optional[int] = np.random.randint(0,seq_length - 1,size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = pt_model(**_A ).to_tuple() SCREAMING_SNAKE_CASE_ : List[str] = fx_model(**_A ).to_tuple() self.assertEqual(len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ : Tuple = pt_model_class.from_pretrained(_A,from_flax=_A ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_model_loaded(**_A ).to_tuple() self.assertEqual( len(_A ),len(_A ),"Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(_A,_A ): self.assert_almost_equals(fx_output[:, -1],pt_output[:, -1].numpy(),4E-2 ) @tooslow def __UpperCamelCase ( self : str ): """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : str = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) SCREAMING_SNAKE_CASE_ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_A )
18
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __A =['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] __A ={'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __A =logging.get_logger(__name__) __A =''' Hello world! cécé herlolip''' __A =[ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = dct.pop(lowerCamelCase__ ) lowerCamelCase_ = val def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" ) lowerCamelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ , lowerCamelCase_ = emb.weight.shape lowerCamelCase_ = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowerCamelCase_ = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): if not os.path.exists(lowerCamelCase__ ): lowerCamelCase_ = torch.hub.load("pytorch/fairseq" , lowerCamelCase__ ).eval() else: lowerCamelCase_ = load_xsum_checkpoint(lowerCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCamelCase_ = checkpoint_path.replace("." , "-" ) lowerCamelCase_ = BartConfig.from_pretrained(lowerCamelCase__ ) lowerCamelCase_ = bart.encode(lowerCamelCase__ ).unsqueeze(0 ) lowerCamelCase_ = BartTokenizer.from_pretrained(lowerCamelCase__ ).encode(lowerCamelCase__ , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(lowerCamelCase__ , lowerCamelCase__ ).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": lowerCamelCase_ = bart.state_dict() remove_ignore_keys_(lowerCamelCase__ ) lowerCamelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = BartForSequenceClassification(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) lowerCamelCase_ = bart.predict("mnli" , lowerCamelCase__ , return_logits=lowerCamelCase__ ) lowerCamelCase_ = model(lowerCamelCase__ )[0] # logits else: # no classification heads to worry about lowerCamelCase_ = bart.model.state_dict() remove_ignore_keys_(lowerCamelCase__ ) lowerCamelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCamelCase_ = bart.extract_features(lowerCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": lowerCamelCase_ = BartModel(lowerCamelCase__ ).eval() model.load_state_dict(lowerCamelCase__ ) lowerCamelCase_ = model(lowerCamelCase__ ).model[0] else: lowerCamelCase_ = BartForConditionalGeneration(lowerCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(lowerCamelCase__ ) if hasattr(lowerCamelCase__ , "lm_head" ): lowerCamelCase_ = make_linear_from_emb(model.model.shared ) lowerCamelCase_ = model.model(lowerCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __A =parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
19
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
0
import os def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Dict = len(grid[0] ) lowercase : Dict = len(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = 0 lowercase : str = 0 lowercase : Tuple = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(n_rows - 3 ): lowercase : int = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowercase : List[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowercase : List[str] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowercase : int = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowercase : Optional[Any] = max( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if max_product > largest: lowercase : Any = max_product return largest def _snake_case( ) -> Optional[Any]: lowercase : List[Any] = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) lowercase : Dict = [[int(SCREAMING_SNAKE_CASE__ ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE__ ) )] return largest_product(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
20
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
0
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'], model_result['ss']): _lowercase : Union[str, Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tiny-gpt2' _lowercase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase) _lowercase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = 'sgugger/tiny-distilbert-classification' _lowercase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, only_pretrain_model=lowerCamelCase, ) _lowercase : Any = PyTorchBenchmark(lowerCamelCase) _lowercase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 'sshleifer/tiny-gpt2' _lowercase : Any = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, torchscript=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == 'cpu', 'Cant do half precision') def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Optional[Any] = 'sshleifer/tiny-gpt2' _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, fpaa=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Union[str, Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = 'sshleifer/tiny-gpt2' _lowercase : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase) # set architectures equal to `None` _lowercase : Tuple = None _lowercase : int = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : str = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Dict = PyTorchBenchmark(lowerCamelCase) _lowercase : str = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == 'cpu', 'Can\'t do half precision') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=lowerCamelCase, multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : int = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[int] = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tinier_bart' _lowercase : Any = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : int = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = 'sshleifer/tiny-gpt2' _lowercase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : int = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[Any] = 'sshleifer/tinier_bart' _lowercase : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase) _lowercase : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase, configs=[config]) _lowercase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, save_to_csv=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(lowerCamelCase, 'inf_time.csv'), train_memory_csv_file=os.path.join(lowerCamelCase, 'train_mem.csv'), inference_memory_csv_file=os.path.join(lowerCamelCase, 'inf_mem.csv'), train_time_csv_file=os.path.join(lowerCamelCase, 'train_time.csv'), env_info_csv_file=os.path.join(lowerCamelCase, 'env.csv'), multi_process=lowerCamelCase, ) _lowercase : Union[str, Any] = PyTorchBenchmark(lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase, 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'train_time.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'train_mem.csv')).exists()) self.assertTrue(Path(os.path.join(lowerCamelCase, 'env.csv')).exists()) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowerCamelCase): self.assertTrue(hasattr(lowerCamelCase, 'sequential')) self.assertTrue(hasattr(lowerCamelCase, 'cumulative')) self.assertTrue(hasattr(lowerCamelCase, 'current')) self.assertTrue(hasattr(lowerCamelCase, 'total')) with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID], training=lowerCamelCase, inference=lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(lowerCamelCase, 'log.txt'), log_print=lowerCamelCase, trace_memory_line_by_line=lowerCamelCase, multi_process=lowerCamelCase, ) _lowercase : Optional[Any] = PyTorchBenchmark(lowerCamelCase) _lowercase : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(lowerCamelCase, 'log.txt')).exists())
21
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _UpperCAmelCase = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , __lowercase ) if matches: _UpperCAmelCase = float(matches[1] ) _UpperCAmelCase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _UpperCAmelCase = 1001 _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ) + 1: v for k, v in idalabel.items()} _UpperCAmelCase = "background" _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : Optional[int] , __lowercase : int , __lowercase : Optional[Any]=False ) -> List[str]: '''simple docstring''' _UpperCAmelCase = get_mobilenet_va_config(__lowercase ) # Load 🤗 model _UpperCAmelCase = MobileNetVaForImageClassification(__lowercase ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__lowercase , __lowercase , __lowercase ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _UpperCAmelCase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ) _UpperCAmelCase = model(**__lowercase ) _UpperCAmelCase = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": _UpperCAmelCase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _UpperCAmelCase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _UpperCAmelCase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __lowercase , atol=1E-4 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowercase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print("Pushing to the hub..." ) _UpperCAmelCase = "google/" + model_name image_processor.push_to_hub(__lowercase ) model.push_to_hub(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
22
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[str] ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCamelCase__: Dict = logging.getLogger() def snake_case_ ( ) -> Dict: UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase : List[Any] = parser.parse_args() return args.f class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Optional[int] ) -> None: UpperCAmelCase : Any = logging.StreamHandler(sys.stdout ) logger.addHandler(__snake_case ) def A ( self : str , __snake_case : Optional[int] ) -> int: UpperCAmelCase : Any = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(__snake_case , '''argv''' , __snake_case ): UpperCAmelCase : int = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__snake_case , 0.6_66 ) @slow @require_torch_non_multi_gpu def A ( self : Tuple ) -> int: UpperCAmelCase : List[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(__snake_case ) UpperCAmelCase : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case ) UpperCAmelCase : Optional[int] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(__snake_case )
23
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
0
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : int = 4 ) -> list[list[int]]: __snake_case = abs(snake_case_ ) or 4 return [[1 + x + y * row_size for x in range(snake_case_ )] for y in range(snake_case_ )] def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(transpose(snake_case_ ) ) # OR.. transpose(reverse_column(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_row(reverse_column(snake_case_ ) ) # OR.. reverse_column(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: return reverse_column(transpose(snake_case_ ) ) # OR.. transpose(reverse_row(matrix)) def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [list(snake_case_ ) for x in zip(*snake_case_ )] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = matrix[::-1] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> list[list[int]]: __snake_case = [x[::-1] for x in matrix] return matrix def lowerCamelCase__ ( snake_case_ : list[list[int]] ) -> None: for i in matrix: print(*snake_case_ ) if __name__ == "__main__": snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) snake_case_ = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
24
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
0
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py UpperCAmelCase__ : str = '\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",\n author = "Lin, Chin-Yew and\n Och, Franz Josef",\n booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics",\n month = "aug 23{--}aug 27",\n year = "2004",\n address = "Geneva, Switzerland",\n publisher = "COLING",\n url = "https://www.aclweb.org/anthology/C04-1072",\n pages = "501--507",\n}\n' UpperCAmelCase__ : str = '\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation,\nthe better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n' UpperCAmelCase__ : Optional[int] = '\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample\n ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references)\n ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric("bleu")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results["bleu"])\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ (datasets.Metric ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=False ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_bleu( reference_corpus=SCREAMING_SNAKE_CASE__ , translation_corpus=SCREAMING_SNAKE_CASE__ , max_order=SCREAMING_SNAKE_CASE__ , smooth=SCREAMING_SNAKE_CASE__ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Union[str, Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
25
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = None _a = "utf-8" _a = None _a = None _a = True # deprecated _a = None # deprecated _a = 1_0 << 2_0 # 10MB _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = JsonConfig def a__ ( self ) -> Union[str, Any]: if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _A : Optional[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Union[str, Any]: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : List[str] = data_files if isinstance(_a , _a ): _A : Optional[int] = [files] _A : str = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : Tuple = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : Optional[int] = [files] _A : Tuple = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _A : List[Any] = self.config.features.arrow_schema.field(_a ).type _A : str = pa_table.append_column(_a , pa.array([None] * len(_a ) , type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _A : Optional[Any] = table_cast(_a , self.config.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : Any = json.load(_a ) # We keep only the field we are interested in _A : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a , (list, tuple) ): _A : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) _A : Union[str, Any] = {col: [row.get(_a ) for row in dataset] for col in keys} else: _A : List[str] = dataset _A : Optional[Any] = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a , """rb""" ) as f: _A : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _A : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) _A : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: _A : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _A : List[str] = batch.decode(self.config.encoding , errors=_a ).encode("""utf-8""" ) try: while True: try: _A : Union[str, Any] = paj.read_json( io.BytesIO(_a ) , read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a , pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F'''Batch of {len(_a )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: _A : List[str] = json.load(_a ) except json.JSONDecodeError: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a , _a ): # list is the only sequence type supported in JSON try: _A : str = set().union(*[row.keys() for row in dataset] ) _A : Dict = {col: [row.get(_a ) for row in dataset] for col in keys} _A : List[Any] = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError(F'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise ValueError( F'''Not able to read records in the JSON file at {file}. ''' F'''You should probably indicate the field of the JSON file containing your records. ''' F'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' F'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
26
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Tuple = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : int = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __lowercase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
27
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
0
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def A ( self : List[str] ): """simple docstring""" UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids UpperCamelCase = shift_tokens_right(UpperCamelCase__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits UpperCamelCase = optax.softmax_cross_entropy(UpperCamelCase__ , onehot(UpperCamelCase__ , logits.shape[-1] ) ).mean() UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
28
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
0
import requests from bsa import BeautifulSoup def lowercase__ ( __snake_case : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCAmelCase_ : int = BeautifulSoup(requests.get(__snake_case ).text , 'html.parser' ) UpperCAmelCase_ : Tuple = soup.findAll('h1' ) UpperCAmelCase_ : Tuple = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__snake_case , __snake_case )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
29
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
0
def a ( snake_case__: int ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): raise TypeError('''Input value must be an \'int\' type''' ) lowercase_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
30
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Dict = MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase: Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _A ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : Optional[int] = text_generator("This is a test" , do_sample=A ) self.assertEqual( A , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) _UpperCAmelCase : Dict = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( A , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) _UpperCAmelCase : Any = text_generator("This is a test" , do_sample=A , num_return_sequences=2 , return_tensors=A ) self.assertEqual( A , [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ] , ) _UpperCAmelCase : Any = text_generator.model.config.eos_token_id _UpperCAmelCase : List[Any] = "<pad>" _UpperCAmelCase : Dict = text_generator( ["This is a test", "This is a second test"] , do_sample=A , num_return_sequences=2 , batch_size=2 , return_tensors=A , ) self.assertEqual( A , [ [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ], [ {"generated_token_ids": ANY(A )}, {"generated_token_ids": ANY(A )}, ], ] , ) @require_tf def _A ( self : Union[str, Any] ): _UpperCAmelCase : int = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output _UpperCAmelCase : int = text_generator("This is a test" , do_sample=A ) self.assertEqual( A , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) _UpperCAmelCase : List[str] = text_generator(["This is a test", "This is a second test"] , do_sample=A ) self.assertEqual( A , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def _A ( self : Any , A : List[str] , A : List[str] , A : Union[str, Any] ): _UpperCAmelCase : Optional[Any] = TextGenerationPipeline(model=A , tokenizer=A ) return text_generator, ["This is a test", "Another test"] def _A ( self : Any ): _UpperCAmelCase : int = "Hello I believe in" _UpperCAmelCase : int = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) _UpperCAmelCase : Optional[int] = text_generator(A ) self.assertEqual( A , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) _UpperCAmelCase : List[str] = text_generator(A , stop_sequence=" fe" ) self.assertEqual(A , [{"generated_text": "Hello I believe in fe"}] ) def _A ( self : Optional[int] , A : Optional[Any] , A : List[Any] ): _UpperCAmelCase : List[str] = text_generator.model _UpperCAmelCase : str = text_generator.tokenizer _UpperCAmelCase : Dict = text_generator("This is a test" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCAmelCase : Dict = text_generator("This is a test" , return_full_text=A ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCAmelCase : int = pipeline(task="text-generation" , model=A , tokenizer=A , return_full_text=A ) _UpperCAmelCase : Optional[Any] = text_generator("This is a test" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) _UpperCAmelCase : str = text_generator("This is a test" , return_full_text=A ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) _UpperCAmelCase : Dict = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=A ) self.assertEqual( A , [ [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], ] , ) if text_generator.tokenizer.pad_token is not None: _UpperCAmelCase : Optional[Any] = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=A ) self.assertEqual( A , [ [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], [{"generated_text": ANY(A )}, {"generated_text": ANY(A )}], ] , ) with self.assertRaises(A ): _UpperCAmelCase : List[str] = text_generator("test" , return_full_text=A , return_text=A ) with self.assertRaises(A ): _UpperCAmelCase : Tuple = text_generator("test" , return_full_text=A , return_tensors=A ) with self.assertRaises(A ): _UpperCAmelCase : List[str] = text_generator("test" , return_text=A , return_tensors=A ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): _UpperCAmelCase : Any = text_generator("" ) self.assertEqual(A , [{"generated_text": ANY(A )}] ) else: with self.assertRaises((ValueError, AssertionError) ): _UpperCAmelCase : Dict = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. _UpperCAmelCase : Any = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) _UpperCAmelCase : Any = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(A ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : str ): import torch # Classic `model_kwargs` _UpperCAmelCase : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase : List[str] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) _UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) _UpperCAmelCase : List[Any] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 _UpperCAmelCase : Tuple = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) _UpperCAmelCase : Optional[Any] = pipe("This is a test" ) self.assertEqual( A , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def _A ( self : Tuple ): import torch _UpperCAmelCase : Optional[int] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : Optional[Any] ): import torch _UpperCAmelCase : int = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=A , top_p=0.5 ) def _A ( self : str ): _UpperCAmelCase : Any = "Hello world" _UpperCAmelCase : Any = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": _UpperCAmelCase : Tuple = logging.get_logger("transformers.generation.tf_utils" ) else: _UpperCAmelCase : Optional[Any] = logging.get_logger("transformers.generation.utils" ) _UpperCAmelCase : int = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(A ) as cl: _UpperCAmelCase : int = text_generator(A , max_length=10 , max_new_tokens=1 ) self.assertIn(A , cl.out ) # The user only sets one -> no warning with CaptureLogger(A ) as cl: _UpperCAmelCase : Tuple = text_generator(A , max_new_tokens=1 ) self.assertNotIn(A , cl.out ) with CaptureLogger(A ) as cl: _UpperCAmelCase : List[str] = text_generator(A , max_length=10 ) self.assertNotIn(A , cl.out )
31
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : Union[str, Any] = datasets.logging.get_logger(__name__) UpperCAmelCase_ : Dict = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' UpperCAmelCase_ : str = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' UpperCAmelCase_ : int = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[str] , __A : List[Any]=False , __A : Tuple=False , __A : Union[str, Any]=True , __A : List[str]=False , __A : Optional[int]="dummy_doc" ) -> Any: """simple docstring""" a_ : Any = {doc: key_lines} a_ : List[Any] = {doc: sys_lines} a_ : Union[str, Any] = {} a_ : int = 0 a_ : List[Any] = 0 a_ : Union[str, Any] = 0 a_ : Union[str, Any] = 0 a_ : int = 0 a_ : Optional[int] = 0 a_ , a_ : Optional[int] = reader.get_doc_mentions(__A , key_doc_lines[doc] , __A ) key_singletons_num += singletons_num if NP_only or min_span: a_ : List[Any] = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) a_ , a_ : List[str] = reader.get_doc_mentions(__A , sys_doc_lines[doc] , __A ) sys_singletons_num += singletons_num if NP_only or min_span: a_ : int = reader.set_annotated_parse_trees(__A , key_doc_lines[doc] , __A , __A ) if remove_nested: a_ , a_ : Union[str, Any] = reader.remove_nested_coref_mentions(__A , __A ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters a_ , a_ : Union[str, Any] = reader.remove_nested_coref_mentions(__A , __A ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters a_ : Any = reader.get_mention_assignments(__A , __A ) a_ : List[str] = reader.get_mention_assignments(__A , __A ) a_ : Dict = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( 'Number of resulting singleton clusters in the key ' F"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( F"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ 'files, respectively' ) return doc_coref_infos def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : str , __A : str , __A : List[str] , __A : Any , __A : Optional[int] , __A : Dict ) -> Optional[int]: """simple docstring""" a_ : Tuple = get_coref_infos(__A , __A , __A , __A , __A , __A ) a_ : Optional[int] = {} a_ : Union[str, Any] = 0 a_ : str = 0 for name, metric in metrics: a_ , a_ , a_ : Any = evaluator.evaluate_documents(__A , __A , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F"""{name}/recall""": recall, F"""{name}/precision""": precision, F"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , F"""Recall: {recall * 1_00:.2f}""" , F""" Precision: {precision * 1_00:.2f}""" , F""" F1: {fa * 1_00:.2f}""" , ) if conll_subparts_num == 3: a_ : List[Any] = (conll / 3) * 1_00 logger.info(F"""CoNLL score: {conll:.2f}""" ) output_scores.update({'conll_score': conll} ) return output_scores def SCREAMING_SNAKE_CASE_ ( __A : Tuple ) -> Union[str, Any]: """simple docstring""" a_ : Union[str, Any] = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: a_ : str = line.split()[5] if not parse_col == "-": a_ : Optional[int] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> List[str]: a_ : str = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: a_ : Tuple = util.check_gold_parse_annotation(SCREAMING_SNAKE_CASE__ ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" a_ : List[str] = evaluate( key_lines=SCREAMING_SNAKE_CASE__ , sys_lines=SCREAMING_SNAKE_CASE__ , metrics=SCREAMING_SNAKE_CASE__ , NP_only=SCREAMING_SNAKE_CASE__ , remove_nested=SCREAMING_SNAKE_CASE__ , keep_singletons=SCREAMING_SNAKE_CASE__ , min_span=SCREAMING_SNAKE_CASE__ , ) return score
32
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
"""simple docstring""" from functools import reduce __A : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def lowercase ( __snake_case : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda __snake_case , __snake_case : str(int(__snake_case ) * int(__snake_case ) ) , n[i : i + 1_3] ) ) for i in range(len(__snake_case ) - 1_2 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
33
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ): '''simple docstring''' if len(lowercase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = degree def __add__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: UpperCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase ) else: UpperCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase ) def __sub__( self : str , lowercase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase ) def A ( self : Optional[int] , lowercase : int | float ): '''simple docstring''' UpperCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ): '''simple docstring''' UpperCAmelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase ) return polynomial def __repr__( self : List[Any] ): '''simple docstring''' return self.__str__() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = [0] * self.degree for i in range(self.degree ): UpperCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase ) def A ( self : str , lowercase : int | float = 0 ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + 2) UpperCAmelCase = constant for i in range(self.degree + 1 ): UpperCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase ) def __eq__( self : List[Any] , lowercase : object ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowercase : object ): '''simple docstring''' return not self.__eq__(lowercase )
34
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _snake_case = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = '''focalnet''' def __init__( self ,__UpperCAmelCase=224 ,__UpperCAmelCase=4 ,__UpperCAmelCase=3 ,__UpperCAmelCase=96 ,__UpperCAmelCase=False ,__UpperCAmelCase=[192, 384, 768, 768] ,__UpperCAmelCase=[2, 2, 6, 2] ,__UpperCAmelCase=[2, 2, 2, 2] ,__UpperCAmelCase=[3, 3, 3, 3] ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=4.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=False ,__UpperCAmelCase=1E-4 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-5 ,__UpperCAmelCase=32 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Dict = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Dict = embed_dim lowerCAmelCase__ : List[str] = use_conv_embed lowerCAmelCase__ : List[Any] = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : List[str] = focal_levels lowerCAmelCase__ : List[str] = focal_windows lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Dict = mlp_ratio lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Tuple = drop_path_rate lowerCAmelCase__ : Dict = use_layerscale lowerCAmelCase__ : Optional[Any] = layerscale_value lowerCAmelCase__ : str = use_post_layernorm lowerCAmelCase__ : Union[str, Any] = use_post_layernorm_in_modulation lowerCAmelCase__ : int = normalize_modulator lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : List[Any] = encoder_stride lowerCAmelCase__ : Dict = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Any = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
37
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
0
from __future__ import annotations UpperCAmelCase_ : List[Any] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__magic_name__ ): UpperCamelCase , UpperCamelCase :Tuple = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): UpperCamelCase :Dict = digit if sudoku(__magic_name__ ) is not None: return grid UpperCamelCase :List[str] = 0 return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__magic_name__ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') UpperCAmelCase_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
38
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _a = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _a = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _a = spec.loader.load_module() _a = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _a = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') _a = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def __A ( )-> List[str]: """simple docstring""" _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(__lowerCAmelCase ) _UpperCAmelCase = _re_checkpoint.findall(__lowerCAmelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: _UpperCAmelCase = '\n'.join(sorted(__lowerCAmelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
39
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowercase = logging.get_logger(__name__) class _A ( _a ,_a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """maskformer-swin""" UpperCAmelCase : Optional[int] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , __UpperCAmelCase : List[Any]=224 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : int=3 , __UpperCAmelCase : int=96 , __UpperCAmelCase : Any=[2, 2, 6, 2] , __UpperCAmelCase : Tuple=[3, 6, 12, 24] , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : Dict=4.0 , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : List[Any]=0.1 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Any=False , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : Dict=1e-5 , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : str=None , **__UpperCAmelCase : List[str] , ): super().__init__(**__UpperCAmelCase) a : int = image_size a : str = patch_size a : Optional[int] = num_channels a : str = embed_dim a : int = depths a : Dict = len(__UpperCAmelCase) a : Dict = num_heads a : Union[str, Any] = window_size a : Optional[Any] = mlp_ratio a : Any = qkv_bias a : str = hidden_dropout_prob a : List[str] = attention_probs_dropout_prob a : Optional[int] = drop_path_rate a : List[str] = hidden_act a : int = use_absolute_embeddings a : int = layer_norm_eps a : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a : Dict = int(embed_dim * 2 ** (len(__UpperCAmelCase) - 1)) a : List[Any] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__UpperCAmelCase) + 1)] a , a : int = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names)
40
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : int ={ '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] =[ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]: return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = None ) -> Any: _snake_case = tesseract_config if tesseract_config is not None else '' # apply OCR _snake_case = to_pil_image(__A ) _snake_case , _snake_case = pil_image.size _snake_case = pytesseract.image_to_data(__A , lang=__A , output_type='dict' , config=__A ) _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _snake_case = [idx for idx, word in enumerate(__A ) if not word.strip()] _snake_case = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] _snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _snake_case = [] for x, y, w, h in zip(__A , __A , __A , __A ): _snake_case = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes _snake_case = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ["""pixel_values"""] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = "" , **lowerCAmelCase_ , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'height': 2_24, 'width': 2_24} _snake_case = get_size_dict(lowerCAmelCase_ ) _snake_case = do_resize _snake_case = size _snake_case = resample _snake_case = apply_ocr _snake_case = ocr_lang _snake_case = tesseract_config def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _snake_case = (size['height'], size['width']) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ ) _snake_case = resample if resample is not None else self.resample _snake_case = apply_ocr if apply_ocr is not None else self.apply_ocr _snake_case = ocr_lang if ocr_lang is not None else self.ocr_lang _snake_case = tesseract_config if tesseract_config is not None else self.tesseract_config _snake_case = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. _snake_case = [to_numpy_array(lowerCAmelCase_ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) _snake_case = [] _snake_case = [] for image in images: _snake_case , _snake_case = apply_tesseract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) words_batch.append(lowerCAmelCase_ ) boxes_batch.append(lowerCAmelCase_ ) if do_resize: _snake_case = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _snake_case = [flip_channel_order(lowerCAmelCase_ ) for image in images] _snake_case = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _snake_case = BatchFeature(data={'pixel_values': images} , tensor_type=lowerCAmelCase_ ) if apply_ocr: _snake_case = words_batch _snake_case = boxes_batch return data
42
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
0
import os import jsonlines import numpy as np from tqdm import tqdm __lowercase = 2048 __lowercase = 4096 __lowercase = 42 __lowercase = os.environ.pop('''PROCESS_TRAIN''', '''false''') __lowercase = {'''null''': 0, '''short''': 1, '''long''': 2, '''yes''': 3, '''no''': 4} def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def choose_first(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: __UpperCamelCase :str = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: __UpperCamelCase :List[Any] = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a __UpperCamelCase :Union[str, Any] = {'''id''': example['''id''']} __UpperCamelCase :Optional[Any] = example['''annotations'''] __UpperCamelCase :Tuple = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: __UpperCamelCase :List[Any] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] __UpperCamelCase :Tuple = [] __UpperCamelCase :List[Any] = [] __UpperCamelCase :Tuple = ['''<cls>'''] else: __UpperCamelCase :Optional[Any] = ['''short'''] __UpperCamelCase :Union[str, Any] = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available __UpperCamelCase :int = ['''long'''] __UpperCamelCase :List[Any] = choose_first(annotation['''long_answer'''] , is_long_answer=SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = [] answer.update(SCREAMING_SNAKE_CASE ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: __UpperCamelCase :Any = True else: __UpperCamelCase :str = False __UpperCamelCase :Tuple = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , SCREAMING_SNAKE_CASE ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :Tuple = _get_single_answer(SCREAMING_SNAKE_CASE ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCamelCase :str = example['''document''']['''tokens'''] __UpperCamelCase :Any = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples __UpperCamelCase :Optional[int] = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 __UpperCamelCase :Optional[Any] = example['''document''']['''tokens'''] __UpperCamelCase :List[Any] = answer['''start_token'''] __UpperCamelCase :Dict = answer['''end_token'''] __UpperCamelCase :Tuple = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 __UpperCamelCase :Optional[int] = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: __UpperCamelCase :str = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] __UpperCamelCase :Union[str, Any] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] __UpperCamelCase :Dict = ''' '''.join([old[i] for i in range(len(SCREAMING_SNAKE_CASE ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , SCREAMING_SNAKE_CASE , end='''\n''' ) print('''Old:''' , SCREAMING_SNAKE_CASE , end='''\n\n''' ) return { "context": " ".join(SCREAMING_SNAKE_CASE ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2_048 , SCREAMING_SNAKE_CASE=4_096 , SCREAMING_SNAKE_CASE=True ): '''simple docstring''' __UpperCamelCase :Optional[Any] = get_context_and_ans(SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } __UpperCamelCase :Optional[int] = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids __UpperCamelCase :Optional[int] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element __UpperCamelCase :int = [] __UpperCamelCase :Any = [] __UpperCamelCase :Tuple = input_ids[:q_len] __UpperCamelCase :Any = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) for i in doc_start_indices: __UpperCamelCase :Tuple = i + max_length - q_len __UpperCamelCase :Any = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(SCREAMING_SNAKE_CASE ), "end_token": [-100] * len(SCREAMING_SNAKE_CASE ), "category": category, }, } __UpperCamelCase :Tuple = out['''context'''].split() __UpperCamelCase :Optional[Any] = splitted_context[answer['''end_token''']] __UpperCamelCase :List[str] = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=SCREAMING_SNAKE_CASE , ).input_ids ) __UpperCamelCase :Dict = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token __UpperCamelCase :Any = len(tokenizer(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 __UpperCamelCase :Optional[Any] = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive __UpperCamelCase :List[Any] = answer['''start_token'''] __UpperCamelCase :Optional[Any] = answer['''end_token'''] if assertion: __UpperCamelCase :Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , SCREAMING_SNAKE_CASE , end='''\n\n''' ) if len(SCREAMING_SNAKE_CASE ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } __UpperCamelCase :List[str] = input_ids[:q_len] __UpperCamelCase :Optional[Any] = range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , max_length - doc_stride ) __UpperCamelCase :str = [] __UpperCamelCase :List[str] = [] __UpperCamelCase :str = [] __UpperCamelCase :List[Any] = [] # null, yes, no, long, short for i in doc_start_indices: __UpperCamelCase :str = i + max_length - q_len __UpperCamelCase :str = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: __UpperCamelCase :Tuple = start_token - i + q_len __UpperCamelCase :List[str] = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: __UpperCamelCase :Any = -100 __UpperCamelCase :Union[str, Any] = -100 answers_category.append('''null''' ) __UpperCamelCase :str = inputs[-1][start_token : end_token + 1] answers_start_token.append(SCREAMING_SNAKE_CASE ) answers_end_token.append(SCREAMING_SNAKE_CASE ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(SCREAMING_SNAKE_CASE ) ) print('''Old:''' , tokenizer.decode(SCREAMING_SNAKE_CASE ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=2_048 , SCREAMING_SNAKE_CASE=4_096 , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __UpperCamelCase :Any = get_strided_contexts_and_ans( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , doc_stride=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , assertion=SCREAMING_SNAKE_CASE , ) return example def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with jsonlines.open(SCREAMING_SNAKE_CASE , '''a''' ) as writer: for example in tqdm(SCREAMING_SNAKE_CASE , total=len(SCREAMING_SNAKE_CASE ) , desc='''Saving samples ... ''' ): __UpperCamelCase :Union[str, Any] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __lowercase = load_dataset('''natural_questions''') __lowercase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') __lowercase = data['''train''' if PROCESS_TRAIN == '''true''' else '''validation'''] __lowercase = { '''tokenizer''': tokenizer, '''doc_stride''': DOC_STRIDE, '''max_length''': MAX_LENGTH, '''assertion''': False, } __lowercase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __lowercase = data.remove_columns(['''annotations''', '''document''', '''id''', '''question''']) print(data) np.random.seed(SEED) __lowercase = '''nq-training.jsonl''' if PROCESS_TRAIN == '''true''' else '''nq-validation.jsonl''' save_to_disk(data, file_name=cache_file_name)
43
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
0
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000000 ) -> int: _lowerCAmelCase : str = 1 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = {1: 1} for inputa in range(2 ,_lowerCamelCase ): _lowerCAmelCase : str = 0 _lowerCAmelCase : int = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowerCAmelCase : Optional[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _lowerCAmelCase : Union[str, Any] = counter if counter > pre_counter: _lowerCAmelCase : List[str] = inputa _lowerCAmelCase : str = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
44
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
0
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowerCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) __a = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCAmelCase ( self ): __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = inputs['''prompt'''] __a = inputs['''generator'''] __a = inputs['''num_inference_steps'''] __a = inputs['''output_type'''] if "image" in inputs: __a = inputs['''image'''] else: __a = None if "mask_image" in inputs: __a = inputs['''mask_image'''] else: __a = None if "original_image" in inputs: __a = inputs['''original_image'''] else: __a = None __a , __a = pipe.encode_prompt(_a ) # inputs with prompt converted to embeddings __a = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_a , _a , _a ) __a = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) __a = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) __a = self.get_dummy_inputs(_a ) __a = inputs['''generator'''] __a = inputs['''num_inference_steps'''] __a = inputs['''output_type'''] # inputs with prompt converted to embeddings __a = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: __a = image if mask_image is not None: __a = mask_image if original_image is not None: __a = original_image __a = pipe_loaded(**_a )[0] __a = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1E-4 ) def __UpperCAmelCase ( self ): __a = self.get_dummy_components() __a = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) __a = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __a = self.get_dummy_inputs(_a ) __a = pipe_loaded(**_a )[0] __a = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1E-4 )
45
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[str] ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def _snake_case ( *lowercase , **lowercase ) -> Union[str, Any]: pass def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Image ): '''simple docstring''' lowerCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Image ): '''simple docstring''' lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE ) lowerCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _SCREAMING_SNAKE_CASE = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _snake_case ( self , lowercase , lowercase , lowercase ) -> Optional[Any]: lowerCAmelCase = MaskGenerationPipeline(model=lowercase , image_processor=lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self , lowercase , lowercase ) -> List[Any]: pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _snake_case ( self ) -> Dict: pass @slow @require_torch def _snake_case ( self ) -> str: lowerCAmelCase = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""" ) lowerCAmelCase = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9_967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9_909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9_879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9_834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9_716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9_612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9_599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9_552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9_532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9_516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9_499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9_483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9_464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9_408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9_335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9_326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9_262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8_999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8_986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8_984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8_873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8_871} ] , ) # fmt: on @require_torch @slow def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = """facebook/sam-vit-huge""" lowerCAmelCase = pipeline("""mask-generation""" , model=lowercase ) lowerCAmelCase = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCAmelCase = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0_210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0_053}, ] , )
46
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
0
'''simple docstring''' from collections import deque class A__ : def __init__( self : List[Any] , _a : str , _a : int , _a : int ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =process_name # process name _SCREAMING_SNAKE_CASE =arrival_time # arrival time of the process # completion time of finished process or last interrupted time _SCREAMING_SNAKE_CASE =arrival_time _SCREAMING_SNAKE_CASE =burst_time # remaining burst time _SCREAMING_SNAKE_CASE =0 # total time of the process wait in ready queue _SCREAMING_SNAKE_CASE =0 # time from arrival time to completion time class A__ : def __init__( self : List[str] , _a : int , _a : list[int] , _a : deque[Process] , _a : int , ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =number_of_queues # time slice of queues that round robin algorithm applied _SCREAMING_SNAKE_CASE =time_slices # unfinished process is in this ready_queue _SCREAMING_SNAKE_CASE =queue # current time _SCREAMING_SNAKE_CASE =current_time # finished process is in this sequence queue _SCREAMING_SNAKE_CASE =deque() def A ( self : Union[str, Any] ) -> list[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def A ( self : Dict , _a : list[Process] ) -> list[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(len(_a ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def A ( self : List[str] , _a : list[Process] ) -> list[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(len(_a ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def A ( self : str , _a : list[Process] ) -> list[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for i in range(len(_a ) ): completion_times.append(queue[i].stop_time ) return completion_times def A ( self : Tuple , _a : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def A ( self : Optional[int] , _a : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def A ( self : Optional[int] , _a : deque[Process] ) -> deque[Process]: '''simple docstring''' _SCREAMING_SNAKE_CASE =deque() # sequence deque of finished process while len(_a ) != 0: _SCREAMING_SNAKE_CASE =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_a ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _SCREAMING_SNAKE_CASE =0 # set the process's turnaround time because it is finished _SCREAMING_SNAKE_CASE =self.current_time - cp.arrival_time # set the completion time _SCREAMING_SNAKE_CASE =self.current_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def A ( self : Any , _a : deque[Process] , _a : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' _SCREAMING_SNAKE_CASE =deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_a ) ): _SCREAMING_SNAKE_CASE =ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_a ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _SCREAMING_SNAKE_CASE =self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_a ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _SCREAMING_SNAKE_CASE =0 # set the finish time _SCREAMING_SNAKE_CASE =self.current_time # update the process' turnaround time because it is finished _SCREAMING_SNAKE_CASE =self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_a ) self.finish_queue.extend(_a ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def A ( self : Any ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCamelCase : Tuple = Process("P1", 0, 5_3) lowerCamelCase : str = Process("P2", 0, 1_7) lowerCamelCase : Any = Process("P3", 0, 6_8) lowerCamelCase : Any = Process("P4", 0, 2_4) lowerCamelCase : Optional[int] = 3 lowerCamelCase : Dict = [1_7, 2_5] lowerCamelCase : int = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) lowerCamelCase : Optional[int] = Process("P1", 0, 5_3) lowerCamelCase : List[str] = Process("P2", 0, 1_7) lowerCamelCase : Union[str, Any] = Process("P3", 0, 6_8) lowerCamelCase : List[str] = Process("P4", 0, 2_4) lowerCamelCase : List[str] = 3 lowerCamelCase : Optional[int] = [1_7, 2_5] lowerCamelCase : str = deque([Pa, Pa, Pa, Pa]) lowerCamelCase : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) lowerCamelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
47
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
0
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ) -> str: lowerCamelCase : int = parent lowerCamelCase : Optional[Any] = batch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : Dict = image_size lowerCamelCase : Union[str, Any] = patch_size lowerCamelCase : Dict = is_training lowerCamelCase : List[str] = use_input_mask lowerCamelCase : int = use_token_type_ids lowerCamelCase : Dict = use_labels lowerCamelCase : Union[str, Any] = vocab_size lowerCamelCase : List[Any] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : int = intermediate_size lowerCamelCase : List[str] = hidden_act lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[Any] = max_position_embeddings lowerCamelCase : Dict = type_vocab_size lowerCamelCase : str = type_sequence_label_size lowerCamelCase : Tuple = initializer_range lowerCamelCase : Dict = coordinate_size lowerCamelCase : Tuple = shape_size lowerCamelCase : List[Any] = num_labels lowerCamelCase : Tuple = num_choices lowerCamelCase : int = scope lowerCamelCase : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase : Dict = text_seq_length lowerCamelCase : List[Any] = (image_size // patch_size) ** 2 + 1 lowerCamelCase : Union[str, Any] = self.text_seq_length + self.image_seq_length def _lowercase ( self ) -> int: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCamelCase : Dict = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) lowerCamelCase : Optional[int] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase : Dict = bbox[i, j, 3] lowerCamelCase : Optional[int] = bbox[i, j, 1] lowerCamelCase : Any = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase : List[str] = bbox[i, j, 2] lowerCamelCase : Optional[int] = bbox[i, j, 0] lowerCamelCase : Tuple = tmp_coordinate lowerCamelCase : Union[str, Any] = tf.constant(UpperCamelCase__ ) lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[int] = None if self.use_input_mask: lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCamelCase : Optional[int] = None if self.use_token_type_ids: lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCamelCase : str = None lowerCamelCase : Optional[int] = None if self.use_labels: lowerCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCamelCase : Any = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : Optional[int] = TFLayoutLMvaModel(config=UpperCamelCase__ ) # text + image lowerCamelCase : Any = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , training=UpperCamelCase__ , ) lowerCamelCase : Any = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCamelCase : Dict = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCamelCase : Union[str, Any] = model({"pixel_values": pixel_values} , training=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : str = self.num_labels lowerCamelCase : Optional[Any] = TFLayoutLMvaForSequenceClassification(config=UpperCamelCase__ ) lowerCamelCase : str = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : int = self.num_labels lowerCamelCase : str = TFLayoutLMvaForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase : Tuple = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = 2 lowerCamelCase : Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) lowerCamelCase : Tuple = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , training=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ) -> str: lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ((lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase) , (lowerCamelCase)) : List[str] = config_and_inputs lowerCamelCase : Dict = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase_ : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) lowerCamelCase_ : int = False lowerCamelCase_ : int = False lowerCamelCase_ : str = False def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: return True def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> dict: lowerCamelCase : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): lowerCamelCase : List[str] = { k: tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCamelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) lowerCamelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCamelCase__ ): lowerCamelCase : Union[str, Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Dict = TFLayoutLMvaModelTester(self ) lowerCamelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> Optional[int]: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(UpperCamelCase__ ) if getattr(UpperCamelCase__ , "hf_compute_loss" , UpperCamelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label lowerCamelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCamelCase__ )[0] ] lowerCamelCase : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowerCamelCase : int = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Dict = prepared_for_class.pop("input_ids" ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , **UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions lowerCamelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Dict = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: lowerCamelCase : List[str] = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: lowerCamelCase : Optional[int] = -100 lowerCamelCase : Any = tf.convert_to_tensor(UpperCamelCase__ ) lowerCamelCase : Dict = model(UpperCamelCase__ , **UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict lowerCamelCase : str = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple lowerCamelCase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCamelCase__ , return_labels=UpperCamelCase__ ) # Get keys that were added with the _prepare_for_class function lowerCamelCase : Any = prepared_for_class.keys() - inputs_dict.keys() lowerCamelCase : Any = inspect.signature(model.call ).parameters lowerCamelCase : List[str] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple lowerCamelCase : Any = {0: "input_ids"} for label_key in label_keys: lowerCamelCase : Optional[Any] = signature_names.index(UpperCamelCase__ ) lowerCamelCase : int = label_key lowerCamelCase : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple lowerCamelCase : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: lowerCamelCase : Optional[Any] = prepared_for_class[value] lowerCamelCase : Any = tuple(UpperCamelCase__ ) # Send to model lowerCamelCase : List[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _lowercase ( self ) -> Optional[Any]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Optional[int]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Any: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @slow def _lowercase ( self ) -> Optional[int]: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Dict = TFLayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> int: lowerCamelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : Dict = image_processor(images=UpperCamelCase__ , return_tensors="tf" ).pixel_values lowerCamelCase : Union[str, Any] = tf.constant([[1, 2]] ) lowerCamelCase : Dict = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass lowerCamelCase : List[Any] = model(input_ids=UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , training=UpperCamelCase__ ) # verify the logits lowerCamelCase : Dict = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) lowerCamelCase : Dict = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = AlbertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = AlbertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
49
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
0
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: create_state_space_tree(_UpperCAmelCase , [] , 0 ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: if index == len(_UpperCAmelCase ): print(_UpperCAmelCase ) return create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _UpperCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
50
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def A (__A : str , __A : Optional[int] , __A : Optional[Any] , __A : Union[str, Any] ) -> Optional[int]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: UpperCAmelCase_ = TOKENIZER_CLASSES else: UpperCAmelCase_ = {tokenizer_name: getattr(__A , tokenizer_name + '''Fast''' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: UpperCAmelCase_ = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase_ = True if checkpoint_name is None: UpperCAmelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase_ = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer UpperCAmelCase_ = tokenizer_class.from_pretrained(__A , force_download=__A ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase_ , UpperCAmelCase_ = checkpoint.split('''/''' ) UpperCAmelCase_ = os.path.join(__A , __A ) elif add_prefix: UpperCAmelCase_ = checkpoint UpperCAmelCase_ = dump_path else: UpperCAmelCase_ = None UpperCAmelCase_ = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase_ = file_path.split(__A )[-1][0] if next_char == "/": UpperCAmelCase_ = os.path.join(__A , __A ) UpperCAmelCase_ = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) UpperCAmelCase_ = tokenizer.save_pretrained( __A , legacy_format=__A , filename_prefix=__A ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__A ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) snake_case_ : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
51
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A__ ( __snake_case , __snake_case ): _UpperCAmelCase :Dict = 1 @register_to_config def __init__( self , A_=2000 , A_=0.1 , A_=20 , A_=1e-3 ): '''simple docstring''' UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Dict = None def __UpperCamelCase( self , A_ , A_ = None ): '''simple docstring''' UpperCamelCase : Dict = torch.linspace(1 , self.config.sampling_eps , A_ , device=A_ ) def __UpperCamelCase( self , A_ , A_ , A_ , A_=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score UpperCamelCase : int = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) UpperCamelCase : List[str] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) UpperCamelCase : List[str] = std.flatten() while len(std.shape ) < len(score.shape ): UpperCamelCase : Optional[Any] = std.unsqueeze(-1 ) UpperCamelCase : Union[str, Any] = -score / std # compute UpperCamelCase : str = -1.0 / len(self.timesteps ) UpperCamelCase : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) UpperCamelCase : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): UpperCamelCase : Optional[int] = beta_t.unsqueeze(-1 ) UpperCamelCase : List[Any] = -0.5 * beta_t * x UpperCamelCase : List[Any] = torch.sqrt(A_ ) UpperCamelCase : Any = drift - diffusion**2 * score UpperCamelCase : List[Any] = x + drift * dt # add noise UpperCamelCase : str = randn_tensor(x.shape , layout=x.layout , generator=A_ , device=x.device , dtype=x.dtype ) UpperCamelCase : Union[str, Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
52
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case ( __lowerCamelCase , __lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self : Any , __A : int = 7_6_8 , ): super().__init__() __UpperCamelCase = nn.Parameter(torch.zeros(1 , __A ) ) __UpperCamelCase = nn.Parameter(torch.ones(1 , __A ) ) def _lowerCamelCase ( self : Optional[Any] , __A : Optional[Union[str, torch.device]] = None , __A : Optional[torch.dtype] = None , ): __UpperCamelCase = nn.Parameter(self.mean.to(__A ).to(__A ) ) __UpperCamelCase = nn.Parameter(self.std.to(__A ).to(__A ) ) return self def _lowerCamelCase ( self : Optional[int] , __A : Optional[int] ): __UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : Optional[int] , __A : Tuple ): __UpperCamelCase = (embeds * self.std) + self.mean return embeds
53
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCamelCase): """simple docstring""" snake_case__ : Optional[Any] = ["keras_nlp"] def __init__( self : Optional[Any] , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: requires_backends(self , ["keras_nlp"] )
54
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : Any = """▁""" a_ : Dict = {"""vocab_file""": """sentencepiece.bpe.model"""} a_ : Dict = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } a_ : str = { """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off a_ : List[str] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = ["input_ids", "attention_mask"] _lowerCamelCase = [] _lowerCamelCase = [] def __init__( self , UpperCamelCase , UpperCamelCase="<s>" , UpperCamelCase="</s>" , UpperCamelCase="</s>" , UpperCamelCase="<s>" , UpperCamelCase="<unk>" , UpperCamelCase="<pad>" , UpperCamelCase="<mask>" , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase = None , UpperCamelCase=None , UpperCamelCase=False , **UpperCamelCase , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(UpperCamelCase , lstrip=UpperCamelCase , rstrip=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase_ = legacy_behaviour super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , cls_token=UpperCamelCase , pad_token=UpperCamelCase , mask_token=UpperCamelCase , tokenizer_file=UpperCamelCase , src_lang=UpperCamelCase , tgt_lang=UpperCamelCase , additional_special_tokens=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase ) ) lowerCamelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ = 1 lowerCamelCase_ = len(self.sp_model ) lowerCamelCase_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase ) } lowerCamelCase_ = {v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCamelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCamelCase_ = src_lang if src_lang is not None else "eng_Latn" lowerCamelCase_ = self.lang_code_to_id[self._src_lang] lowerCamelCase_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None lowerCamelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case ( self , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) lowerCamelCase_ = [1] * len(self.prefix_tokens ) lowerCamelCase_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase )) + ([0] * len(UpperCamelCase )) + suffix_ones def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ = src_lang lowerCamelCase_ = self(UpperCamelCase , add_special_tokens=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) lowerCamelCase_ = self.convert_tokens_to_ids(UpperCamelCase ) lowerCamelCase_ = tgt_lang_id return inputs def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ = self.sp_model.PieceToId(UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case ( self , UpperCamelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = "".join(UpperCamelCase ).replace(UpperCamelCase , " " ).strip() return out_string def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def snake_case ( self , UpperCamelCase , UpperCamelCase = "eng_Latn" , UpperCamelCase = None , UpperCamelCase = "fra_Latn" , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = src_lang lowerCamelCase_ = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) def snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id] def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowerCamelCase_ = [] lowerCamelCase_ = [self.eos_token_id, self.cur_lang_code] else: lowerCamelCase_ = [self.cur_lang_code] lowerCamelCase_ = [self.eos_token_id]
55
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging a : str = logging.get_logger(__name__) # pylint: disable=invalid-name class a ( _lowerCamelCase ): def __init__( self : Dict , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowercase_ : StableDiffusionSafetyChecker , lowercase_ : CLIPImageProcessor , ): super().__init__() self.register_modules( vae=lowercase_ , text_encoder=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_ , feature_extractor=lowercase_ , ) def A_ ( self : Optional[Any] , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def A_ ( self : List[str] ): self.enable_attention_slicing(lowercase_ ) @torch.no_grad() def __call__( self : int , lowercase_ : Union[str, List[str]] , lowercase_ : int = 512 , lowercase_ : int = 512 , lowercase_ : int = 50 , lowercase_ : float = 7.5 , lowercase_ : Optional[Union[str, List[str]]] = None , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[torch.FloatTensor] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowercase_ : int = 1 , lowercase_ : Optional[torch.FloatTensor] = None , **lowercase_ : Optional[int] , ): if isinstance(lowercase_ , lowercase_ ): snake_case_ = 1 elif isinstance(lowercase_ , lowercase_ ): snake_case_ = len(lowercase_ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase_ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowercase_ , lowercase_ ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(lowercase_ )}." ) # get prompt text embeddings snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) snake_case_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: snake_case_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) snake_case_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: snake_case_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method snake_case_ ,snake_case_ ,snake_case_ = text_embeddings.shape snake_case_ = text_embeddings.repeat(1 , lowercase_ , 1 ) snake_case_ = text_embeddings.view(bs_embed * num_images_per_prompt , lowercase_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. snake_case_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: snake_case_ = 42 if negative_prompt is None: snake_case_ = [''''''] elif type(lowercase_ ) is not type(lowercase_ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase_ )} !=" F" {type(lowercase_ )}." ) elif isinstance(lowercase_ , lowercase_ ): snake_case_ = [negative_prompt] elif batch_size != len(lowercase_ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase_ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ''' the batch size of `prompt`.''' ) else: snake_case_ = negative_prompt snake_case_ = text_input_ids.shape[-1] snake_case_ = self.tokenizer( lowercase_ , padding='''max_length''' , max_length=lowercase_ , truncation=lowercase_ , return_tensors='''pt''' , ) snake_case_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method snake_case_ = uncond_embeddings.shape[1] snake_case_ = uncond_embeddings.repeat(lowercase_ , lowercase_ , 1 ) snake_case_ = uncond_embeddings.view(batch_size * num_images_per_prompt , lowercase_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes snake_case_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) snake_case_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) snake_case_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps snake_case_ = torch.randn( lowercase_ , generator=lowercase_ , device='''cpu''' , dtype=lowercase_ ).to(self.device ) snake_case_ = torch.randn(lowercase_ , generator=lowercase_ , device='''cpu''' , dtype=lowercase_ ).to( self.device ) else: snake_case_ = torch.randn( lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) snake_case_ = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents_reference.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) snake_case_ = latents_reference.to(self.device ) snake_case_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images snake_case_ = (latents_shape[3] - latents_shape_reference[3]) // 2 snake_case_ = (latents_shape[2] - latents_shape_reference[2]) // 2 snake_case_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx snake_case_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy snake_case_ = 0 if dx < 0 else dx snake_case_ = 0 if dy < 0 else dy snake_case_ = max(-dx , 0 ) snake_case_ = max(-dy , 0 ) # import pdb # pdb.set_trace() snake_case_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand snake_case_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler snake_case_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] snake_case_ = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) snake_case_ = {} if accepts_eta: snake_case_ = eta for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance snake_case_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents snake_case_ = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual snake_case_ = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform guidance if do_classifier_free_guidance: snake_case_ ,snake_case_ = noise_pred.chunk(2 ) snake_case_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 snake_case_ = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowercase_ , lowercase_ , lowercase_ ) snake_case_ = 1 / 0.1_8215 * latents snake_case_ = self.vae.decode(lowercase_ ).sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: snake_case_ = self.feature_extractor(self.numpy_to_pil(lowercase_ ) , return_tensors='''pt''' ).to( self.device ) snake_case_ ,snake_case_ = self.safety_checker( images=lowercase_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: snake_case_ = None if output_type == "pil": snake_case_ = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
56
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
0
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : Tuple = logging.get_logger(__name__) A : Optional[Any] = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } A : str = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } A : str = "</w>" A : Dict = "@@ " def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = set() __lowerCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowerCAmelCase = char return pairs # Speech2Text2 has no max input length A : Any = {"facebook/s2t-wav2vec2-large-en-de": 1_0_2_4} class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =VOCAB_FILES_NAMES __UpperCAmelCase : str =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict =["""input_ids""", """attention_mask"""] def __init__( self , __a , __a="<s>" , __a="<pad>" , __a="</s>" , __a="<unk>" , __a=False , __a=None , **__a , ): super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , do_lower_case=__a , **__a , ) __lowerCAmelCase = do_lower_case with open(__a , encoding="utf-8" ) as vocab_handle: __lowerCAmelCase = json.load(__a ) __lowerCAmelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f"No merges files provided. {self.__class__.__name__} can only be used for decoding." ) __lowerCAmelCase = None __lowerCAmelCase = None else: with open(__a , encoding="utf-8" ) as merges_handle: __lowerCAmelCase = merges_handle.read().split("\n" )[:-1] __lowerCAmelCase = [tuple(merge.split()[:2] ) for merge in merges] __lowerCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __lowerCAmelCase = {} @property def snake_case ( self ): return len(self.decoder ) def snake_case ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case ( self , __a ): __lowerCAmelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __lowerCAmelCase = get_pairs(__a ) if not pairs: return token while True: __lowerCAmelCase = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __lowerCAmelCase , __lowerCAmelCase = bigram __lowerCAmelCase = [] __lowerCAmelCase = 0 while i < len(__a ): try: __lowerCAmelCase = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowerCAmelCase = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowerCAmelCase = tuple(__a ) __lowerCAmelCase = new_word if len(__a ) == 1: break else: __lowerCAmelCase = get_pairs(__a ) __lowerCAmelCase = " ".join(__a ) if word == "\n " + BPE_TOKEN_MERGES: __lowerCAmelCase = "\n" + BPE_TOKEN_MERGES if word.endswith(__a ): __lowerCAmelCase = word.replace(__a , "" ) __lowerCAmelCase = word.replace(" " , __a ) __lowerCAmelCase = word return word def snake_case ( self , __a ): if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: __lowerCAmelCase = text.lower() __lowerCAmelCase = text.split() __lowerCAmelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(__a ).split(" " ) ) ) return split_tokens def snake_case ( self , __a ): return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def snake_case ( self , __a ): __lowerCAmelCase = self.decoder.get(__a , self.unk_token ) return result def snake_case ( self , __a ): __lowerCAmelCase = " ".join(__a ) # make sure @@ tokens are concatenated __lowerCAmelCase = "".join(string.split(__a ) ) return string def snake_case ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) __lowerCAmelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__a , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) __lowerCAmelCase = token_index writer.write(" ".join(__a ) + "\n" ) index += 1 return (vocab_file, merges_file)
57
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
0
'''simple docstring''' from itertools import permutations def lowerCamelCase ( __lowerCamelCase : tuple ) ->bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _SCREAMING_SNAKE_CASE = [7, 11, 13, 17] for i, test in enumerate(__lowerCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase ( __lowerCamelCase : int = 10 ) ->int: return sum( int("""""".join(map(__lowerCamelCase , __lowerCamelCase ) ) ) for num in permutations(range(__lowerCamelCase ) ) if is_substring_divisible(__lowerCamelCase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
58
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0
def UpperCamelCase ( __lowerCamelCase : int = 1000 ): snake_case : List[Any] = 2**power snake_case : Any = 0 while n: snake_case , snake_case : Tuple = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
59
'''simple docstring''' def __snake_case( _lowerCAmelCase = 1_000 ) -> int: return sum(e for e in range(3 , _lowerCAmelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
35
0
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging snake_case__ : Optional[Any] = logging.get_logger(__name__) def _snake_case ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Optional[Any]=False ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: lowerCAmelCase : List[str] = os.path.abspath(_snake_case ) logger.info(f'''Loading PyTorch weights from {pt_path}''' ) lowerCAmelCase : Dict = torch.load(_snake_case , map_location='''cpu''' ) logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' ) lowerCAmelCase : Union[str, Any] = convert_pytorch_state_dict_to_flax(_snake_case , _snake_case ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCAmelCase : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(_snake_case , _snake_case ) return flax_state_dict def _snake_case ( _snake_case : Tuple[str] , _snake_case : np.ndarray , _snake_case : Dict[str, jnp.ndarray] , _snake_case : str , ): def is_key_or_prefix_key_in_dict(_snake_case : Tuple[str] ) -> bool: return len(set(_snake_case ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCAmelCase : str = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCAmelCase : int = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCAmelCase : Tuple = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_snake_case ): lowerCAmelCase : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase : Any = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_snake_case ): lowerCAmelCase : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase : str = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCAmelCase : str = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCAmelCase : Any = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCAmelCase : Tuple = pt_tuple_key[-2] + '''_v''' if name is not None: lowerCAmelCase : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): # convert pytorch tensor to numpy lowerCAmelCase : Any = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase : Any = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCAmelCase : Dict = flax_model.params['''params'''] else: lowerCAmelCase : Dict = flax_model.params lowerCAmelCase : Tuple = flatten_dict(_snake_case ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase : Any = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(_snake_case ) lowerCAmelCase : int = {} lowerCAmelCase : Dict = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase : Dict = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase : Union[str, Any] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCAmelCase : int = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase : int = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase, lowerCAmelCase : Optional[Any] = rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary lowerCAmelCase : List[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase : Optional[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCAmelCase : Optional[int] = jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase : List[Any] = jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase : List[Any] = jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ): import torch # Load the index lowerCAmelCase : Tuple = {} for shard_file in shard_filenames: # load using msgpack utils lowerCAmelCase : Optional[int] = torch.load(_snake_case ) lowerCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase : Union[str, Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase : Any = flax_model.params['''params'''] lowerCAmelCase : str = flatten_dict(_snake_case ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: lowerCAmelCase : Optional[Any] = flax_model.params lowerCAmelCase : Dict = flatten_dict(_snake_case ) lowerCAmelCase : Tuple = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase : Tuple = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase : List[str] = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary lowerCAmelCase : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase : str = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase, lowerCAmelCase : Tuple = rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary lowerCAmelCase : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase : List[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCAmelCase : List[str] = jnp.asarray(_snake_case ) continue if "var" in flax_key[-1]: lowerCAmelCase : List[str] = jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase : str = jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase : Tuple = jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def _snake_case ( _snake_case : Optional[Any] , _snake_case : List[str] ): lowerCAmelCase : Optional[int] = os.path.abspath(_snake_case ) logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' ) # import correct flax class lowerCAmelCase : str = getattr(_snake_case , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(_snake_case , '''rb''' ) as state_f: try: lowerCAmelCase : Any = from_bytes(_snake_case , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(_snake_case , _snake_case ) def _snake_case ( _snake_case : Tuple , _snake_case : Dict ): try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights lowerCAmelCase : str = flatten_dict(jax.tree_util.tree_map(lambda _snake_case : x.dtype == jnp.bfloataa , _snake_case ) ).values() if any(_snake_case ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) lowerCAmelCase : Union[str, Any] = jax.tree_util.tree_map( lambda _snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _snake_case ) lowerCAmelCase : Union[str, Any] = flatten_dict(_snake_case ) lowerCAmelCase : Any = pt_model.state_dict() lowerCAmelCase : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) lowerCAmelCase : int = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase : Dict = flax_key_tuple[0] == pt_model.base_model_prefix lowerCAmelCase : List[str] = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase : List[Any] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase : Optional[int] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_snake_case ) not in pt_model_dict: # conv layer lowerCAmelCase : str = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase : List[Any] = jnp.transpose(_snake_case , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_snake_case ) not in pt_model_dict: # linear layer lowerCAmelCase : int = flax_key_tuple[:-1] + ('''weight''',) lowerCAmelCase : List[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCAmelCase : List[str] = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: lowerCAmelCase : Union[str, Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCAmelCase : List[Any] = '''.'''.join(_snake_case ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCAmelCase : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCAmelCase : str = key.split('''.''' ) lowerCAmelCase : str = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCAmelCase : Any = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCAmelCase : Optional[int] = key_components[-2] + '''_v''' if name is not None: lowerCAmelCase : Union[str, Any] = key_components[:-3] + [name] lowerCAmelCase : List[str] = '''.'''.join(_snake_case ) lowerCAmelCase : List[str] = key if flax_key in special_pt_names: lowerCAmelCase : Optional[int] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowerCAmelCase : Union[str, Any] = np.asarray(_snake_case ) if not isinstance(_snake_case , np.ndarray ) else flax_tensor lowerCAmelCase : List[Any] = torch.from_numpy(_snake_case ) # remove from missing keys missing_keys.remove(_snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(_snake_case ) pt_model.load_state_dict(_snake_case ) # re-transform missing_keys to list lowerCAmelCase : Optional[int] = list(_snake_case ) if len(_snake_case ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' ) if len(_snake_case ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ''' use it for predictions and inference.''' ) else: logger.warning( f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n''' '''If your task is similar to the task the model of the checkpoint was trained on, ''' f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' ) return pt_model
60
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _a = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __a ( __lowerCamelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): return max(metric_fn(__lowerCamelCase, __lowerCamelCase ) for gt in ground_truths ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[int] = [] if args.gold_data_mode == "qa": UpperCAmelCase_ : List[Any] = pd.read_csv(__lowerCamelCase, sep="\t", header=__lowerCamelCase ) for answer_list in data[1]: UpperCAmelCase_ : str = ast.literal_eval(__lowerCamelCase ) answers.append(__lowerCamelCase ) else: UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Optional[Any] = [[reference] for reference in references] UpperCAmelCase_ : Optional[Any] = 0 for prediction, ground_truths in zip(__lowerCamelCase, __lowerCamelCase ): total += 1 em += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) fa += metric_max_over_ground_truths(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) UpperCAmelCase_ : Optional[int] = 100.0 * em / total UpperCAmelCase_ : Any = 100.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : int = args.k UpperCAmelCase_ : str = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : Union[str, Any] = [line.strip() for line in open(__lowerCamelCase, "r" ).readlines()] UpperCAmelCase_ : List[str] = 0 for hypo, reference in zip(__lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = set(hypo.split("\t" )[:k] ) UpperCAmelCase_ : Tuple = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase_ : int = 100.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): def strip_title(__lowerCamelCase ): if title.startswith("\"" ): UpperCAmelCase_ : List[str] = title[1:] if title.endswith("\"" ): UpperCAmelCase_ : Union[str, Any] = title[:-1] return title UpperCAmelCase_ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase, )["input_ids"].to(args.device ) UpperCAmelCase_ : List[str] = rag_model.rag.question_encoder(__lowerCamelCase ) UpperCAmelCase_ : Tuple = question_enc_outputs[0] UpperCAmelCase_ : Union[str, Any] = rag_model.retriever( __lowerCamelCase, question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) UpperCAmelCase_ : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase_ : List[Any] = [] for docs in all_docs: UpperCAmelCase_ : Optional[Any] = [strip_title(__lowerCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__lowerCamelCase ) ) return provenance_strings def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): with torch.no_grad(): UpperCAmelCase_ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowerCamelCase, return_tensors="pt", padding=__lowerCamelCase, truncation=__lowerCamelCase ) UpperCAmelCase_ : Any = inputs_dict.input_ids.to(args.device ) UpperCAmelCase_ : Any = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase_ : str = rag_model.generate( # rag_model overwrites generate __lowerCamelCase, attention_mask=__lowerCamelCase, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=__lowerCamelCase, num_return_sequences=1, bad_words_ids=[[0, 0]], ) UpperCAmelCase_ : int = rag_model.retriever.generator_tokenizer.batch_decode(__lowerCamelCase, skip_special_tokens=__lowerCamelCase ) if args.print_predictions: for q, a in zip(__lowerCamelCase, __lowerCamelCase ): logger.info("Q: {} - A: {}".format(__lowerCamelCase, __lowerCamelCase ) ) return answers def __a ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=__lowerCamelCase, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=__lowerCamelCase, choices=["exact", "compressed", "legacy"], type=__lowerCamelCase, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=__lowerCamelCase, type=__lowerCamelCase, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=__lowerCamelCase, help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=__lowerCamelCase, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=__lowerCamelCase, help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=__lowerCamelCase, type=__lowerCamelCase, required=__lowerCamelCase, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=__lowerCamelCase, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=__lowerCamelCase, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=__lowerCamelCase, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=__lowerCamelCase, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=__lowerCamelCase, help="Min length of the generated answers" ) parser.add_argument("--max_length", default=50, type=__lowerCamelCase, help="Max length of the generated answers" ) parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() UpperCAmelCase_ : Any = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __a ( __lowerCamelCase ): UpperCAmelCase_ : Optional[int] = {} if args.model_type is None: UpperCAmelCase_ : Any = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): UpperCAmelCase_ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCAmelCase_ : Optional[int] = args.n_docs if args.index_name is not None: UpperCAmelCase_ : int = args.index_name if args.index_path is not None: UpperCAmelCase_ : Tuple = args.index_path else: UpperCAmelCase_ : List[str] = BartForConditionalGeneration UpperCAmelCase_ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", __lowerCamelCase ) UpperCAmelCase_ : Tuple = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCAmelCase_ : List[Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowerCamelCase ) ) logger.info(" Batch size = %d", args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): UpperCAmelCase_ : Dict = RagRetriever.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) UpperCAmelCase_ : str = model_class.from_pretrained(__lowerCamelCase, retriever=__lowerCamelCase, **__lowerCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase_ : List[Any] = model_class.from_pretrained(__lowerCamelCase, **__lowerCamelCase ) model.to(args.device ) with open(args.evaluation_set, "r" ) as eval_file, open(args.predictions_path, "w" ) as preds_file: UpperCAmelCase_ : Optional[int] = [] for line in tqdm(__lowerCamelCase ): questions.append(line.strip() ) if len(__lowerCamelCase ) == args.eval_batch_size: UpperCAmelCase_ : int = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) + "\n" ) preds_file.flush() UpperCAmelCase_ : Dict = [] if len(__lowerCamelCase ) > 0: UpperCAmelCase_ : List[Any] = evaluate_batch_fn(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) preds_file.write("\n".join(__lowerCamelCase ) ) preds_file.flush() score_fn(__lowerCamelCase, args.predictions_path, args.gold_data_path ) if __name__ == "__main__": _a = get_args() main(args)
61
'''simple docstring''' from PIL import Image def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Image: def brightness(_lowerCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __a = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
35
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar _A = TypeVar('KEY') _A = TypeVar('VAL') @dataclass(frozen=A_ , slots=A_ ) class UpperCAmelCase__ ( Generic[KEY, VAL] ): """simple docstring""" UpperCAmelCase__ : KEY UpperCAmelCase__ : VAL class UpperCAmelCase__ ( _Item ): """simple docstring""" def __init__( self ) -> None: super().__init__(A_ , A_ ) def __bool__( self ) -> bool: return False _A = _DeletedItem() class UpperCAmelCase__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , A_ = 8 , A_ = 0.75 ) -> None: __UpperCamelCase =initial_block_size __UpperCamelCase =[None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase =capacity_factor __UpperCamelCase =0 def _a ( self , A_ ) -> int: return hash(A_ ) % len(self._buckets ) def _a ( self , A_ ) -> int: return (ind + 1) % len(self._buckets ) def _a ( self , A_ , A_ , A_ ) -> bool: __UpperCamelCase =self._buckets[ind] if not stored: __UpperCamelCase =_Item(A_ , A_ ) self._len += 1 return True elif stored.key == key: __UpperCamelCase =_Item(A_ , A_ ) return True else: return False def _a ( self ) -> bool: __UpperCamelCase =len(self._buckets ) * self._capacity_factor return len(self ) >= int(A_ ) def _a ( self ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase =len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _a ( self , A_ ) -> None: __UpperCamelCase =self._buckets __UpperCamelCase =[None] * new_size __UpperCamelCase =0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _a ( self ) -> None: self._resize(len(self._buckets ) * 2 ) def _a ( self ) -> None: self._resize(len(self._buckets ) // 2 ) def _a ( self , A_ ) -> Iterator[int]: __UpperCamelCase =self._get_bucket_index(A_ ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase =self._get_next_ind(A_ ) def _a ( self , A_ , A_ ) -> None: for ind in self._iterate_buckets(A_ ): if self._try_set(A_ , A_ , A_ ): break def __setitem__( self , A_ , A_ ) -> None: if self._is_full(): self._size_up() self._add_item(A_ , A_ ) def __delitem__( self , A_ ) -> None: for ind in self._iterate_buckets(A_ ): __UpperCamelCase =self._buckets[ind] if item is None: raise KeyError(A_ ) if item is _deleted: continue if item.key == key: __UpperCamelCase =_deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , A_ ) -> VAL: for ind in self._iterate_buckets(A_ ): __UpperCamelCase =self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(A_ ) def __len__( self ) -> int: return self._len def __iter__( self ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self ) -> str: __UpperCamelCase =' ,'.join( f'{item.key}: {item.val}' for item in self._buckets if item ) return f'HashMap({val_string})'
62
'''simple docstring''' import argparse import os import re __a = "src/transformers" # Pattern that looks at the indentation in a line. __a = re.compile(R"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __a = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. __a = re.compile(R"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __a = re.compile(R"\[([^\]]+)\]") def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : int = _re_indent.search(_lowerCAmelCase ) return "" if search is None else search.groups()[0] def __snake_case( _lowerCAmelCase , _lowerCAmelCase="" , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: snake_case__ : str = 0 snake_case__ : Union[str, Any] = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(_lowerCAmelCase ): index += 1 snake_case__ : Tuple = ["""\n""".join(lines[:index] )] else: snake_case__ : List[str] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : Optional[int] = [lines[index]] index += 1 while index < len(_lowerCAmelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(_lowerCAmelCase ) ) if index < len(_lowerCAmelCase ) - 1: snake_case__ : str = [lines[index + 1]] index += 1 else: snake_case__ : int = [] else: blocks.append("""\n""".join(_lowerCAmelCase ) ) snake_case__ : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCAmelCase ) > 0: blocks.append("""\n""".join(_lowerCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCAmelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __snake_case( _lowerCAmelCase ) -> Tuple: def _inner(_lowerCAmelCase ): return key(_lowerCAmelCase ).lower().replace("""_""" , """""" ) return _inner def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(_lowerCAmelCase ): return x if key is None: snake_case__ : Optional[int] = noop # Constants are all uppercase, they go first. snake_case__ : Optional[int] = [obj for obj in objects if key(_lowerCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : int = [obj for obj in objects if key(_lowerCAmelCase )[0].isupper() and not key(_lowerCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : str = [obj for obj in objects if not key(_lowerCAmelCase )[0].isupper()] snake_case__ : List[str] = ignore_underscore(_lowerCAmelCase ) return sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) + sorted(_lowerCAmelCase , key=_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> int: # This inner function sort imports between [ ]. def _replace(_lowerCAmelCase ): snake_case__ : Union[str, Any] = match.groups()[0] if "," not in imports: return f"[{imports}]" snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) + "]" snake_case__ : str = import_statement.split("""\n""" ) if len(_lowerCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Dict = 2 if lines[1].strip() == """[""" else 1 snake_case__ : str = [(i, _re_strip_line.search(_lowerCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : str = sort_objects(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] ) snake_case__ : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : List[str] = keys[:-1] snake_case__ : int = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(_lowerCAmelCase )] ) return "\n".join(_lowerCAmelCase ) else: # Finally we have to deal with imports fitting on one line snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , _lowerCAmelCase ) return import_statement def __snake_case( _lowerCAmelCase , _lowerCAmelCase=True ) -> Dict: with open(_lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case__ : Optional[int] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : Optional[int] = split_code_in_indented_blocks( _lowerCAmelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[Any] = main_blocks[block_idx] snake_case__ : Dict = block.split("""\n""" ) # Get to the start of the imports. snake_case__ : Dict = 0 while line_idx < len(_lowerCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) else: line_idx += 1 if line_idx >= len(_lowerCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : List[str] = """\n""".join(block_lines[line_idx:-1] ) snake_case__ : str = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Optional[int] = split_code_in_indented_blocks(_lowerCAmelCase , indent_level=_lowerCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : Tuple = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : Optional[Any] = [(pattern.search(_lowerCAmelCase ).groups()[0] if pattern.search(_lowerCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : Dict = [(i, key) for i, key in enumerate(_lowerCAmelCase ) if key is not None] snake_case__ : Union[str, Any] = [x[0] for x in sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[Any] = 0 snake_case__ : Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: snake_case__ : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_lowerCAmelCase ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : Dict = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCAmelCase ): if check_only: return True else: print(f"Overwriting {file}." ) with open(_lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowerCAmelCase ) ) def __snake_case( _lowerCAmelCase=True ) -> Tuple: snake_case__ : str = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case__ : Union[str, Any] = sort_imports(os.path.join(_lowerCAmelCase , """__init__.py""" ) , check_only=_lowerCAmelCase ) if result: snake_case__ : Union[str, Any] = [os.path.join(_lowerCAmelCase , """__init__.py""" )] if len(_lowerCAmelCase ) > 0: raise ValueError(f"Would overwrite {len(_lowerCAmelCase )} files, run `make style`." ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __a = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
35
0
'''simple docstring''' from functools import reduce lowerCAmelCase_ : Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _lowerCamelCase ( lowercase : str = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowercase , lowercase : str(int(lowercase ) * int(lowercase ) ) , n[i : i + 13] ) ) for i in range(len(lowercase ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
63
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase( metaclass=__a ): '''simple docstring''' lowercase__ = ["note_seq"] def __init__( self: Dict, *a_: Union[str, Any], **a_: List[str] ): '''simple docstring''' requires_backends(self, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Optional[int], *a_: Any, **a_: Optional[Any] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] ) @classmethod def UpperCamelCase_ ( cls: Tuple, *a_: Optional[Any], **a_: List[str] ): '''simple docstring''' requires_backends(cls, ["""note_seq"""] )
64
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __a = logging.get_logger(__name__) __a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: for attribute in key.split(""".""" ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: snake_case__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": snake_case__ : int = value elif weight_type == "weight_g": snake_case__ : List[str] = value elif weight_type == "weight_v": snake_case__ : List[str] = value elif weight_type == "bias": snake_case__ : Optional[Any] = value else: snake_case__ : str = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Union[str, Any] = [] snake_case__ : Dict = fairseq_model.state_dict() snake_case__ : List[Any] = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ : Optional[int] = None for name, value in fairseq_dict.items(): snake_case__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) snake_case__ : Union[str, Any] = True elif name.split(""".""" )[0] == "proj": snake_case__ : Tuple = fairseq_model.proj snake_case__ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case__ : Optional[Any] = True if "*" in mapped_key: snake_case__ : Optional[int] = name.split(_lowerCAmelCase )[0].split(""".""" )[-2] snake_case__ : Tuple = mapped_key.replace("""*""" , _lowerCAmelCase ) if "weight_g" in name: snake_case__ : str = """weight_g""" elif "weight_v" in name: snake_case__ : int = """weight_v""" elif "bias" in name: snake_case__ : Dict = """bias""" elif "weight" in name: snake_case__ : Union[str, Any] = """weight""" else: snake_case__ : Union[str, Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : int = full_name.split("""conv_layers.""" )[-1] snake_case__ : Dict = name.split(""".""" ) snake_case__ : Any = int(items[0] ) snake_case__ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) snake_case__ : str = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) snake_case__ : Union[str, Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) snake_case__ : int = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ , snake_case__ : str = emb.weight.shape snake_case__ : List[str] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) snake_case__ : List[str] = emb.weight.data return lin_layer def __snake_case( _lowerCAmelCase ) -> Optional[Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : int = f.readlines() snake_case__ : List[Any] = [line.split(""" """ )[0] for line in lines] snake_case__ : Union[str, Any] = len(_lowerCAmelCase ) snake_case__ : Any = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(_lowerCAmelCase , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: snake_case__ : Optional[Any] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaConfig.from_pretrained( _lowerCAmelCase , vocab_size=_lowerCAmelCase , decoder_layers=_lowerCAmelCase , do_stable_layer_norm=_lowerCAmelCase ) snake_case__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case__ : Tuple = model[0].eval() # set weights for wav2vec2 encoder snake_case__ : Optional[Any] = WavaVecaModel(_lowerCAmelCase ) snake_case__ : Dict = recursively_load_weights_wavaveca(model.encoder , _lowerCAmelCase ) snake_case__ : Optional[Any] = SpeechaTextaForCausalLM(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_lowerCAmelCase ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case__ : Tuple = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) snake_case__ : List[Any] = SpeechEncoderDecoderModel(encoder=_lowerCAmelCase , decoder=_lowerCAmelCase ) snake_case__ : Tuple = False # add projection layer snake_case__ : Union[str, Any] = nn.Parameter(projection_layer.weight ) snake_case__ : int = nn.Parameter(projection_layer.bias ) snake_case__ : Tuple = create_vocab_dict(_lowerCAmelCase ) with open(os.path.join(_lowerCAmelCase , """vocab.json""" ) , """w""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Tuple = SpeechaTextaTokenizer(os.path.join(_lowerCAmelCase , """vocab.json""" ) ) tokenizer.save_pretrained(_lowerCAmelCase ) snake_case__ : Optional[Any] = hf_wavavec.config.to_dict() snake_case__ : Tuple = tokenizer.pad_token_id snake_case__ : Optional[Any] = tokenizer.bos_token_id snake_case__ : int = tokenizer.eos_token_id snake_case__ : str = """speech_to_text_2""" snake_case__ : List[Any] = """wav2vec2""" snake_case__ : List[str] = SpeechEncoderDecoderConfig.from_dict(_lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) feature_extractor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_0224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") __a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
35
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
65
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ f"{test_file} instead." ) snake_case__ : Dict = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." ) snake_case__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )] snake_case__ : int = """.""".join(_lowerCAmelCase ) return test_module_path def __snake_case( _lowerCAmelCase ) -> List[str]: snake_case__ : str = get_module_path(_lowerCAmelCase ) snake_case__ : Union[str, Any] = importlib.import_module(_lowerCAmelCase ) return test_module def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : List[Any] = [] snake_case__ : Optional[int] = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : List[str] = [] snake_case__ : Any = get_test_module(_lowerCAmelCase ) for attr in dir(_lowerCAmelCase ): snake_case__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). snake_case__ : List[str] = getattr(_lowerCAmelCase , """all_model_classes""" , [] ) if len(_lowerCAmelCase ) > 0: test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Dict: snake_case__ : Any = get_test_classes(_lowerCAmelCase ) snake_case__ : Optional[Any] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Optional[Any]: snake_case__ : Optional[int] = test_class() if hasattr(_lowerCAmelCase , """setUp""" ): test.setUp() snake_case__ : Any = None if hasattr(_lowerCAmelCase , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: snake_case__ : Tuple = test.model_tester.__class__ return model_tester def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: snake_case__ : Union[str, Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : str = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: snake_case__ : Optional[Any] = get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) snake_case__ : Union[str, Any] = [] for test_class in test_classes: snake_case__ : Tuple = get_model_tester_from_test_class(_lowerCAmelCase ) if tester_class is not None: tester_classes.append(_lowerCAmelCase ) # sort with class names return sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : x.__name__ ) def __snake_case( _lowerCAmelCase ) -> Union[str, Any]: snake_case__ : Optional[Any] = get_test_classes(_lowerCAmelCase ) snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(_lowerCAmelCase ) for test_class in test_classes} return test_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: snake_case__ : Any = get_model_classes(_lowerCAmelCase ) snake_case__ : Any = { model_class: get_test_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_test_mapping def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Union[str, Any] = get_model_classes(_lowerCAmelCase ) snake_case__ : str = { model_class: get_tester_classes_for_model(_lowerCAmelCase , _lowerCAmelCase ) for model_class in model_classes } return model_to_tester_mapping def __snake_case( _lowerCAmelCase ) -> int: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return o.__name__ elif isinstance(_lowerCAmelCase , (list, tuple) ): return [to_json(_lowerCAmelCase ) for x in o] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): return {to_json(_lowerCAmelCase ): to_json(_lowerCAmelCase ) for k, v in o.items()} else: return o
35
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def A_ ( ): '''simple docstring''' snake_case_, snake_case_ :Tuple = 9, 14 # noqa: F841 snake_case_ :Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] snake_case_ :Any = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) snake_case_ :Union[str, Any] = mst(_lowercase ) snake_case_ :List[Any] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: snake_case_ :Optional[Any] = tuple(answer[:2] ) snake_case_ :Dict = tuple(edge[::-1] ) assert edge in result or reverse in result
66
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = SwinConfig() snake_case__ : Optional[Any] = swin_name.split("""_""" ) snake_case__ : Any = name_split[1] snake_case__ : List[Any] = int(name_split[4] ) snake_case__ : int = int(name_split[3][-1] ) if model_size == "tiny": snake_case__ : List[Any] = 96 snake_case__ : int = (2, 2, 6, 2) snake_case__ : int = (3, 6, 12, 24) elif model_size == "small": snake_case__ : Union[str, Any] = 96 snake_case__ : Optional[Any] = (2, 2, 18, 2) snake_case__ : str = (3, 6, 12, 24) elif model_size == "base": snake_case__ : Dict = 128 snake_case__ : str = (2, 2, 18, 2) snake_case__ : Dict = (4, 8, 16, 32) else: snake_case__ : List[str] = 192 snake_case__ : str = (2, 2, 18, 2) snake_case__ : List[Any] = (6, 12, 24, 48) if "in22k" in swin_name: snake_case__ : str = 21_841 else: snake_case__ : List[str] = 1_000 snake_case__ : int = """huggingface/label-files""" snake_case__ : Any = """imagenet-1k-id2label.json""" snake_case__ : List[Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : Dict = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : Optional[int] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : List[Any] = img_size snake_case__ : Dict = num_classes snake_case__ : Dict = embed_dim snake_case__ : Optional[int] = depths snake_case__ : int = num_heads snake_case__ : Optional[int] = window_size return config def __snake_case( _lowerCAmelCase ) -> Dict: if "patch_embed.proj" in name: snake_case__ : List[str] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case__ : int = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: snake_case__ : str = """encoder.""" + name if "attn.proj" in name: snake_case__ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case__ : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case__ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case__ : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case__ : Union[str, Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case__ : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": snake_case__ : Tuple = """layernorm.weight""" if name == "norm.bias": snake_case__ : Union[str, Any] = """layernorm.bias""" if "head" in name: snake_case__ : Optional[int] = name.replace("""head""" , """classifier""" ) else: snake_case__ : List[str] = """swin.""" + name return name def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): snake_case__ : Optional[int] = orig_state_dict.pop(_lowerCAmelCase ) if "mask" in key: continue elif "qkv" in key: snake_case__ : Dict = key.split(""".""" ) snake_case__ : Optional[int] = int(key_split[1] ) snake_case__ : Union[str, Any] = int(key_split[3] ) snake_case__ : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: snake_case__ : Optional[Any] = val[:dim, :] snake_case__ : Tuple = val[ dim : dim * 2, : ] snake_case__ : Dict = val[-dim:, :] else: snake_case__ : Tuple = val[ :dim ] snake_case__ : int = val[ dim : dim * 2 ] snake_case__ : int = val[ -dim: ] else: snake_case__ : Union[str, Any] = val return orig_state_dict def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : Optional[int] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() snake_case__ : Optional[int] = get_swin_config(_lowerCAmelCase ) snake_case__ : Optional[Any] = SwinForImageClassification(_lowerCAmelCase ) model.eval() snake_case__ : str = convert_state_dict(timm_model.state_dict() , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) snake_case__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Dict = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) snake_case__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) snake_case__ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) snake_case__ : Optional[Any] = timm_model(inputs["""pixel_values"""] ) snake_case__ : str = model(**_lowerCAmelCase ).logits assert torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) print(f"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
35
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: # Initialise PyTorch model __lowerCamelCase = FunnelConfig.from_json_file(UpperCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __lowerCamelCase = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCAmelCase =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
67
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __a = logging.get_logger(__name__) class UpperCAmelCase_ ( _a ): """simple docstring""" def __init__( self : List[str] , *snake_case_ : str , **snake_case_ : List[str] ): warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
35
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase__ = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase__ = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } lowerCAmelCase__ = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = RealmTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> List[str]: '''simple docstring''' super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase ) != tokenize_chinese_chars ): A__ = getattr(lowercase , normalizer_state.pop("type" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**lowercase ) A__ = do_lower_case def UpperCamelCase ( self , lowercase , **lowercase ) -> Optional[int]: '''simple docstring''' A__ = PaddingStrategy.MAX_LENGTH A__ = text A__ = kwargs.pop("text_pair" , lowercase ) A__ = kwargs.pop("return_tensors" , lowercase ) A__ = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(lowercase ): if batch_text_pair is not None: A__ = batch_text_pair[idx] else: A__ = None A__ = super().__call__(lowercase , lowercase , return_tensors=lowercase , **lowercase ) A__ = encoded_candidates.get("input_ids" ) A__ = encoded_candidates.get("attention_mask" ) A__ = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowercase ) A__ = {key: item for key, item in output_data.items() if len(lowercase ) != 0} return BatchEncoding(lowercase , tensor_type=lowercase ) def UpperCamelCase ( self , lowercase , lowercase=None ) -> str: '''simple docstring''' A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self , lowercase , lowercase = None ) -> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: '''simple docstring''' A__ = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
68
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __a = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = field(default=_a , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=_a , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=_a , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=_a , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def lowerCamelCase ( self : List[str] ): snake_case__ : int = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): snake_case__ : Optional[int] = v.to_dict() return d
35
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase ( lowerCAmelCase__ ): def __init__( self, *lowerCAmelCase__, **lowerCAmelCase__) -> None: warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.', lowerCAmelCase__, ) super().__init__(*lowerCAmelCase__, **lowerCAmelCase__)
69
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
0
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase : def __init__( self : int ) -> Optional[Any]: _lowerCAmelCase = [] def lowercase__ ( self : List[str] , __snake_case : Dict ) -> List[Any]: return self.node_position[vertex] def lowercase__ ( self : List[Any] , __snake_case : int , __snake_case : Optional[Any] ) -> List[Any]: _lowerCAmelCase = pos def lowercase__ ( self : Optional[int] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ) -> Dict: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _lowerCAmelCase = 2 * start + 1 else: _lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _lowerCAmelCase , _lowerCAmelCase = heap[smallest_child], positions[smallest_child] _lowerCAmelCase , _lowerCAmelCase = ( heap[start], positions[start], ) _lowerCAmelCase , _lowerCAmelCase = temp, tempa _lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __snake_case ) self.top_to_bottom(__snake_case , __snake_case , __snake_case , __snake_case ) def lowercase__ ( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[int] ) -> Union[str, Any]: _lowerCAmelCase = position[index] while index != 0: _lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _lowerCAmelCase = heap[parent] _lowerCAmelCase = position[parent] self.set_position(position[parent] , __snake_case ) else: _lowerCAmelCase = val _lowerCAmelCase = temp self.set_position(__snake_case , __snake_case ) break _lowerCAmelCase = parent else: _lowerCAmelCase = val _lowerCAmelCase = temp self.set_position(__snake_case , 0 ) def lowercase__ ( self : Any , __snake_case : int , __snake_case : List[Any] ) -> Dict: _lowerCAmelCase = len(__snake_case ) // 2 - 1 for i in range(__snake_case , -1 , -1 ): self.top_to_bottom(__snake_case , __snake_case , len(__snake_case ) , __snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Dict , __snake_case : Tuple ) -> Optional[Any]: _lowerCAmelCase = positions[0] _lowerCAmelCase = sys.maxsize self.top_to_bottom(__snake_case , 0 , len(__snake_case ) , __snake_case ) return temp def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = Heap() _lowerCAmelCase = [0] * len(lowerCAmelCase ) _lowerCAmelCase = [-1] * len(lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex _lowerCAmelCase = [] for vertex in range(len(lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCAmelCase ) heap.node_position.append(lowerCAmelCase ) _lowerCAmelCase = [] _lowerCAmelCase = 1 _lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _lowerCAmelCase = 0 _lowerCAmelCase = distance heap.heapify(lowerCAmelCase , lowerCAmelCase ) for _ in range(1 , len(lowerCAmelCase ) ): _lowerCAmelCase = heap.delete_minimum(lowerCAmelCase , lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCAmelCase )] ): _lowerCAmelCase = distance heap.bottom_to_top( lowerCAmelCase , heap.get_position(lowerCAmelCase ) , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple =int(input('''Enter number of edges: ''').strip()) A__ : Dict =defaultdict(list) for _ in range(edges_number): A__ : Any =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
70
'''simple docstring''' import string from math import logaa def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : List[str] = document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) snake_case__ : List[str] = document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[int, int]: snake_case__ : Dict = corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' snake_case__ : Any = corpus_without_punctuation.split("""\n""" ) snake_case__ : int = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCAmelCase )) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> float: return round(tf * idf , 3 )
35
0
from manim import * class __A ( a ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =Rectangle(height=0.5 , width=0.5 ) __UpperCamelCase : Dict =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCamelCase : Any =[mem.copy() for i in range(6 )] __UpperCamelCase : Optional[int] =[mem.copy() for i in range(6 )] __UpperCamelCase : Tuple =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =VGroup(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : str =Text('CPU' , font_size=24 ) __UpperCamelCase : Optional[int] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase__ ) __UpperCamelCase : Dict =[mem.copy() for i in range(1 )] __UpperCamelCase : Tuple =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =Text('GPU' , font_size=24 ) __UpperCamelCase : Dict =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) gpu.align_to(lowerCamelCase__ , lowerCamelCase__ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase__ ) __UpperCamelCase : List[Any] =[mem.copy() for i in range(6 )] __UpperCamelCase : List[Any] =VGroup(*lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0 ) __UpperCamelCase : int =Text('Model' , font_size=24 ) __UpperCamelCase : List[str] =Group(lowerCamelCase__ , lowerCamelCase__ ).arrange(lowerCamelCase__ , buff=0.5 , aligned_edge=lowerCamelCase__ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , Create(lowerCamelCase__ , run_time=1 ) , ) __UpperCamelCase : Union[str, Any] =MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) __UpperCamelCase : Union[str, Any] =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCamelCase : Union[str, Any] =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase__ , run_time=2.5 ) , Write(lowerCamelCase__ ) , Write(lowerCamelCase__ ) ) self.add(lowerCamelCase__ ) __UpperCamelCase : List[str] =[] __UpperCamelCase : Tuple =[] __UpperCamelCase : Union[str, Any] =[] for i, rect in enumerate(lowerCamelCase__ ): __UpperCamelCase : Any =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase__ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase__ ) cpu_target.generate_target() __UpperCamelCase : Tuple =0.46 / 4 __UpperCamelCase : Optional[Any] =0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase__ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase__ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase__ , buff=0.0 ) cpu_targs.append(lowerCamelCase__ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase__ ) ) second_animations.append(MoveToTarget(lowerCamelCase__ , run_time=1.5 ) ) self.play(*lowerCamelCase__ ) self.play(*lowerCamelCase__ ) self.wait()
71
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self : int , snake_case_ : Tuple , snake_case_ : List[str]=3 , snake_case_ : Tuple=32 , snake_case_ : List[Any]=3 , snake_case_ : List[str]=10 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : Tuple=[1, 1, 2, 1] , snake_case_ : Tuple=True , snake_case_ : str=True , snake_case_ : int="relu" , snake_case_ : List[Any]=3 , snake_case_ : str=None , ): snake_case__ : List[Any] = parent snake_case__ : List[Any] = batch_size snake_case__ : int = image_size snake_case__ : List[Any] = num_channels snake_case__ : Optional[Any] = embeddings_size snake_case__ : Optional[int] = hidden_sizes snake_case__ : Tuple = depths snake_case__ : Any = is_training snake_case__ : Optional[int] = use_labels snake_case__ : Optional[int] = hidden_act snake_case__ : Optional[int] = num_labels snake_case__ : int = scope snake_case__ : Tuple = len(snake_case_ ) def lowerCamelCase ( self : Any ): snake_case__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] ): snake_case__ : Optional[Any] = TFResNetModel(config=snake_case_ ) snake_case__ : int = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self : List[str] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] ): snake_case__ : str = self.num_labels snake_case__ : Optional[int] = TFResNetForImageClassification(snake_case_ ) snake_case__ : Tuple = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[int] ): snake_case__ : Tuple = TFResNetModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCamelCase ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : str ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def lowerCamelCase ( self : int ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def lowerCamelCase ( self : List[Any] ): pass def lowerCamelCase ( self : List[Any] ): snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Dict = model_class(snake_case_ ) snake_case__ : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Union[str, Any] = [*signature.parameters.keys()] snake_case__ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCamelCase ( self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Any , snake_case_ : List[str] ): snake_case__ : List[Any] = model_class(snake_case_ ) snake_case__ : Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) snake_case__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : List[Any] = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Dict = layer_type snake_case__ : Optional[int] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : List[Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def lowerCamelCase ( self : Optional[Any] ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : str = TFResNetModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def __snake_case( ) -> Optional[int]: snake_case__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase ( self : List[Any] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : List[str] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : List[Any] = self.default_image_processor snake_case__ : List[Any] = prepare_img() snake_case__ : List[str] = image_processor(images=snake_case_ , return_tensors="""tf""" ) # forward pass snake_case__ : Optional[Any] = model(**snake_case_ ) # verify the logits snake_case__ : Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) snake_case__ : List[str] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case_ , atol=1E-4 ) )
35
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Any = 3 _lowerCamelCase : str = 2_5_0 _lowerCamelCase : Optional[Any] = ids_tensor((batch_size, length) , __lowerCAmelCase ) _lowerCamelCase : List[str] = torch.ones((batch_size, length) , device=__lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self._get_tensors(5 ) _lowerCamelCase : str = StoppingCriteriaList( [ MaxLengthCriteria(max_length=1_0 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : List[Any] = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = MaxLengthCriteria(max_length=1_0 ) _lowerCamelCase , _lowerCamelCase : Optional[int] = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : int = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _lowerCamelCase , _lowerCamelCase : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Tuple = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase , _lowerCamelCase : Any = self._get_tensors(1_0 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : str = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 1_0 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[Any] = self._get_tensors(5 ) _lowerCamelCase : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) _lowerCamelCase : Dict = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_0 ) with self.assertWarns(__lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(1_0 )] ) , 1_1 ) _lowerCamelCase : Dict = validate_stopping_criteria(StoppingCriteriaList() , 1_1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 )
72
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "glpn" def __init__( self : Optional[Any] , snake_case_ : List[str]=3 , snake_case_ : Dict=4 , snake_case_ : List[Any]=[2, 2, 2, 2] , snake_case_ : int=[8, 4, 2, 1] , snake_case_ : List[str]=[32, 64, 160, 256] , snake_case_ : Tuple=[7, 3, 3, 3] , snake_case_ : List[Any]=[4, 2, 2, 2] , snake_case_ : Tuple=[1, 2, 5, 8] , snake_case_ : List[str]=[4, 4, 4, 4] , snake_case_ : Optional[int]="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Union[str, Any]=0.0 , snake_case_ : List[Any]=0.02 , snake_case_ : Tuple=0.1 , snake_case_ : Any=1E-6 , snake_case_ : Dict=64 , snake_case_ : Tuple=10 , snake_case_ : List[Any]=-1 , **snake_case_ : Optional[Any] , ): super().__init__(**snake_case_ ) snake_case__ : Optional[Any] = num_channels snake_case__ : Dict = num_encoder_blocks snake_case__ : Tuple = depths snake_case__ : Union[str, Any] = sr_ratios snake_case__ : Tuple = hidden_sizes snake_case__ : Optional[Any] = patch_sizes snake_case__ : int = strides snake_case__ : List[Any] = mlp_ratios snake_case__ : Optional[int] = num_attention_heads snake_case__ : Dict = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : str = initializer_range snake_case__ : List[str] = drop_path_rate snake_case__ : int = layer_norm_eps snake_case__ : Tuple = decoder_hidden_size snake_case__ : List[Any] = max_depth snake_case__ : Dict = head_in_index
35
0
from collections import namedtuple a =namedtuple("""from_to""", """from_ to""") a ={ """cubicmeter""": from_to(1, 1), """litre""": from_to(0.0_01, 1000), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.0_04_54, 2_64.1_72), """cubicyard""": from_to(0.7_64_55, 1.3_07_95), """cubicfoot""": from_to(0.0_28, 35.31_47), """cup""": from_to(0.0_00_23_65_88, 42_26.75), } def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> float: if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ', '.join(lowerCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ', '.join(lowerCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
73
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __a = logging.get_logger(__name__) __a = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __a = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __a = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __a = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = RoFormerTokenizer def __init__( self : List[Any] , snake_case_ : List[str]=None , snake_case_ : Dict=None , snake_case_ : Any=True , snake_case_ : str="[UNK]" , snake_case_ : List[str]="[SEP]" , snake_case_ : Optional[Any]="[PAD]" , snake_case_ : Union[str, Any]="[CLS]" , snake_case_ : Union[str, Any]="[MASK]" , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=None , **snake_case_ : Tuple , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) snake_case__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , snake_case_ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , snake_case_ ) != strip_accents ): snake_case__ : str = getattr(snake_case_ , pre_tok_state.pop("""type""" ) ) snake_case__ : Optional[int] = do_lower_case snake_case__ : Union[str, Any] = strip_accents snake_case__ : Union[str, Any] = pre_tok_class(**snake_case_ ) snake_case__ : str = do_lower_case def __getstate__( self : int ): snake_case__ : List[Any] = self.__dict__.copy() snake_case__ : str = BertPreTokenizer() return state def __setstate__( self : Dict , snake_case_ : Dict ): snake_case__ : List[Any] = d snake_case__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() snake_case__ : List[Any] = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCamelCase ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[str]=None ): snake_case__ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self : str , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): snake_case__ : Union[str, Any] = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCamelCase ( self : Dict , snake_case_ : List[str] , snake_case_ : Tuple=None , snake_case_ : List[str]=None , snake_case_ : Union[str, Any]=False , **snake_case_ : Tuple , ): snake_case__ : Optional[Any] = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
35
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _snake_case ( snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): A = s.rsplit(snake_case__ , snake_case__ ) return new.join(snake_case__ ) def _snake_case ( snake_case__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _snake_case ( snake_case__ : Union[str, Any] ): A = {} A = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: A = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: A = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): A = rreplace(snake_case__ , '.w' , '.weight' , 1 ) if key.endswith('.b' ): A = rreplace(snake_case__ , '.b' , '.bias' , 1 ) A = value.float() return upgrade @torch.no_grad() def _snake_case ( snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Tuple=None , snake_case__ : str=True ): from dall_e import Encoder A = Encoder() if os.path.exists(snake_case__ ): A = torch.load(snake_case__ ) else: A = torch.hub.load_state_dict_from_url(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): A = ckpt.state_dict() encoder.load_state_dict(snake_case__ ) if config_path is not None: A = FlavaImageCodebookConfig.from_pretrained(snake_case__ ) else: A = FlavaImageCodebookConfig() A = FlavaImageCodebook(snake_case__ ).eval() A = encoder.state_dict() A = upgrade_state_dict(snake_case__ ) hf_model.load_state_dict(snake_case__ ) A = hf_model.state_dict() A = count_parameters(snake_case__ ) A = count_parameters(snake_case__ ) assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case__ ) else: return hf_state_dict if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _lowercase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
74
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : int = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) snake_case__ : List[str] = 0.01 with locka.acquire(): with pytest.raises(_lowerCAmelCase ): snake_case__ : str = time.time() locka.acquire(_lowerCAmelCase ) assert time.time() - _start > timeout def __snake_case( _lowerCAmelCase ) -> Tuple: snake_case__ : Dict = """a""" * 1_000 + """.lock""" snake_case__ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(_lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 snake_case__ : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(_lowerCAmelCase ): locka.acquire(0 )
35
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __UpperCamelCase ( unittest.TestCase , lowerCamelCase__ ): def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =load_tool('''text-classification''' ) self.tool.setup() lowerCamelCase_ =load_tool('''text-classification''', remote=lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.remote_tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCAmelCase, '''positive''' )
75
'''simple docstring''' def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float: snake_case__ : str = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __snake_case( ) -> List[str]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
from __future__ import annotations from collections import deque class _UpperCamelCase : '''simple docstring''' def __init__( self : int , a : list[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(a ) self.set_fail_transitions() def __UpperCamelCase ( self : Tuple , a : int , a : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __UpperCamelCase ( self : List[str] , a : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for character in keyword: SCREAMING_SNAKE_CASE : Optional[int] = self.find_next_state(a , a ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) SCREAMING_SNAKE_CASE : int = len(self.adlist ) - 1 else: SCREAMING_SNAKE_CASE : Dict = next_state self.adlist[current_state]["output"].append(a ) def __UpperCamelCase ( self : List[Any] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : deque = deque() for node in self.adlist[0]["next_states"]: q.append(a ) SCREAMING_SNAKE_CASE : List[Any] = 0 while q: SCREAMING_SNAKE_CASE : Any = q.popleft() for child in self.adlist[r]["next_states"]: q.append(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.adlist[r]["fail_state"] while ( self.find_next_state(a , self.adlist[child]["value"] ) is None and state != 0 ): SCREAMING_SNAKE_CASE : str = self.adlist[state]["fail_state"] SCREAMING_SNAKE_CASE : Dict = self.find_next_state( a , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def __UpperCamelCase ( self : Optional[Any] , a : str ) -> dict[str, list[int]]: """simple docstring""" SCREAMING_SNAKE_CASE : dict = {} # returns a dict with keywords and list of its occurrences SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(len(a ) ): while ( self.find_next_state(a , string[i] ) is None and current_state != 0 ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.adlist[current_state]["fail_state"] SCREAMING_SNAKE_CASE : Optional[Any] = self.find_next_state(a , string[i] ) if next_state is None: SCREAMING_SNAKE_CASE : Optional[int] = 0 else: SCREAMING_SNAKE_CASE : Optional[int] = next_state for key in self.adlist[current_state]["output"]: if key not in result: SCREAMING_SNAKE_CASE : str = [] result[key].append(i - len(a ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
76
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : List[Any] = 'ZinengTang/tvlt-base' lowercase__ : List[Any] = tempfile.mkdtemp() def _UpperCAmelCase ( self , **a ) -> Any: return TvltImageProcessor.from_pretrained(self.checkpoint , **a ) def _UpperCAmelCase ( self , **a ) -> Union[str, Any]: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a ) def _UpperCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> List[Any]: lowercase__ : Tuple = self.get_image_processor() lowercase__ : int = self.get_feature_extractor() lowercase__ : Optional[Any] = TvltProcessor(image_processor=a , feature_extractor=a ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a ) self.assertIsInstance(processor.image_processor , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Any = self.get_image_processor() lowercase__ : Dict = self.get_feature_extractor() lowercase__ : Optional[Any] = TvltProcessor(image_processor=a , feature_extractor=a ) lowercase__ : Optional[Any] = np.ones([1_2_0_0_0] ) lowercase__ : str = feature_extractor(a , return_tensors='np' ) lowercase__ : Union[str, Any] = processor(audio=a , return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : int = self.get_feature_extractor() lowercase__ : int = TvltProcessor(image_processor=a , feature_extractor=a ) lowercase__ : Tuple = np.ones([3, 2_2_4, 2_2_4] ) lowercase__ : Dict = image_processor(a , return_tensors='np' ) lowercase__ : List[str] = processor(images=a , return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : Dict = self.get_image_processor() lowercase__ : Tuple = self.get_feature_extractor() lowercase__ : Union[str, Any] = TvltProcessor(image_processor=a , feature_extractor=a ) lowercase__ : Optional[Any] = np.ones([1_2_0_0_0] ) lowercase__ : Any = np.ones([3, 2_2_4, 2_2_4] ) lowercase__ : Union[str, Any] = processor(audio=a , images=a ) self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(a ): processor() def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[str] = self.get_image_processor() lowercase__ : Optional[int] = self.get_feature_extractor() lowercase__ : Any = TvltProcessor(image_processor=a , feature_extractor=a ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
77
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {"do_clean_text": False, "add_prefix_space": False} def lowerCamelCase ( self : str ): super().setUp() # fmt: off snake_case__ : Optional[Any] = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on snake_case__ : int = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 snake_case__ : List[Any] = {"""unk_token""": """<unk>"""} snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case_ ) ) def lowerCamelCase ( self : Any , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : Any , snake_case_ : str ): snake_case__ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def lowerCamelCase ( self : Any , snake_case_ : Dict ): snake_case__ , snake_case__ : int = self.get_input_output_texts(snake_case_ ) snake_case__ : int = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) snake_case__ : List[str] = tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) return text, ids def lowerCamelCase ( self : Optional[Any] ): pass # TODO add if relevant def lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase ( self : List[str] ): pass # TODO add if relevant def lowerCamelCase ( self : Dict ): snake_case__ : Optional[Any] = self.get_tokenizer() # Testing tokenization snake_case__ : int = """こんにちは、世界。 こんばんは、㔺界。""" snake_case__ : Optional[int] = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] snake_case__ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids without special tokens snake_case__ : Union[str, Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] snake_case__ : List[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) # Testing conversion to ids with special tokens snake_case__ : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] snake_case__ : Any = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Union[str, Any] = self.get_tokenizer() # Testing tokenization snake_case__ : Union[str, Any] = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" snake_case__ : Optional[int] = """こんにちは、、、、世界。こんばんは、、、、世界。""" snake_case__ : Any = tokenizer.encode(snake_case_ ) snake_case__ : int = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Tuple = """こんにちは、世界。""" snake_case__ : Optional[Any] = """こんばんは、㔺界。😀""" snake_case__ : List[str] = """こんにちは、世界。こんばんは、世界。😀""" snake_case__ : Dict = tokenizer.encode(prefix_text + input_text ) snake_case__ : Dict = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) snake_case__ : int = tokenizer.encode(snake_case_ , prefix_text=snake_case_ ) snake_case__ : Optional[Any] = tokenizer.decode(snake_case_ ) snake_case__ : Union[str, Any] = tokenizer.decode(snake_case_ ) snake_case__ : str = tokenizer.decode(snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Union[str, Any] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization snake_case__ : Dict = """こんにちは、世界。""" snake_case__ : Optional[int] = """こんばんは、㔺界。😀""" snake_case__ : Any = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : Optional[int] = len(tokenizer.encode(snake_case_ ) ) - 2 snake_case__ : List[str] = [1] + [0] * (len_prefix + len_text + 1) snake_case__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] snake_case__ : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) snake_case__ : Any = tokenizer(prefix_text + input_text ).token_type_ids snake_case__ : str = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids snake_case__ : Optional[Any] = tokenizer(snake_case_ , prefix_text=snake_case_ ).token_type_ids self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) @slow def lowerCamelCase ( self : Optional[int] ): snake_case__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) snake_case__ : int = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) snake_case__ : Dict = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertEqual(tokenizer.decode(snake_case_ ) , tokenizer.decode(snake_case_ ) ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertNotEqual(snake_case_ , snake_case_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase ( self : Any ): snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) snake_case__ : int = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] snake_case__ : Optional[Any] = tokenizer(snake_case_ , padding=snake_case_ ) snake_case__ : Tuple = tokenizer.batch_encode_plus(snake_case_ , padding=snake_case_ ) # fmt: off snake_case__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] snake_case__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] snake_case__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case_ ) self.assertListEqual(x_token.token_type_ids , snake_case_ ) self.assertListEqual(x_token.attention_mask , snake_case_ ) self.assertListEqual(x_token_a.input_ids , snake_case_ ) self.assertListEqual(x_token_a.token_type_ids , snake_case_ ) self.assertListEqual(x_token_a.attention_mask , snake_case_ ) def lowerCamelCase ( self : Any ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase ( self : List[str] ): # tokenizer has no padding token pass
35
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = generate_pascal_triangle(lowercase_ ) for row_idx in range(lowercase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCAmelCase = [] for current_row_idx in range(lowercase_ ): UpperCAmelCase = populate_current_row(lowercase_ , lowercase_ ) triangle.append(lowercase_ ) return triangle def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase , UpperCAmelCase = 1, 1 for current_col_idx in range(1 , lowercase_ ): calculate_current_element( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return current_row def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , ): UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase = above_to_left_elt + above_to_right_elt def _lowerCAmelCase ( lowercase_ ): if not isinstance(lowercase_ , lowercase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCAmelCase = [[1]] for row_index in range(1 , lowercase_ ): UpperCAmelCase = [0] + result[-1] + [0] UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase = sum(divmod(lowercase_ , 2 ) ) UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase = row_first_half + row_second_half result.append(lowercase_ ) return result def _lowerCAmelCase ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ , lowercase_ ) -> None: UpperCAmelCase = F"""{func.__name__}({value})""" UpperCAmelCase = timeit(F"""__main__.{call}""" , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase_ , lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
78
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = CustomTokenizer pass
35
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = 50 # max width of layer names lowerCamelCase_ = 70 # max width of quantizer names def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__lowercase , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__lowercase , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__lowercase , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__lowercase , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__lowercase , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__lowercase , type=__lowercase , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__lowercase , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' if args.calibrator == "max": _A = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) _A = "histogram" elif args.calibrator == "mse": _A = "histogram" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=__lowercase ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowercase ) def __lowercase ( __lowercase , __lowercase , __lowercase=False , __lowercase=False ) -> Dict: '''simple docstring''' logger.info("Configuring Model for Quantization" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowercase , ["embeddings"] , which="weight" , _disabled=__lowercase ) if args.quant_disable: set_quantizer_by_name(__lowercase , [""] , _disabled=__lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowercase , args.quant_disable_keyword , _disabled=__lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=__lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowercase , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=__lowercase ) if args.recalibrate_weights: recalibrate_weights(__lowercase ) if args.fuse_qkv: fuse_qkv(__lowercase , __lowercase ) if args.clip_gelu: clip_gelu(__lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowercase ) def __lowercase ( __lowercase ) -> Tuple: '''simple docstring''' logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowercase ) def __lowercase ( __lowercase , __lowercase ) -> Union[str, Any]: '''simple docstring''' def fusea(__lowercase , __lowercase , __lowercase ): for mod in [qq, qk, qv]: if not hasattr(__lowercase , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(__lowercase , __lowercase , __lowercase ) qq._amax.fill_(__lowercase ) qk._amax.fill_(__lowercase ) qv._amax.fill_(__lowercase ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __lowercase ( __lowercase , __lowercase ) -> Optional[Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowercase ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __lowercase ( __lowercase ) -> int: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(__lowercase , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __lowercase ( __lowercase ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowercase , keepdims=__lowercase ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def __lowercase ( __lowercase , __lowercase=25 , __lowercase=180 , __lowercase=None ) -> int: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(__lowercase , __lowercase ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(__lowercase , "weight" ): continue _A = max(__lowercase , len(__lowercase ) ) for name, mod in model.named_modules(): _A = getattr(__lowercase , "_input_quantizer" , __lowercase ) _A = getattr(__lowercase , "_weight_quantizer" , __lowercase ) if not hasattr(__lowercase , "weight" ): continue if type(__lowercase ) in ignore: continue if [True for s in ignore if type(__lowercase ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(__lowercase ) <= line_width: logger.info(__lowercase ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __lowercase ( __lowercase ) -> List[str]: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(__lowercase , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' _A = getattr(__lowercase , __lowercase , __lowercase ) if quantizer_mod is not None: assert hasattr(__lowercase , __lowercase ) setattr(__lowercase , __lowercase , __lowercase ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __lowercase ( __lowercase , __lowercase , __lowercase="both" , **__lowercase ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(__lowercase , __lowercase , "_input_quantizer" , __lowercase , __lowercase ) if which in ["weight", "both"]: set_quantizer(__lowercase , __lowercase , "_weight_quantizer" , __lowercase , __lowercase ) logger.info(__lowercase ) def __lowercase ( __lowercase , __lowercase , **__lowercase ) -> Optional[int]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(__lowercase , "_input_quantizer" ) or hasattr(__lowercase , "_weight_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): set_quantizers(__lowercase , __lowercase , **__lowercase ) elif name.endswith("_quantizer" ): for n in names: if re.search(__lowercase , __lowercase ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(__lowercase , __lowercase , __lowercase ) logger.info(__lowercase )
79
'''simple docstring''' import numpy as np from transformers import Pipeline def __snake_case( _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) snake_case__ : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : Optional[Any] , **snake_case_ : int ): snake_case__ : Optional[int] = {} if "second_text" in kwargs: snake_case__ : Union[str, Any] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCamelCase ( self : str , snake_case_ : Tuple , snake_case_ : Union[str, Any]=None ): return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def lowerCamelCase ( self : List[Any] , snake_case_ : Dict ): return self.model(**snake_case_ ) def lowerCamelCase ( self : int , snake_case_ : List[Any] ): snake_case__ : Union[str, Any] = model_outputs.logits[0].numpy() snake_case__ : List[str] = softmax(snake_case_ ) snake_case__ : List[str] = np.argmax(snake_case_ ) snake_case__ : List[str] = self.model.config.idalabel[best_class] snake_case__ : Optional[int] = probabilities[best_class].item() snake_case__ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
35
0
'''simple docstring''' from math import factorial def _UpperCamelCase ( __A = 20 ) -> int: '''simple docstring''' UpperCamelCase__ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase__ = n // 2 return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: a__ : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
80
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __snake_case( _lowerCAmelCase ) -> Any: for i in range(0 , _lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __snake_case( _lowerCAmelCase ) -> List[str]: for i in range(_lowerCAmelCase , 0 , -1 ): for _ in range(_lowerCAmelCase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __snake_case( _lowerCAmelCase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowerCAmelCase ) # upper half reverse_floyd(_lowerCAmelCase ) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") __a = 1 while K: __a = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) __a = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
35
0